/* * Copyright © 2018, Niklas Haas * Copyright © 2018, VideoLAN and dav1d authors * Copyright © 2018, Two Orioles, LLC * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "common/attributes.h" #include "common/intops.h" #include "film_grain.h" #include "tables.h" #define SUB_GRAIN_WIDTH 44 #define SUB_GRAIN_HEIGHT 38 static inline int get_random_number(const int bits, unsigned *const state) { const int r = *state; unsigned bit = ((r >> 0) ^ (r >> 1) ^ (r >> 3) ^ (r >> 12)) & 1; *state = (r >> 1) | (bit << 15); return (*state >> (16 - bits)) & ((1 << bits) - 1); } static inline int round2(const int x, const uint64_t shift) { return (x + ((1 << shift) >> 1)) >> shift; } static void generate_grain_y_c(entry buf[][GRAIN_WIDTH], const Dav1dFilmGrainData *const data HIGHBD_DECL_SUFFIX) { const int bitdepth_min_8 = bitdepth_from_max(bitdepth_max) - 8; unsigned seed = data->seed; const int shift = 4 - bitdepth_min_8 + data->grain_scale_shift; const int grain_ctr = 128 << bitdepth_min_8; const int grain_min = -grain_ctr, grain_max = grain_ctr - 1; for (int y = 0; y < GRAIN_HEIGHT; y++) { for (int x = 0; x < GRAIN_WIDTH; x++) { const int value = get_random_number(11, &seed); buf[y][x] = round2(dav1d_gaussian_sequence[ value ], shift); } } const int ar_pad = 3; const int ar_lag = data->ar_coeff_lag; for (int y = ar_pad; y < GRAIN_HEIGHT; y++) { for (int x = ar_pad; x < GRAIN_WIDTH - ar_pad; x++) { const int8_t *coeff = data->ar_coeffs_y; int sum = 0; for (int dy = -ar_lag; dy <= 0; dy++) { for (int dx = -ar_lag; dx <= ar_lag; dx++) { if (!dx && !dy) break; sum += *(coeff++) * buf[y + dy][x + dx]; } } const int grain = buf[y][x] + round2(sum, data->ar_coeff_shift); buf[y][x] = iclip(grain, grain_min, grain_max); } } } static NOINLINE void generate_grain_uv_c(entry buf[][GRAIN_WIDTH], const entry buf_y[][GRAIN_WIDTH], const Dav1dFilmGrainData *const data, const intptr_t uv, const int subx, const int suby HIGHBD_DECL_SUFFIX) { const int bitdepth_min_8 = bitdepth_from_max(bitdepth_max) - 8; unsigned seed = data->seed ^ (uv ? 0x49d8 : 0xb524); const int shift = 4 - bitdepth_min_8 + data->grain_scale_shift; const int grain_ctr = 128 << bitdepth_min_8; const int grain_min = -grain_ctr, grain_max = grain_ctr - 1; const int chromaW = subx ? SUB_GRAIN_WIDTH : GRAIN_WIDTH; const int chromaH = suby ? SUB_GRAIN_HEIGHT : GRAIN_HEIGHT; for (int y = 0; y < chromaH; y++) { for (int x = 0; x < chromaW; x++) { const int value = get_random_number(11, &seed); buf[y][x] = round2(dav1d_gaussian_sequence[ value ], shift); } } const int ar_pad = 3; const int ar_lag = data->ar_coeff_lag; for (int y = ar_pad; y < chromaH; y++) { for (int x = ar_pad; x < chromaW - ar_pad; x++) { const int8_t *coeff = data->ar_coeffs_uv[uv]; int sum = 0; for (int dy = -ar_lag; dy <= 0; dy++) { for (int dx = -ar_lag; dx <= ar_lag; dx++) { // For the final (current) pixel, we need to add in the // contribution from the luma grain texture if (!dx && !dy) { if (!data->num_y_points) break; int luma = 0; const int lumaX = ((x - ar_pad) << subx) + ar_pad; const int lumaY = ((y - ar_pad) << suby) + ar_pad; for (int i = 0; i <= suby; i++) { for (int j = 0; j <= subx; j++) { luma += buf_y[lumaY + i][lumaX + j]; } } luma = round2(luma, subx + suby); sum += luma * (*coeff); break; } sum += *(coeff++) * buf[y + dy][x + dx]; } } const int grain = buf[y][x] + round2(sum, data->ar_coeff_shift); buf[y][x] = iclip(grain, grain_min, grain_max); } } } #define gnuv_ss_fn(nm, ss_x, ss_y) \ static decl_generate_grain_uv_fn(generate_grain_uv_##nm##_c) { \ generate_grain_uv_c(buf, buf_y, data, uv, ss_x, ss_y HIGHBD_TAIL_SUFFIX); \ } gnuv_ss_fn(420, 1, 1); gnuv_ss_fn(422, 1, 0); gnuv_ss_fn(444, 0, 0); // samples from the correct block of a grain LUT, while taking into account the // offsets provided by the offsets cache static inline entry sample_lut(const entry grain_lut[][GRAIN_WIDTH], const int offsets[2][2], const int subx, const int suby, const int bx, const int by, const int x, const int y) { const int randval = offsets[bx][by]; const int offx = 3 + (2 >> subx) * (3 + (randval >> 4)); const int offy = 3 + (2 >> suby) * (3 + (randval & 0xF)); return grain_lut[offy + y + (BLOCK_SIZE >> suby) * by] [offx + x + (BLOCK_SIZE >> subx) * bx]; } static void fgy_32x32xn_c(pixel *const dst_row, const pixel *const src_row, const ptrdiff_t stride, const Dav1dFilmGrainData *const data, const size_t pw, const uint8_t scaling[SCALING_SIZE], const entry grain_lut[][GRAIN_WIDTH], const int bh, const int row_num HIGHBD_DECL_SUFFIX) { const int rows = 1 + (data->overlap_flag && row_num > 0); const int bitdepth_min_8 = bitdepth_from_max(bitdepth_max) - 8; const int grain_ctr = 128 << bitdepth_min_8; const int grain_min = -grain_ctr, grain_max = grain_ctr - 1; int min_value, max_value; if (data->clip_to_restricted_range) { min_value = 16 << bitdepth_min_8; max_value = 235 << bitdepth_min_8; } else { min_value = 0; #if BITDEPTH == 8 max_value = 0xff; #else max_value = bitdepth_max; #endif } // seed[0] contains the current row, seed[1] contains the previous unsigned seed[2]; for (int i = 0; i < rows; i++) { seed[i] = data->seed; seed[i] ^= (((row_num - i) * 37 + 178) & 0xFF) << 8; seed[i] ^= (((row_num - i) * 173 + 105) & 0xFF); } assert(stride % (BLOCK_SIZE * sizeof(pixel)) == 0); int offsets[2 /* col offset */][2 /* row offset */]; // process this row in BLOCK_SIZE^2 blocks for (unsigned bx = 0; bx < pw; bx += BLOCK_SIZE) { const int bw = imin(BLOCK_SIZE, (int) pw - bx); if (data->overlap_flag && bx) { // shift previous offsets left for (int i = 0; i < rows; i++) offsets[1][i] = offsets[0][i]; } // update current offsets for (int i = 0; i < rows; i++) offsets[0][i] = get_random_number(8, &seed[i]); // x/y block offsets to compensate for overlapped regions const int ystart = data->overlap_flag && row_num ? imin(2, bh) : 0; const int xstart = data->overlap_flag && bx ? imin(2, bw) : 0; static const int w[2][2] = { { 27, 17 }, { 17, 27 } }; #define add_noise_y(x, y, grain) \ const pixel *const src = src_row + (y) * PXSTRIDE(stride) + (x) + bx; \ pixel *const dst = dst_row + (y) * PXSTRIDE(stride) + (x) + bx; \ const int noise = round2(scaling[ *src ] * (grain), data->scaling_shift); \ *dst = iclip(*src + noise, min_value, max_value); for (int y = ystart; y < bh; y++) { // Non-overlapped image region (straightforward) for (int x = xstart; x < bw; x++) { int grain = sample_lut(grain_lut, offsets, 0, 0, 0, 0, x, y); add_noise_y(x, y, grain); } // Special case for overlapped column for (int x = 0; x < xstart; x++) { int grain = sample_lut(grain_lut, offsets, 0, 0, 0, 0, x, y); int old = sample_lut(grain_lut, offsets, 0, 0, 1, 0, x, y); grain = round2(old * w[x][0] + grain * w[x][1], 5); grain = iclip(grain, grain_min, grain_max); add_noise_y(x, y, grain); } } for (int y = 0; y < ystart; y++) { // Special case for overlapped row (sans corner) for (int x = xstart; x < bw; x++) { int grain = sample_lut(grain_lut, offsets, 0, 0, 0, 0, x, y); int old = sample_lut(grain_lut, offsets, 0, 0, 0, 1, x, y); grain = round2(old * w[y][0] + grain * w[y][1], 5); grain = iclip(grain, grain_min, grain_max); add_noise_y(x, y, grain); } // Special case for doubly-overlapped corner for (int x = 0; x < xstart; x++) { // Blend the top pixel with the top left block int top = sample_lut(grain_lut, offsets, 0, 0, 0, 1, x, y); int old = sample_lut(grain_lut, offsets, 0, 0, 1, 1, x, y); top = round2(old * w[x][0] + top * w[x][1], 5); top = iclip(top, grain_min, grain_max); // Blend the current pixel with the left block int grain = sample_lut(grain_lut, offsets, 0, 0, 0, 0, x, y); old = sample_lut(grain_lut, offsets, 0, 0, 1, 0, x, y); grain = round2(old * w[x][0] + grain * w[x][1], 5); grain = iclip(grain, grain_min, grain_max); // Mix the row rows together and apply grain grain = round2(top * w[y][0] + grain * w[y][1], 5); grain = iclip(grain, grain_min, grain_max); add_noise_y(x, y, grain); } } } } static NOINLINE void fguv_32x32xn_c(pixel *const dst_row, const pixel *const src_row, const ptrdiff_t stride, const Dav1dFilmGrainData *const data, const int pw, const uint8_t scaling[SCALING_SIZE], const entry grain_lut[][GRAIN_WIDTH], const int bh, const int row_num, const pixel *const luma_row, const ptrdiff_t luma_stride, const int uv, const int is_id, const int sx, const int sy HIGHBD_DECL_SUFFIX) { const int rows = 1 + (data->overlap_flag && row_num > 0); const int bitdepth_min_8 = bitdepth_from_max(bitdepth_max) - 8; const int grain_ctr = 128 << bitdepth_min_8; const int grain_min = -grain_ctr, grain_max = grain_ctr - 1; int min_value, max_value; if (data->clip_to_restricted_range) { min_value = 16 << bitdepth_min_8; max_value = (is_id ? 235 : 240) << bitdepth_min_8; } else { min_value = 0; #if BITDEPTH == 8 max_value = 0xff; #else max_value = bitdepth_max; #endif } // seed[0] contains the current row, seed[1] contains the previous unsigned seed[2]; for (int i = 0; i < rows; i++) { seed[i] = data->seed; seed[i] ^= (((row_num - i) * 37 + 178) & 0xFF) << 8; seed[i] ^= (((row_num - i) * 173 + 105) & 0xFF); } assert(stride % (BLOCK_SIZE * sizeof(pixel)) == 0); int offsets[2 /* col offset */][2 /* row offset */]; // process this row in BLOCK_SIZE^2 blocks (subsampled) for (int bx = 0; bx < pw; bx += BLOCK_SIZE >> sx) { const int bw = imin(BLOCK_SIZE >> sx, pw - bx); if (data->overlap_flag && bx) { // shift previous offsets left for (int i = 0; i < rows; i++) offsets[1][i] = offsets[0][i]; } // update current offsets for (int i = 0; i < rows; i++) offsets[0][i] = get_random_number(8, &seed[i]); // x/y block offsets to compensate for overlapped regions const int ystart = data->overlap_flag && row_num ? imin(2 >> sy, bh) : 0; const int xstart = data->overlap_flag && bx ? imin(2 >> sx, bw) : 0; static const int w[2 /* sub */][2 /* off */][2] = { { { 27, 17 }, { 17, 27 } }, { { 23, 22 } }, }; #define add_noise_uv(x, y, grain) \ const int lx = (bx + x) << sx; \ const int ly = y << sy; \ const pixel *const luma = luma_row + ly * PXSTRIDE(luma_stride) + lx; \ pixel avg = luma[0]; \ if (sx) \ avg = (avg + luma[1] + 1) >> 1; \ const pixel *const src = src_row + (y) * PXSTRIDE(stride) + (bx + (x)); \ pixel *const dst = dst_row + (y) * PXSTRIDE(stride) + (bx + (x)); \ int val = avg; \ if (!data->chroma_scaling_from_luma) { \ const int combined = avg * data->uv_luma_mult[uv] + \ *src * data->uv_mult[uv]; \ val = iclip_pixel( (combined >> 6) + \ (data->uv_offset[uv] * (1 << bitdepth_min_8)) ); \ } \ const int noise = round2(scaling[ val ] * (grain), data->scaling_shift); \ *dst = iclip(*src + noise, min_value, max_value); for (int y = ystart; y < bh; y++) { // Non-overlapped image region (straightforward) for (int x = xstart; x < bw; x++) { int grain = sample_lut(grain_lut, offsets, sx, sy, 0, 0, x, y); add_noise_uv(x, y, grain); } // Special case for overlapped column for (int x = 0; x < xstart; x++) { int grain = sample_lut(grain_lut, offsets, sx, sy, 0, 0, x, y); int old = sample_lut(grain_lut, offsets, sx, sy, 1, 0, x, y); grain = (old * w[sx][x][0] + grain * w[sx][x][1] + 16) >> 5; grain = iclip(grain, grain_min, grain_max); add_noise_uv(x, y, grain); } } for (int y = 0; y < ystart; y++) { // Special case for overlapped row (sans corner) for (int x = xstart; x < bw; x++) { int grain = sample_lut(grain_lut, offsets, sx, sy, 0, 0, x, y); int old = sample_lut(grain_lut, offsets, sx, sy, 0, 1, x, y); grain = (old * w[sy][y][0] + grain * w[sy][y][1] + 16) >> 5; grain = iclip(grain, grain_min, grain_max); add_noise_uv(x, y, grain); } // Special case for doubly-overlapped corner for (int x = 0; x < xstart; x++) { // Blend the top pixel with the top left block int top = sample_lut(grain_lut, offsets, sx, sy, 0, 1, x, y); int old = sample_lut(grain_lut, offsets, sx, sy, 1, 1, x, y); top = (old * w[sx][x][0] + top * w[sx][x][1] + 16) >> 5; top = iclip(top, grain_min, grain_max); // Blend the current pixel with the left block int grain = sample_lut(grain_lut, offsets, sx, sy, 0, 0, x, y); old = sample_lut(grain_lut, offsets, sx, sy, 1, 0, x, y); grain = (old * w[sx][x][0] + grain * w[sx][x][1] + 16) >> 5; grain = iclip(grain, grain_min, grain_max); // Mix the row rows together and apply to image grain = (top * w[sy][y][0] + grain * w[sy][y][1] + 16) >> 5; grain = iclip(grain, grain_min, grain_max); add_noise_uv(x, y, grain); } } } } #define fguv_ss_fn(nm, ss_x, ss_y) \ static decl_fguv_32x32xn_fn(fguv_32x32xn_##nm##_c) { \ fguv_32x32xn_c(dst_row, src_row, stride, data, pw, scaling, grain_lut, bh, \ row_num, luma_row, luma_stride, uv_pl, is_id, ss_x, ss_y \ HIGHBD_TAIL_SUFFIX); \ } fguv_ss_fn(420, 1, 1); fguv_ss_fn(422, 1, 0); fguv_ss_fn(444, 0, 0); COLD void bitfn(dav1d_film_grain_dsp_init)(Dav1dFilmGrainDSPContext *const c) { c->generate_grain_y = generate_grain_y_c; c->generate_grain_uv[DAV1D_PIXEL_LAYOUT_I420 - 1] = generate_grain_uv_420_c; c->generate_grain_uv[DAV1D_PIXEL_LAYOUT_I422 - 1] = generate_grain_uv_422_c; c->generate_grain_uv[DAV1D_PIXEL_LAYOUT_I444 - 1] = generate_grain_uv_444_c; c->fgy_32x32xn = fgy_32x32xn_c; c->fguv_32x32xn[DAV1D_PIXEL_LAYOUT_I420 - 1] = fguv_32x32xn_420_c; c->fguv_32x32xn[DAV1D_PIXEL_LAYOUT_I422 - 1] = fguv_32x32xn_422_c; c->fguv_32x32xn[DAV1D_PIXEL_LAYOUT_I444 - 1] = fguv_32x32xn_444_c; #if HAVE_ASM && ARCH_X86 bitfn(dav1d_film_grain_dsp_init_x86)(c); #endif }