/* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at https://mozilla.org/MPL/2.0/. */ //! Parametric Bézier curves. //! //! This is based on `WebCore/platform/graphics/UnitBezier.h` in WebKit. #![deny(missing_docs)] use crate::values::CSSFloat; const NEWTON_METHOD_ITERATIONS: u8 = 8; /// A unit cubic Bézier curve, used for timing functions in CSS transitions and animations. pub struct Bezier { ax: f64, bx: f64, cx: f64, ay: f64, by: f64, cy: f64, } impl Bezier { /// Create a unit cubic Bézier curve from the two middle control points. /// /// X coordinate is time, Y coordinate is function advancement. /// The nominal range for both is 0 to 1. /// /// The start and end points are always (0, 0) and (1, 1) so that a transition or animation /// starts at 0% and ends at 100%. #[inline] pub fn new(x1: CSSFloat, y1: CSSFloat, x2: CSSFloat, y2: CSSFloat) -> Bezier { let cx = 3. * x1 as f64; let bx = 3. * (x2 as f64 - x1 as f64) - cx; let cy = 3. * y1 as f64; let by = 3. * (y2 as f64 - y1 as f64) - cy; Bezier { ax: 1.0 - cx - bx, bx: bx, cx: cx, ay: 1.0 - cy - by, by: by, cy: cy, } } #[inline] fn sample_curve_x(&self, t: f64) -> f64 { // ax * t^3 + bx * t^2 + cx * t ((self.ax * t + self.bx) * t + self.cx) * t } #[inline] fn sample_curve_y(&self, t: f64) -> f64 { ((self.ay * t + self.by) * t + self.cy) * t } #[inline] fn sample_curve_derivative_x(&self, t: f64) -> f64 { (3.0 * self.ax * t + 2.0 * self.bx) * t + self.cx } #[inline] fn solve_curve_x(&self, x: f64, epsilon: f64) -> f64 { // Fast path: Use Newton's method. let mut t = x; for _ in 0..NEWTON_METHOD_ITERATIONS { let x2 = self.sample_curve_x(t); if x2.approx_eq(x, epsilon) { return t; } let dx = self.sample_curve_derivative_x(t); if dx.approx_eq(0.0, 1e-6) { break; } t -= (x2 - x) / dx; } // Slow path: Use bisection. let (mut lo, mut hi, mut t) = (0.0, 1.0, x); if t < lo { return lo; } if t > hi { return hi; } while lo < hi { let x2 = self.sample_curve_x(t); if x2.approx_eq(x, epsilon) { return t; } if x > x2 { lo = t } else { hi = t } t = (hi - lo) / 2.0 + lo } t } /// Solve the bezier curve for a given `x` and an `epsilon`, that should be /// between zero and one. #[inline] pub fn solve(&self, x: f64, epsilon: f64) -> f64 { self.sample_curve_y(self.solve_curve_x(x, epsilon)) } } trait ApproxEq { fn approx_eq(self, value: Self, epsilon: Self) -> bool; } impl ApproxEq for f64 { #[inline] fn approx_eq(self, value: f64, epsilon: f64) -> bool { (self - value).abs() < epsilon } }