# -*- coding: utf-8 -*- # This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this # file, You can obtain one at http://mozilla.org/MPL/2.0/. from __future__ import absolute_import, print_function, unicode_literals import unittest from taskgraph.graph import Graph from mozunit import main class TestGraph(unittest.TestCase): tree = Graph( set(["a", "b", "c", "d", "e", "f", "g"]), { ("a", "b", "L"), ("a", "c", "L"), ("b", "d", "K"), ("b", "e", "K"), ("c", "f", "N"), ("c", "g", "N"), }, ) linear = Graph( set(["1", "2", "3", "4"]), { ("1", "2", "L"), ("2", "3", "L"), ("3", "4", "L"), }, ) diamonds = Graph( set(["A", "B", "C", "D", "E", "F", "G", "H", "I", "J"]), set( tuple(x) for x in "AFL ADL BDL BEL CEL CHL DFL DGL EGL EHL FIL GIL GJL HJL".split() ), ) multi_edges = Graph( set(["1", "2", "3", "4"]), { ("2", "1", "red"), ("2", "1", "blue"), ("3", "1", "red"), ("3", "2", "blue"), ("3", "2", "green"), ("4", "3", "green"), }, ) disjoint = Graph( set(["1", "2", "3", "4", "α", "β", "γ"]), { ("2", "1", "red"), ("3", "1", "red"), ("3", "2", "green"), ("4", "3", "green"), ("α", "β", "πράσινο"), ("β", "γ", "κόκκινο"), ("α", "γ", "μπλε"), }, ) def test_transitive_closure_empty(self): "transitive closure of an empty set is an empty graph" g = Graph(set(["a", "b", "c"]), {("a", "b", "L"), ("a", "c", "L")}) self.assertEqual(g.transitive_closure(set()), Graph(set(), set())) def test_transitive_closure_disjoint(self): "transitive closure of a disjoint set is a subset" g = Graph(set(["a", "b", "c"]), set()) self.assertEqual( g.transitive_closure(set(["a", "c"])), Graph(set(["a", "c"]), set()) ) def test_transitive_closure_trees(self): "transitive closure of a tree, at two non-root nodes, is the two subtrees" self.assertEqual( self.tree.transitive_closure(set(["b", "c"])), Graph( set(["b", "c", "d", "e", "f", "g"]), { ("b", "d", "K"), ("b", "e", "K"), ("c", "f", "N"), ("c", "g", "N"), }, ), ) def test_transitive_closure_multi_edges(self): "transitive closure of a tree with multiple edges between nodes keeps those edges" self.assertEqual( self.multi_edges.transitive_closure(set(["3"])), Graph( set(["1", "2", "3"]), { ("2", "1", "red"), ("2", "1", "blue"), ("3", "1", "red"), ("3", "2", "blue"), ("3", "2", "green"), }, ), ) def test_transitive_closure_disjoint_edges(self): "transitive closure of a disjoint graph keeps those edges" self.assertEqual( self.disjoint.transitive_closure(set(["3", "β"])), Graph( set(["1", "2", "3", "β", "γ"]), { ("2", "1", "red"), ("3", "1", "red"), ("3", "2", "green"), ("β", "γ", "κόκκινο"), }, ), ) def test_transitive_closure_linear(self): "transitive closure of a linear graph includes all nodes in the line" self.assertEqual(self.linear.transitive_closure(set(["1"])), self.linear) def test_visit_postorder_empty(self): "postorder visit of an empty graph is empty" self.assertEqual(list(Graph(set(), set()).visit_postorder()), []) def assert_postorder(self, seq, all_nodes): seen = set() for e in seq: for l, r, n in self.tree.edges: if l == e: self.assertTrue(r in seen) seen.add(e) self.assertEqual(seen, all_nodes) def test_visit_postorder_tree(self): "postorder visit of a tree satisfies invariant" self.assert_postorder(self.tree.visit_postorder(), self.tree.nodes) def test_visit_postorder_diamonds(self): "postorder visit of a graph full of diamonds satisfies invariant" self.assert_postorder(self.diamonds.visit_postorder(), self.diamonds.nodes) def test_visit_postorder_multi_edges(self): "postorder visit of a graph with duplicate edges satisfies invariant" self.assert_postorder( self.multi_edges.visit_postorder(), self.multi_edges.nodes ) def test_visit_postorder_disjoint(self): "postorder visit of a disjoint graph satisfies invariant" self.assert_postorder(self.disjoint.visit_postorder(), self.disjoint.nodes) def assert_preorder(self, seq, all_nodes): seen = set() for e in seq: for l, r, n in self.tree.edges: if r == e: self.assertTrue(l in seen) seen.add(e) self.assertEqual(seen, all_nodes) def test_visit_preorder_tree(self): "preorder visit of a tree satisfies invariant" self.assert_preorder(self.tree.visit_preorder(), self.tree.nodes) def test_visit_preorder_diamonds(self): "preorder visit of a graph full of diamonds satisfies invariant" self.assert_preorder(self.diamonds.visit_preorder(), self.diamonds.nodes) def test_visit_preorder_multi_edges(self): "preorder visit of a graph with duplicate edges satisfies invariant" self.assert_preorder(self.multi_edges.visit_preorder(), self.multi_edges.nodes) def test_visit_preorder_disjoint(self): "preorder visit of a disjoint graph satisfies invariant" self.assert_preorder(self.disjoint.visit_preorder(), self.disjoint.nodes) def test_links_dict(self): "link dict for a graph with multiple edges is correct" self.assertEqual( self.multi_edges.links_dict(), { "2": set(["1"]), "3": set(["1", "2"]), "4": set(["3"]), }, ) def test_named_links_dict(self): "named link dict for a graph with multiple edges is correct" self.assertEqual( self.multi_edges.named_links_dict(), { "2": dict(red="1", blue="1"), "3": dict(red="1", blue="2", green="2"), "4": dict(green="3"), }, ) def test_reverse_links_dict(self): "reverse link dict for a graph with multiple edges is correct" self.assertEqual( self.multi_edges.reverse_links_dict(), { "1": set(["2", "3"]), "2": set(["3"]), "3": set(["4"]), }, ) if __name__ == "__main__": main()