/* * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/pacing/bitrate_prober.h" #include #include "logging/rtc_event_log/events/rtc_event_probe_cluster_created.h" #include "logging/rtc_event_log/rtc_event_log.h" #include "modules/pacing/paced_sender.h" #include "rtc_base/checks.h" #include "rtc_base/logging.h" #include "rtc_base/ptr_util.h" namespace webrtc { namespace { // A minimum interval between probes to allow scheduling to be feasible. constexpr int kMinProbeDeltaMs = 1; // The minimum number probing packets used. constexpr int kMinProbePacketsSent = 5; // The minimum probing duration in ms. constexpr int kMinProbeDurationMs = 15; // Maximum amount of time each probe can be delayed. Probe cluster is reset and // retried from the start when this limit is reached. constexpr int kMaxProbeDelayMs = 3; // Number of times probing is retried before the cluster is dropped. constexpr int kMaxRetryAttempts = 3; // The min probe packet size is scaled with the bitrate we're probing at. // This defines the max min probe packet size, meaning that on high bitrates // we have a min probe packet size of 200 bytes. constexpr size_t kMinProbePacketSize = 200; constexpr int64_t kProbeClusterTimeoutMs = 5000; } // namespace BitrateProber::BitrateProber() : BitrateProber(nullptr) {} BitrateProber::BitrateProber(RtcEventLog* event_log) : probing_state_(ProbingState::kDisabled), next_probe_time_ms_(-1), next_cluster_id_(0), event_log_(event_log) { SetEnabled(true); } void BitrateProber::SetEnabled(bool enable) { if (enable) { if (probing_state_ == ProbingState::kDisabled) { probing_state_ = ProbingState::kInactive; RTC_LOG(LS_INFO) << "Bandwidth probing enabled, set to inactive"; } } else { probing_state_ = ProbingState::kDisabled; RTC_LOG(LS_INFO) << "Bandwidth probing disabled"; } } bool BitrateProber::IsProbing() const { return probing_state_ == ProbingState::kActive; } void BitrateProber::OnIncomingPacket(size_t packet_size) { // Don't initialize probing unless we have something large enough to start // probing. if (probing_state_ == ProbingState::kInactive && !clusters_.empty() && packet_size >= std::min(RecommendedMinProbeSize(), kMinProbePacketSize)) { // Send next probe right away. next_probe_time_ms_ = -1; probing_state_ = ProbingState::kActive; } } void BitrateProber::CreateProbeCluster(int bitrate_bps, int64_t now_ms) { RTC_DCHECK(probing_state_ != ProbingState::kDisabled); RTC_DCHECK_GT(bitrate_bps, 0); while (!clusters_.empty() && now_ms - clusters_.front().time_created_ms > kProbeClusterTimeoutMs) { clusters_.pop(); } ProbeCluster cluster; cluster.time_created_ms = now_ms; cluster.pace_info.probe_cluster_min_probes = kMinProbePacketsSent; cluster.pace_info.probe_cluster_min_bytes = bitrate_bps * kMinProbeDurationMs / 8000; cluster.pace_info.send_bitrate_bps = bitrate_bps; cluster.pace_info.probe_cluster_id = next_cluster_id_++; clusters_.push(cluster); if (event_log_) event_log_->Log(rtc::MakeUnique( cluster.pace_info.probe_cluster_id, cluster.pace_info.send_bitrate_bps, cluster.pace_info.probe_cluster_min_probes, cluster.pace_info.probe_cluster_min_bytes)); RTC_LOG(LS_INFO) << "Probe cluster (bitrate:min bytes:min packets): (" << cluster.pace_info.send_bitrate_bps << ":" << cluster.pace_info.probe_cluster_min_bytes << ":" << cluster.pace_info.probe_cluster_min_probes << ")"; // If we are already probing, continue to do so. Otherwise set it to // kInactive and wait for OnIncomingPacket to start the probing. if (probing_state_ != ProbingState::kActive) probing_state_ = ProbingState::kInactive; } void BitrateProber::ResetState(int64_t now_ms) { RTC_DCHECK(probing_state_ == ProbingState::kActive); // Recreate all probing clusters. std::queue clusters; clusters.swap(clusters_); while (!clusters.empty()) { if (clusters.front().retries < kMaxRetryAttempts) { CreateProbeCluster(clusters.front().pace_info.send_bitrate_bps, now_ms); clusters_.back().retries = clusters.front().retries + 1; } clusters.pop(); } probing_state_ = ProbingState::kInactive; } int BitrateProber::TimeUntilNextProbe(int64_t now_ms) { // Probing is not active or probing is already complete. if (probing_state_ != ProbingState::kActive || clusters_.empty()) return -1; int time_until_probe_ms = 0; if (next_probe_time_ms_ >= 0) { time_until_probe_ms = next_probe_time_ms_ - now_ms; if (time_until_probe_ms < -kMaxProbeDelayMs) { ResetState(now_ms); return -1; } } return std::max(time_until_probe_ms, 0); } PacedPacketInfo BitrateProber::CurrentCluster() const { RTC_DCHECK(!clusters_.empty()); RTC_DCHECK(probing_state_ == ProbingState::kActive); return clusters_.front().pace_info; } // Probe size is recommended based on the probe bitrate required. We choose // a minimum of twice |kMinProbeDeltaMs| interval to allow scheduling to be // feasible. size_t BitrateProber::RecommendedMinProbeSize() const { RTC_DCHECK(!clusters_.empty()); return clusters_.front().pace_info.send_bitrate_bps * 2 * kMinProbeDeltaMs / (8 * 1000); } void BitrateProber::ProbeSent(int64_t now_ms, size_t bytes) { RTC_DCHECK(probing_state_ == ProbingState::kActive); RTC_DCHECK_GT(bytes, 0); if (!clusters_.empty()) { ProbeCluster* cluster = &clusters_.front(); if (cluster->sent_probes == 0) { RTC_DCHECK_EQ(cluster->time_started_ms, -1); cluster->time_started_ms = now_ms; } cluster->sent_bytes += static_cast(bytes); cluster->sent_probes += 1; next_probe_time_ms_ = GetNextProbeTime(*cluster); if (cluster->sent_bytes >= cluster->pace_info.probe_cluster_min_bytes && cluster->sent_probes >= cluster->pace_info.probe_cluster_min_probes) { clusters_.pop(); } if (clusters_.empty()) probing_state_ = ProbingState::kSuspended; } } int64_t BitrateProber::GetNextProbeTime(const ProbeCluster& cluster) { RTC_CHECK_GT(cluster.pace_info.send_bitrate_bps, 0); RTC_CHECK_GE(cluster.time_started_ms, 0); // Compute the time delta from the cluster start to ensure probe bitrate stays // close to the target bitrate. Result is in milliseconds. int64_t delta_ms = (8000ll * cluster.sent_bytes + cluster.pace_info.send_bitrate_bps / 2) / cluster.pace_info.send_bitrate_bps; return cluster.time_started_ms + delta_ms; } } // namespace webrtc