/* * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include #include #include "api/array_view.h" #include "api/optional.h" #include "modules/audio_device/audio_device_impl.h" #include "modules/audio_device/include/audio_device.h" #include "modules/audio_device/include/mock_audio_transport.h" #include "rtc_base/buffer.h" #include "rtc_base/criticalsection.h" #include "rtc_base/event.h" #include "rtc_base/logging.h" #include "rtc_base/numerics/safe_conversions.h" #include "rtc_base/race_checker.h" #include "rtc_base/scoped_ref_ptr.h" #include "rtc_base/thread_annotations.h" #include "rtc_base/thread_checker.h" #include "rtc_base/timeutils.h" #include "test/gmock.h" #include "test/gtest.h" using ::testing::_; using ::testing::AtLeast; using ::testing::Ge; using ::testing::Invoke; using ::testing::NiceMock; using ::testing::NotNull; namespace webrtc { namespace { // #define ENABLE_DEBUG_PRINTF #ifdef ENABLE_DEBUG_PRINTF #define PRINTD(...) fprintf(stderr, __VA_ARGS__); #else #define PRINTD(...) ((void)0) #endif #define PRINT(...) fprintf(stderr, __VA_ARGS__); // Don't run these tests in combination with sanitizers. #if !defined(ADDRESS_SANITIZER) && !defined(MEMORY_SANITIZER) #define SKIP_TEST_IF_NOT(requirements_satisfied) \ do { \ if (!requirements_satisfied) { \ return; \ } \ } while (false) #else // Or if other audio-related requirements are not met. #define SKIP_TEST_IF_NOT(requirements_satisfied) \ do { \ return; \ } while (false) #endif // Number of callbacks (input or output) the tests waits for before we set // an event indicating that the test was OK. static constexpr size_t kNumCallbacks = 10; // Max amount of time we wait for an event to be set while counting callbacks. static constexpr size_t kTestTimeOutInMilliseconds = 10 * 1000; // Average number of audio callbacks per second assuming 10ms packet size. static constexpr size_t kNumCallbacksPerSecond = 100; // Run the full-duplex test during this time (unit is in seconds). static constexpr size_t kFullDuplexTimeInSec = 5; // Length of round-trip latency measurements. Number of deteced impulses // shall be kImpulseFrequencyInHz * kMeasureLatencyTimeInSec - 1 since the // last transmitted pulse is not used. static constexpr size_t kMeasureLatencyTimeInSec = 10; // Sets the number of impulses per second in the latency test. static constexpr size_t kImpulseFrequencyInHz = 1; // Utilized in round-trip latency measurements to avoid capturing noise samples. static constexpr int kImpulseThreshold = 1000; enum class TransportType { kInvalid, kPlay, kRecord, kPlayAndRecord, }; // Interface for processing the audio stream. Real implementations can e.g. // run audio in loopback, read audio from a file or perform latency // measurements. class AudioStream { public: virtual void Write(rtc::ArrayView source, size_t channels) = 0; virtual void Read(rtc::ArrayView destination, size_t channels) = 0; virtual ~AudioStream() = default; }; // Converts index corresponding to position within a 10ms buffer into a // delay value in milliseconds. // Example: index=240, frames_per_10ms_buffer=480 => 5ms as output. int IndexToMilliseconds(size_t index, size_t frames_per_10ms_buffer) { return rtc::checked_cast( 10.0 * (static_cast(index) / frames_per_10ms_buffer) + 0.5); } } // namespace // Simple first in first out (FIFO) class that wraps a list of 16-bit audio // buffers of fixed size and allows Write and Read operations. The idea is to // store recorded audio buffers (using Write) and then read (using Read) these // stored buffers with as short delay as possible when the audio layer needs // data to play out. The number of buffers in the FIFO will stabilize under // normal conditions since there will be a balance between Write and Read calls. // The container is a std::list container and access is protected with a lock // since both sides (playout and recording) are driven by its own thread. // Note that, we know by design that the size of the audio buffer will not // change over time and that both sides will use the same size. class FifoAudioStream : public AudioStream { public: void Write(rtc::ArrayView source, size_t channels) override { EXPECT_EQ(channels, 1u); RTC_DCHECK_RUNS_SERIALIZED(&race_checker_); const size_t size = [&] { rtc::CritScope lock(&lock_); fifo_.push_back(Buffer16(source.data(), source.size())); return fifo_.size(); }(); if (size > max_size_) { max_size_ = size; } // Add marker once per second to signal that audio is active. if (write_count_++ % 100 == 0) { PRINT("."); } written_elements_ += size; } void Read(rtc::ArrayView destination, size_t channels) override { EXPECT_EQ(channels, 1u); rtc::CritScope lock(&lock_); if (fifo_.empty()) { std::fill(destination.begin(), destination.end(), 0); } else { const Buffer16& buffer = fifo_.front(); RTC_CHECK_EQ(buffer.size(), destination.size()); std::copy(buffer.begin(), buffer.end(), destination.begin()); fifo_.pop_front(); } } size_t size() const { rtc::CritScope lock(&lock_); return fifo_.size(); } size_t max_size() const { RTC_DCHECK_RUNS_SERIALIZED(&race_checker_); return max_size_; } size_t average_size() const { RTC_DCHECK_RUNS_SERIALIZED(&race_checker_); return 0.5 + static_cast(written_elements_ / write_count_); } using Buffer16 = rtc::BufferT; rtc::CriticalSection lock_; rtc::RaceChecker race_checker_; std::list fifo_ RTC_GUARDED_BY(lock_); size_t write_count_ RTC_GUARDED_BY(race_checker_) = 0; size_t max_size_ RTC_GUARDED_BY(race_checker_) = 0; size_t written_elements_ RTC_GUARDED_BY(race_checker_) = 0; }; // Inserts periodic impulses and measures the latency between the time of // transmission and time of receiving the same impulse. class LatencyAudioStream : public AudioStream { public: LatencyAudioStream() { // Delay thread checkers from being initialized until first callback from // respective thread. read_thread_checker_.DetachFromThread(); write_thread_checker_.DetachFromThread(); } // Insert periodic impulses in first two samples of |destination|. void Read(rtc::ArrayView destination, size_t channels) override { RTC_DCHECK_RUN_ON(&read_thread_checker_); EXPECT_EQ(channels, 1u); if (read_count_ == 0) { PRINT("["); } read_count_++; std::fill(destination.begin(), destination.end(), 0); if (read_count_ % (kNumCallbacksPerSecond / kImpulseFrequencyInHz) == 0) { PRINT("."); { rtc::CritScope lock(&lock_); if (!pulse_time_) { pulse_time_ = rtc::Optional(rtc::TimeMillis()); } } constexpr int16_t impulse = std::numeric_limits::max(); std::fill_n(destination.begin(), 2, impulse); } } // Detect received impulses in |source|, derive time between transmission and // detection and add the calculated delay to list of latencies. void Write(rtc::ArrayView source, size_t channels) override { EXPECT_EQ(channels, 1u); RTC_DCHECK_RUN_ON(&write_thread_checker_); RTC_DCHECK_RUNS_SERIALIZED(&race_checker_); rtc::CritScope lock(&lock_); write_count_++; if (!pulse_time_) { // Avoid detection of new impulse response until a new impulse has // been transmitted (sets |pulse_time_| to value larger than zero). return; } // Find index (element position in vector) of the max element. const size_t index_of_max = std::max_element(source.begin(), source.end()) - source.begin(); // Derive time between transmitted pulse and received pulse if the level // is high enough (removes noise). const size_t max = source[index_of_max]; if (max > kImpulseThreshold) { PRINTD("(%zu, %zu)", max, index_of_max); int64_t now_time = rtc::TimeMillis(); int extra_delay = IndexToMilliseconds(index_of_max, source.size()); PRINTD("[%d]", rtc::checked_cast(now_time - pulse_time_)); PRINTD("[%d]", extra_delay); // Total latency is the difference between transmit time and detection // tome plus the extra delay within the buffer in which we detected the // received impulse. It is transmitted at sample 0 but can be received // at sample N where N > 0. The term |extra_delay| accounts for N and it // is a value between 0 and 10ms. latencies_.push_back(now_time - *pulse_time_ + extra_delay); pulse_time_.reset(); } else { PRINTD("-"); } } size_t num_latency_values() const { RTC_DCHECK_RUNS_SERIALIZED(&race_checker_); return latencies_.size(); } int min_latency() const { RTC_DCHECK_RUNS_SERIALIZED(&race_checker_); if (latencies_.empty()) return 0; return *std::min_element(latencies_.begin(), latencies_.end()); } int max_latency() const { RTC_DCHECK_RUNS_SERIALIZED(&race_checker_); if (latencies_.empty()) return 0; return *std::max_element(latencies_.begin(), latencies_.end()); } int average_latency() const { RTC_DCHECK_RUNS_SERIALIZED(&race_checker_); if (latencies_.empty()) return 0; return 0.5 + static_cast( std::accumulate(latencies_.begin(), latencies_.end(), 0)) / latencies_.size(); } void PrintResults() const { RTC_DCHECK_RUNS_SERIALIZED(&race_checker_); PRINT("] "); for (auto it = latencies_.begin(); it != latencies_.end(); ++it) { PRINTD("%d ", *it); } PRINT("\n"); PRINT("[..........] [min, max, avg]=[%d, %d, %d] ms\n", min_latency(), max_latency(), average_latency()); } rtc::CriticalSection lock_; rtc::RaceChecker race_checker_; rtc::ThreadChecker read_thread_checker_; rtc::ThreadChecker write_thread_checker_; rtc::Optional pulse_time_ RTC_GUARDED_BY(lock_); std::vector latencies_ RTC_GUARDED_BY(race_checker_); size_t read_count_ RTC_ACCESS_ON(read_thread_checker_) = 0; size_t write_count_ RTC_ACCESS_ON(write_thread_checker_) = 0; }; // Mocks the AudioTransport object and proxies actions for the two callbacks // (RecordedDataIsAvailable and NeedMorePlayData) to different implementations // of AudioStreamInterface. class MockAudioTransport : public test::MockAudioTransport { public: explicit MockAudioTransport(TransportType type) : type_(type) {} ~MockAudioTransport() {} // Set default actions of the mock object. We are delegating to fake // implementation where the number of callbacks is counted and an event // is set after a certain number of callbacks. Audio parameters are also // checked. void HandleCallbacks(rtc::Event* event, AudioStream* audio_stream, int num_callbacks) { event_ = event; audio_stream_ = audio_stream; num_callbacks_ = num_callbacks; if (play_mode()) { ON_CALL(*this, NeedMorePlayData(_, _, _, _, _, _, _, _)) .WillByDefault( Invoke(this, &MockAudioTransport::RealNeedMorePlayData)); } if (rec_mode()) { ON_CALL(*this, RecordedDataIsAvailable(_, _, _, _, _, _, _, _, _, _)) .WillByDefault( Invoke(this, &MockAudioTransport::RealRecordedDataIsAvailable)); } } int32_t RealRecordedDataIsAvailable(const void* audio_buffer, const size_t samples_per_channel, const size_t bytes_per_frame, const size_t channels, const uint32_t sample_rate, const uint32_t total_delay_ms, const int32_t clock_drift, const uint32_t current_mic_level, const bool typing_status, uint32_t& new_mic_level) { EXPECT_TRUE(rec_mode()) << "No test is expecting these callbacks."; RTC_LOG(INFO) << "+"; // Store audio parameters once in the first callback. For all other // callbacks, verify that the provided audio parameters are maintained and // that each callback corresponds to 10ms for any given sample rate. if (!record_parameters_.is_complete()) { record_parameters_.reset(sample_rate, channels, samples_per_channel); } else { EXPECT_EQ(samples_per_channel, record_parameters_.frames_per_buffer()); EXPECT_EQ(bytes_per_frame, record_parameters_.GetBytesPerFrame()); EXPECT_EQ(channels, record_parameters_.channels()); EXPECT_EQ(static_cast(sample_rate), record_parameters_.sample_rate()); EXPECT_EQ(samples_per_channel, record_parameters_.frames_per_10ms_buffer()); } rec_count_++; // Write audio data to audio stream object if one has been injected. if (audio_stream_) { audio_stream_->Write( rtc::MakeArrayView(static_cast(audio_buffer), samples_per_channel * channels), channels); } // Signal the event after given amount of callbacks. if (ReceivedEnoughCallbacks()) { event_->Set(); } return 0; } int32_t RealNeedMorePlayData(const size_t samples_per_channel, const size_t bytes_per_frame, const size_t channels, const uint32_t sample_rate, void* audio_buffer, size_t& samples_per_channel_out, int64_t* elapsed_time_ms, int64_t* ntp_time_ms) { EXPECT_TRUE(play_mode()) << "No test is expecting these callbacks."; RTC_LOG(INFO) << "-"; // Store audio parameters once in the first callback. For all other // callbacks, verify that the provided audio parameters are maintained and // that each callback corresponds to 10ms for any given sample rate. if (!playout_parameters_.is_complete()) { playout_parameters_.reset(sample_rate, channels, samples_per_channel); } else { EXPECT_EQ(samples_per_channel, playout_parameters_.frames_per_buffer()); EXPECT_EQ(bytes_per_frame, playout_parameters_.GetBytesPerFrame()); EXPECT_EQ(channels, playout_parameters_.channels()); EXPECT_EQ(static_cast(sample_rate), playout_parameters_.sample_rate()); EXPECT_EQ(samples_per_channel, playout_parameters_.frames_per_10ms_buffer()); } play_count_++; samples_per_channel_out = samples_per_channel; // Read audio data from audio stream object if one has been injected. if (audio_stream_) { audio_stream_->Read( rtc::MakeArrayView(static_cast(audio_buffer), samples_per_channel * channels), channels); } else { // Fill the audio buffer with zeros to avoid disturbing audio. const size_t num_bytes = samples_per_channel * bytes_per_frame; std::memset(audio_buffer, 0, num_bytes); } // Signal the event after given amount of callbacks. if (ReceivedEnoughCallbacks()) { event_->Set(); } return 0; } bool ReceivedEnoughCallbacks() { bool recording_done = false; if (rec_mode()) { recording_done = rec_count_ >= num_callbacks_; } else { recording_done = true; } bool playout_done = false; if (play_mode()) { playout_done = play_count_ >= num_callbacks_; } else { playout_done = true; } return recording_done && playout_done; } bool play_mode() const { return type_ == TransportType::kPlay || type_ == TransportType::kPlayAndRecord; } bool rec_mode() const { return type_ == TransportType::kRecord || type_ == TransportType::kPlayAndRecord; } private: TransportType type_ = TransportType::kInvalid; rtc::Event* event_ = nullptr; AudioStream* audio_stream_ = nullptr; size_t num_callbacks_ = 0; size_t play_count_ = 0; size_t rec_count_ = 0; AudioParameters playout_parameters_; AudioParameters record_parameters_; }; // AudioDeviceTest test fixture. class AudioDeviceTest : public ::testing::Test { protected: AudioDeviceTest() : event_(false, false) { #if !defined(ADDRESS_SANITIZER) && !defined(MEMORY_SANITIZER) rtc::LogMessage::LogToDebug(rtc::LS_INFO); // Add extra logging fields here if needed for debugging. // rtc::LogMessage::LogTimestamps(); // rtc::LogMessage::LogThreads(); audio_device_ = AudioDeviceModule::Create(AudioDeviceModule::kPlatformDefaultAudio); EXPECT_NE(audio_device_.get(), nullptr); AudioDeviceModule::AudioLayer audio_layer; int got_platform_audio_layer = audio_device_->ActiveAudioLayer(&audio_layer); // First, ensure that a valid audio layer can be activated. if (got_platform_audio_layer != 0) { requirements_satisfied_ = false; } // Next, verify that the ADM can be initialized. if (requirements_satisfied_) { requirements_satisfied_ = (audio_device_->Init() == 0); } // Finally, ensure that at least one valid device exists in each direction. if (requirements_satisfied_) { const int16_t num_playout_devices = audio_device_->PlayoutDevices(); const int16_t num_record_devices = audio_device_->RecordingDevices(); requirements_satisfied_ = num_playout_devices > 0 && num_record_devices > 0; } #else requirements_satisfied_ = false; #endif if (requirements_satisfied_) { EXPECT_EQ(0, audio_device_->SetPlayoutDevice(0)); EXPECT_EQ(0, audio_device_->InitSpeaker()); EXPECT_EQ(0, audio_device_->SetRecordingDevice(0)); EXPECT_EQ(0, audio_device_->InitMicrophone()); EXPECT_EQ(0, audio_device_->StereoPlayoutIsAvailable(&stereo_playout_)); EXPECT_EQ(0, audio_device_->SetStereoPlayout(stereo_playout_)); // Avoid asking for input stereo support and always record in mono // since asking can cause issues in combination with remote desktop. // See https://bugs.chromium.org/p/webrtc/issues/detail?id=7397 for // details. EXPECT_EQ(0, audio_device_->SetStereoRecording(false)); EXPECT_EQ(0, audio_device_->SetAGC(false)); EXPECT_FALSE(audio_device_->AGC()); } } virtual ~AudioDeviceTest() { if (audio_device_) { EXPECT_EQ(0, audio_device_->Terminate()); } } bool requirements_satisfied() const { return requirements_satisfied_; } rtc::Event* event() { return &event_; } const rtc::scoped_refptr& audio_device() const { return audio_device_; } void StartPlayout() { EXPECT_FALSE(audio_device()->Playing()); EXPECT_EQ(0, audio_device()->InitPlayout()); EXPECT_TRUE(audio_device()->PlayoutIsInitialized()); EXPECT_EQ(0, audio_device()->StartPlayout()); EXPECT_TRUE(audio_device()->Playing()); } void StopPlayout() { EXPECT_EQ(0, audio_device()->StopPlayout()); EXPECT_FALSE(audio_device()->Playing()); EXPECT_FALSE(audio_device()->PlayoutIsInitialized()); } void StartRecording() { EXPECT_FALSE(audio_device()->Recording()); EXPECT_EQ(0, audio_device()->InitRecording()); EXPECT_TRUE(audio_device()->RecordingIsInitialized()); EXPECT_EQ(0, audio_device()->StartRecording()); EXPECT_TRUE(audio_device()->Recording()); } void StopRecording() { EXPECT_EQ(0, audio_device()->StopRecording()); EXPECT_FALSE(audio_device()->Recording()); EXPECT_FALSE(audio_device()->RecordingIsInitialized()); } private: bool requirements_satisfied_ = true; rtc::Event event_; rtc::scoped_refptr audio_device_; bool stereo_playout_ = false; }; // Uses the test fixture to create, initialize and destruct the ADM. TEST_F(AudioDeviceTest, ConstructDestruct) {} TEST_F(AudioDeviceTest, InitTerminate) { SKIP_TEST_IF_NOT(requirements_satisfied()); // Initialization is part of the test fixture. EXPECT_TRUE(audio_device()->Initialized()); EXPECT_EQ(0, audio_device()->Terminate()); EXPECT_FALSE(audio_device()->Initialized()); } // Tests Start/Stop playout without any registered audio callback. TEST_F(AudioDeviceTest, StartStopPlayout) { SKIP_TEST_IF_NOT(requirements_satisfied()); StartPlayout(); StopPlayout(); StartPlayout(); StopPlayout(); } // Tests Start/Stop recording without any registered audio callback. TEST_F(AudioDeviceTest, StartStopRecording) { SKIP_TEST_IF_NOT(requirements_satisfied()); StartRecording(); StopRecording(); StartRecording(); StopRecording(); } // Tests Init/Stop/Init recording without any registered audio callback. // See https://bugs.chromium.org/p/webrtc/issues/detail?id=8041 for details // on why this test is useful. TEST_F(AudioDeviceTest, InitStopInitRecording) { SKIP_TEST_IF_NOT(requirements_satisfied()); EXPECT_EQ(0, audio_device()->InitRecording()); EXPECT_TRUE(audio_device()->RecordingIsInitialized()); StopRecording(); EXPECT_EQ(0, audio_device()->InitRecording()); StopRecording(); } // Tests Init/Stop/Init recording while playout is active. TEST_F(AudioDeviceTest, InitStopInitRecordingWhilePlaying) { SKIP_TEST_IF_NOT(requirements_satisfied()); StartPlayout(); EXPECT_EQ(0, audio_device()->InitRecording()); EXPECT_TRUE(audio_device()->RecordingIsInitialized()); StopRecording(); EXPECT_EQ(0, audio_device()->InitRecording()); StopRecording(); StopPlayout(); } // Tests Init/Stop/Init playout without any registered audio callback. TEST_F(AudioDeviceTest, InitStopInitPlayout) { SKIP_TEST_IF_NOT(requirements_satisfied()); EXPECT_EQ(0, audio_device()->InitPlayout()); EXPECT_TRUE(audio_device()->PlayoutIsInitialized()); StopPlayout(); EXPECT_EQ(0, audio_device()->InitPlayout()); StopPlayout(); } // Tests Init/Stop/Init playout while recording is active. TEST_F(AudioDeviceTest, InitStopInitPlayoutWhileRecording) { SKIP_TEST_IF_NOT(requirements_satisfied()); StartRecording(); EXPECT_EQ(0, audio_device()->InitPlayout()); EXPECT_TRUE(audio_device()->PlayoutIsInitialized()); StopPlayout(); EXPECT_EQ(0, audio_device()->InitPlayout()); StopPlayout(); StopRecording(); } // Start playout and verify that the native audio layer starts asking for real // audio samples to play out using the NeedMorePlayData() callback. // Note that we can't add expectations on audio parameters in EXPECT_CALL // since parameter are not provided in the each callback. We therefore test and // verify the parameters in the fake audio transport implementation instead. TEST_F(AudioDeviceTest, StartPlayoutVerifyCallbacks) { SKIP_TEST_IF_NOT(requirements_satisfied()); MockAudioTransport mock(TransportType::kPlay); mock.HandleCallbacks(event(), nullptr, kNumCallbacks); EXPECT_CALL(mock, NeedMorePlayData(_, _, _, _, NotNull(), _, _, _)) .Times(AtLeast(kNumCallbacks)); EXPECT_EQ(0, audio_device()->RegisterAudioCallback(&mock)); StartPlayout(); event()->Wait(kTestTimeOutInMilliseconds); StopPlayout(); } // Start recording and verify that the native audio layer starts providing real // audio samples using the RecordedDataIsAvailable() callback. TEST_F(AudioDeviceTest, StartRecordingVerifyCallbacks) { SKIP_TEST_IF_NOT(requirements_satisfied()); MockAudioTransport mock(TransportType::kRecord); mock.HandleCallbacks(event(), nullptr, kNumCallbacks); EXPECT_CALL(mock, RecordedDataIsAvailable(NotNull(), _, _, _, _, Ge(0u), 0, _, false, _)) .Times(AtLeast(kNumCallbacks)); EXPECT_EQ(0, audio_device()->RegisterAudioCallback(&mock)); StartRecording(); event()->Wait(kTestTimeOutInMilliseconds); StopRecording(); } // Start playout and recording (full-duplex audio) and verify that audio is // active in both directions. TEST_F(AudioDeviceTest, StartPlayoutAndRecordingVerifyCallbacks) { SKIP_TEST_IF_NOT(requirements_satisfied()); MockAudioTransport mock(TransportType::kPlayAndRecord); mock.HandleCallbacks(event(), nullptr, kNumCallbacks); EXPECT_CALL(mock, NeedMorePlayData(_, _, _, _, NotNull(), _, _, _)) .Times(AtLeast(kNumCallbacks)); EXPECT_CALL(mock, RecordedDataIsAvailable(NotNull(), _, _, _, _, Ge(0u), 0, _, false, _)) .Times(AtLeast(kNumCallbacks)); EXPECT_EQ(0, audio_device()->RegisterAudioCallback(&mock)); StartPlayout(); StartRecording(); event()->Wait(kTestTimeOutInMilliseconds); StopRecording(); StopPlayout(); } // Start playout and recording and store recorded data in an intermediate FIFO // buffer from which the playout side then reads its samples in the same order // as they were stored. Under ideal circumstances, a callback sequence would // look like: ...+-+-+-+-+-+-+-..., where '+' means 'packet recorded' and '-' // means 'packet played'. Under such conditions, the FIFO would contain max 1, // with an average somewhere in (0,1) depending on how long the packets are // buffered. However, under more realistic conditions, the size // of the FIFO will vary more due to an unbalance between the two sides. // This test tries to verify that the device maintains a balanced callback- // sequence by running in loopback for a few seconds while measuring the size // (max and average) of the FIFO. The size of the FIFO is increased by the // recording side and decreased by the playout side. TEST_F(AudioDeviceTest, RunPlayoutAndRecordingInFullDuplex) { SKIP_TEST_IF_NOT(requirements_satisfied()); NiceMock mock(TransportType::kPlayAndRecord); FifoAudioStream audio_stream; mock.HandleCallbacks(event(), &audio_stream, kFullDuplexTimeInSec * kNumCallbacksPerSecond); EXPECT_EQ(0, audio_device()->RegisterAudioCallback(&mock)); // Run both sides in mono to make the loopback packet handling less complex. // The test works for stereo as well; the only requirement is that both sides // use the same configuration. EXPECT_EQ(0, audio_device()->SetStereoPlayout(false)); EXPECT_EQ(0, audio_device()->SetStereoRecording(false)); StartPlayout(); StartRecording(); event()->Wait(static_cast( std::max(kTestTimeOutInMilliseconds, 1000 * kFullDuplexTimeInSec))); StopRecording(); StopPlayout(); // This thresholds is set rather high to accommodate differences in hardware // in several devices. The main idea is to capture cases where a very large // latency is built up. See http://bugs.webrtc.org/7744 for examples on // bots where relatively large average latencies can happen. EXPECT_LE(audio_stream.average_size(), 25u); PRINT("\n"); } // Measures loopback latency and reports the min, max and average values for // a full duplex audio session. // The latency is measured like so: // - Insert impulses periodically on the output side. // - Detect the impulses on the input side. // - Measure the time difference between the transmit time and receive time. // - Store time differences in a vector and calculate min, max and average. // This test needs the '--gtest_also_run_disabled_tests' flag to run and also // some sort of audio feedback loop. E.g. a headset where the mic is placed // close to the speaker to ensure highest possible echo. It is also recommended // to run the test at highest possible output volume. TEST_F(AudioDeviceTest, DISABLED_MeasureLoopbackLatency) { SKIP_TEST_IF_NOT(requirements_satisfied()); NiceMock mock(TransportType::kPlayAndRecord); LatencyAudioStream audio_stream; mock.HandleCallbacks(event(), &audio_stream, kMeasureLatencyTimeInSec * kNumCallbacksPerSecond); EXPECT_EQ(0, audio_device()->RegisterAudioCallback(&mock)); EXPECT_EQ(0, audio_device()->SetStereoPlayout(false)); EXPECT_EQ(0, audio_device()->SetStereoRecording(false)); StartPlayout(); StartRecording(); event()->Wait(static_cast( std::max(kTestTimeOutInMilliseconds, 1000 * kMeasureLatencyTimeInSec))); StopRecording(); StopPlayout(); // Verify that the correct number of transmitted impulses are detected. EXPECT_EQ(audio_stream.num_latency_values(), static_cast( kImpulseFrequencyInHz * kMeasureLatencyTimeInSec - 1)); // Print out min, max and average delay values for debugging purposes. audio_stream.PrintResults(); } } // namespace webrtc