/* * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/video_coding/jitter_buffer.h" #include #include #include #include #include "modules/rtp_rtcp/include/rtp_rtcp_defines.h" #include "modules/video_coding/frame_buffer.h" #include "modules/video_coding/include/video_coding.h" #include "modules/video_coding/inter_frame_delay.h" #include "modules/video_coding/internal_defines.h" #include "modules/video_coding/jitter_buffer_common.h" #include "modules/video_coding/jitter_estimator.h" #include "modules/video_coding/packet.h" #include "rtc_base/checks.h" #include "rtc_base/logging.h" #include "rtc_base/trace_event.h" #include "system_wrappers/include/clock.h" #include "system_wrappers/include/event_wrapper.h" #include "system_wrappers/include/field_trial.h" #include "system_wrappers/include/metrics.h" namespace webrtc { // Interval for updating SS data. static const uint32_t kSsCleanupIntervalSec = 60; // Use this rtt if no value has been reported. static const int64_t kDefaultRtt = 200; // Request a keyframe if no continuous frame has been received for this // number of milliseconds and NACKs are disabled. static const int64_t kMaxDiscontinuousFramesTime = 1000; typedef std::pair FrameListPair; bool IsKeyFrame(FrameListPair pair) { return pair.second->FrameType() == kVideoFrameKey; } bool HasNonEmptyState(FrameListPair pair) { return pair.second->GetState() != kStateEmpty; } void FrameList::InsertFrame(VCMFrameBuffer* frame) { insert(rbegin().base(), FrameListPair(frame->TimeStamp(), frame)); } VCMFrameBuffer* FrameList::PopFrame(uint32_t timestamp) { FrameList::iterator it = find(timestamp); if (it == end()) return NULL; VCMFrameBuffer* frame = it->second; erase(it); return frame; } VCMFrameBuffer* FrameList::Front() const { return begin()->second; } VCMFrameBuffer* FrameList::Back() const { return rbegin()->second; } int FrameList::RecycleFramesUntilKeyFrame(FrameList::iterator* key_frame_it, UnorderedFrameList* free_frames) { int drop_count = 0; FrameList::iterator it = begin(); while (!empty()) { // Throw at least one frame. it->second->Reset(); free_frames->push_back(it->second); erase(it++); ++drop_count; if (it != end() && it->second->FrameType() == kVideoFrameKey) { *key_frame_it = it; return drop_count; } } *key_frame_it = end(); return drop_count; } void FrameList::CleanUpOldOrEmptyFrames(VCMDecodingState* decoding_state, UnorderedFrameList* free_frames) { while (!empty()) { VCMFrameBuffer* oldest_frame = Front(); bool remove_frame = false; if (oldest_frame->GetState() == kStateEmpty && size() > 1) { // This frame is empty, try to update the last decoded state and drop it // if successful. remove_frame = decoding_state->UpdateEmptyFrame(oldest_frame); } else { remove_frame = decoding_state->IsOldFrame(oldest_frame); } if (!remove_frame) { break; } free_frames->push_back(oldest_frame); TRACE_EVENT_INSTANT1("webrtc", "JB::OldOrEmptyFrameDropped", "timestamp", oldest_frame->TimeStamp()); erase(begin()); } } void FrameList::Reset(UnorderedFrameList* free_frames) { while (!empty()) { begin()->second->Reset(); free_frames->push_back(begin()->second); erase(begin()); } } bool Vp9SsMap::Insert(const VCMPacket& packet) { if (!packet.video_header.codecHeader.VP9.ss_data_available) return false; ss_map_[packet.timestamp] = packet.video_header.codecHeader.VP9.gof; return true; } void Vp9SsMap::Reset() { ss_map_.clear(); } bool Vp9SsMap::Find(uint32_t timestamp, SsMap::iterator* it_out) { bool found = false; for (SsMap::iterator it = ss_map_.begin(); it != ss_map_.end(); ++it) { if (it->first == timestamp || IsNewerTimestamp(timestamp, it->first)) { *it_out = it; found = true; } } return found; } void Vp9SsMap::RemoveOld(uint32_t timestamp) { if (!TimeForCleanup(timestamp)) return; SsMap::iterator it; if (!Find(timestamp, &it)) return; ss_map_.erase(ss_map_.begin(), it); AdvanceFront(timestamp); } bool Vp9SsMap::TimeForCleanup(uint32_t timestamp) const { if (ss_map_.empty() || !IsNewerTimestamp(timestamp, ss_map_.begin()->first)) return false; uint32_t diff = timestamp - ss_map_.begin()->first; return diff / kVideoPayloadTypeFrequency >= kSsCleanupIntervalSec; } void Vp9SsMap::AdvanceFront(uint32_t timestamp) { RTC_DCHECK(!ss_map_.empty()); GofInfoVP9 gof = ss_map_.begin()->second; ss_map_.erase(ss_map_.begin()); ss_map_[timestamp] = gof; } // TODO(asapersson): Update according to updates in RTP payload profile. bool Vp9SsMap::UpdatePacket(VCMPacket* packet) { uint8_t gof_idx = packet->video_header.codecHeader.VP9.gof_idx; if (gof_idx == kNoGofIdx) return false; // No update needed. SsMap::iterator it; if (!Find(packet->timestamp, &it)) return false; // Corresponding SS not yet received. if (gof_idx >= it->second.num_frames_in_gof) return false; // Assume corresponding SS not yet received. RTPVideoHeaderVP9* vp9 = &packet->video_header.codecHeader.VP9; vp9->temporal_idx = it->second.temporal_idx[gof_idx]; vp9->temporal_up_switch = it->second.temporal_up_switch[gof_idx]; // TODO(asapersson): Set vp9.ref_picture_id[i] and add usage. vp9->num_ref_pics = it->second.num_ref_pics[gof_idx]; for (uint8_t i = 0; i < it->second.num_ref_pics[gof_idx]; ++i) { vp9->pid_diff[i] = it->second.pid_diff[gof_idx][i]; } return true; } void Vp9SsMap::UpdateFrames(FrameList* frames) { for (const auto& frame_it : *frames) { uint8_t gof_idx = frame_it.second->CodecSpecific()->codecSpecific.VP9.gof_idx; if (gof_idx == kNoGofIdx) { continue; } SsMap::iterator ss_it; if (Find(frame_it.second->TimeStamp(), &ss_it)) { if (gof_idx >= ss_it->second.num_frames_in_gof) { continue; // Assume corresponding SS not yet received. } frame_it.second->SetGofInfo(ss_it->second, gof_idx); } } } VCMJitterBuffer::VCMJitterBuffer(Clock* clock, std::unique_ptr event, NackSender* nack_sender, KeyFrameRequestSender* keyframe_request_sender) : clock_(clock), running_(false), frame_event_(std::move(event)), max_number_of_frames_(kStartNumberOfFrames), free_frames_(), decodable_frames_(), incomplete_frames_(), last_decoded_state_(), first_packet_since_reset_(true), stats_callback_(nullptr), incoming_frame_rate_(0), incoming_frame_count_(0), time_last_incoming_frame_count_(0), incoming_bit_count_(0), incoming_bit_rate_(0), num_consecutive_old_packets_(0), num_packets_(0), num_duplicated_packets_(0), num_discarded_packets_(0), time_first_packet_ms_(0), jitter_estimate_(clock), inter_frame_delay_(clock_->TimeInMilliseconds()), rtt_ms_(kDefaultRtt), nack_mode_(kNoNack), low_rtt_nack_threshold_ms_(-1), high_rtt_nack_threshold_ms_(-1), missing_sequence_numbers_(SequenceNumberLessThan()), latest_received_sequence_number_(0), max_nack_list_size_(0), max_packet_age_to_nack_(0), max_incomplete_time_ms_(0), decode_error_mode_(kNoErrors), average_packets_per_frame_(0.0f), frame_counter_(0) { for (int i = 0; i < kStartNumberOfFrames; i++) free_frames_.push_back(new VCMFrameBuffer()); } VCMJitterBuffer::~VCMJitterBuffer() { Stop(); for (UnorderedFrameList::iterator it = free_frames_.begin(); it != free_frames_.end(); ++it) { delete *it; } for (FrameList::iterator it = incomplete_frames_.begin(); it != incomplete_frames_.end(); ++it) { delete it->second; } for (FrameList::iterator it = decodable_frames_.begin(); it != decodable_frames_.end(); ++it) { delete it->second; } } void VCMJitterBuffer::UpdateHistograms() { if (num_packets_ <= 0 || !running_) { return; } int64_t elapsed_sec = (clock_->TimeInMilliseconds() - time_first_packet_ms_) / 1000; if (elapsed_sec < metrics::kMinRunTimeInSeconds) { return; } RTC_HISTOGRAM_PERCENTAGE("WebRTC.Video.DiscardedPacketsInPercent", num_discarded_packets_ * 100 / num_packets_); RTC_HISTOGRAM_PERCENTAGE("WebRTC.Video.DuplicatedPacketsInPercent", num_duplicated_packets_ * 100 / num_packets_); int total_frames = receive_statistics_.key_frames + receive_statistics_.delta_frames; if (total_frames > 0) { RTC_HISTOGRAM_COUNTS_100( "WebRTC.Video.CompleteFramesReceivedPerSecond", static_cast((total_frames / elapsed_sec) + 0.5f)); RTC_HISTOGRAM_COUNTS_1000( "WebRTC.Video.KeyFramesReceivedInPermille", static_cast( (receive_statistics_.key_frames * 1000.0f / total_frames) + 0.5f)); } } void VCMJitterBuffer::Start() { rtc::CritScope cs(&crit_sect_); running_ = true; incoming_frame_count_ = 0; incoming_frame_rate_ = 0; incoming_bit_count_ = 0; incoming_bit_rate_ = 0; time_last_incoming_frame_count_ = clock_->TimeInMilliseconds(); receive_statistics_ = FrameCounts(); num_consecutive_old_packets_ = 0; num_packets_ = 0; num_duplicated_packets_ = 0; num_discarded_packets_ = 0; time_first_packet_ms_ = 0; // Start in a non-signaled state. waiting_for_completion_.frame_size = 0; waiting_for_completion_.timestamp = 0; waiting_for_completion_.latest_packet_time = -1; first_packet_since_reset_ = true; rtt_ms_ = kDefaultRtt; last_decoded_state_.Reset(); decodable_frames_.Reset(&free_frames_); incomplete_frames_.Reset(&free_frames_); } void VCMJitterBuffer::Stop() { rtc::CritScope cs(&crit_sect_); UpdateHistograms(); running_ = false; last_decoded_state_.Reset(); // Make sure we wake up any threads waiting on these events. frame_event_->Set(); } bool VCMJitterBuffer::Running() const { rtc::CritScope cs(&crit_sect_); return running_; } void VCMJitterBuffer::Flush() { rtc::CritScope cs(&crit_sect_); decodable_frames_.Reset(&free_frames_); incomplete_frames_.Reset(&free_frames_); last_decoded_state_.Reset(); // TODO(mikhal): sync reset. num_consecutive_old_packets_ = 0; // Also reset the jitter and delay estimates jitter_estimate_.Reset(); inter_frame_delay_.Reset(clock_->TimeInMilliseconds()); waiting_for_completion_.frame_size = 0; waiting_for_completion_.timestamp = 0; waiting_for_completion_.latest_packet_time = -1; first_packet_since_reset_ = true; missing_sequence_numbers_.clear(); } // Get received key and delta frames FrameCounts VCMJitterBuffer::FrameStatistics() const { rtc::CritScope cs(&crit_sect_); return receive_statistics_; } int VCMJitterBuffer::num_packets() const { rtc::CritScope cs(&crit_sect_); return num_packets_; } int VCMJitterBuffer::num_duplicated_packets() const { rtc::CritScope cs(&crit_sect_); return num_duplicated_packets_; } int VCMJitterBuffer::num_discarded_packets() const { rtc::CritScope cs(&crit_sect_); return num_discarded_packets_; } // Calculate framerate and bitrate. void VCMJitterBuffer::IncomingRateStatistics(unsigned int* framerate, unsigned int* bitrate) { assert(framerate); assert(bitrate); rtc::CritScope cs(&crit_sect_); const int64_t now = clock_->TimeInMilliseconds(); int64_t diff = now - time_last_incoming_frame_count_; if (diff < 1000 && incoming_frame_rate_ > 0 && incoming_bit_rate_ > 0) { // Make sure we report something even though less than // 1 second has passed since last update. *framerate = incoming_frame_rate_; *bitrate = incoming_bit_rate_; } else if (incoming_frame_count_ != 0) { // We have received frame(s) since last call to this function // Prepare calculations if (diff <= 0) { diff = 1; } // we add 0.5f for rounding float rate = 0.5f + ((incoming_frame_count_ * 1000.0f) / diff); if (rate < 1.0f) { rate = 1.0f; } // Calculate frame rate // Let r be rate. // r(0) = 1000*framecount/delta_time. // (I.e. frames per second since last calculation.) // frame_rate = r(0)/2 + r(-1)/2 // (I.e. fr/s average this and the previous calculation.) *framerate = (incoming_frame_rate_ + static_cast(rate)) / 2; incoming_frame_rate_ = static_cast(rate); // Calculate bit rate if (incoming_bit_count_ == 0) { *bitrate = 0; } else { *bitrate = 10 * ((100 * incoming_bit_count_) / static_cast(diff)); } incoming_bit_rate_ = *bitrate; // Reset count incoming_frame_count_ = 0; incoming_bit_count_ = 0; time_last_incoming_frame_count_ = now; } else { // No frames since last call time_last_incoming_frame_count_ = clock_->TimeInMilliseconds(); *framerate = 0; *bitrate = 0; incoming_frame_rate_ = 0; incoming_bit_rate_ = 0; } } // Returns immediately or a |max_wait_time_ms| ms event hang waiting for a // complete frame, |max_wait_time_ms| decided by caller. VCMEncodedFrame* VCMJitterBuffer::NextCompleteFrame(uint32_t max_wait_time_ms) { crit_sect_.Enter(); if (!running_) { crit_sect_.Leave(); return nullptr; } CleanUpOldOrEmptyFrames(); if (decodable_frames_.empty() || decodable_frames_.Front()->GetState() != kStateComplete) { const int64_t end_wait_time_ms = clock_->TimeInMilliseconds() + max_wait_time_ms; int64_t wait_time_ms = max_wait_time_ms; while (wait_time_ms > 0) { crit_sect_.Leave(); const EventTypeWrapper ret = frame_event_->Wait(static_cast(wait_time_ms)); crit_sect_.Enter(); if (ret == kEventSignaled) { // Are we shutting down the jitter buffer? if (!running_) { crit_sect_.Leave(); return nullptr; } // Finding oldest frame ready for decoder. CleanUpOldOrEmptyFrames(); if (decodable_frames_.empty() || decodable_frames_.Front()->GetState() != kStateComplete) { wait_time_ms = end_wait_time_ms - clock_->TimeInMilliseconds(); } else { break; } } else { break; } } } if (decodable_frames_.empty() || decodable_frames_.Front()->GetState() != kStateComplete) { crit_sect_.Leave(); return nullptr; } VCMEncodedFrame* encoded_frame = decodable_frames_.Front(); crit_sect_.Leave(); return encoded_frame; } bool VCMJitterBuffer::NextMaybeIncompleteTimestamp(uint32_t* timestamp) { rtc::CritScope cs(&crit_sect_); if (!running_) { return false; } if (decode_error_mode_ == kNoErrors) { // No point to continue, as we are not decoding with errors. return false; } CleanUpOldOrEmptyFrames(); VCMFrameBuffer* oldest_frame; if (decodable_frames_.empty()) { if (nack_mode_ != kNoNack || incomplete_frames_.size() <= 1) { return false; } oldest_frame = incomplete_frames_.Front(); // Frame will only be removed from buffer if it is complete (or decodable). if (oldest_frame->GetState() < kStateComplete) { return false; } } else { oldest_frame = decodable_frames_.Front(); // If we have exactly one frame in the buffer, release it only if it is // complete. We know decodable_frames_ is not empty due to the previous // check. if (decodable_frames_.size() == 1 && incomplete_frames_.empty() && oldest_frame->GetState() != kStateComplete) { return false; } } *timestamp = oldest_frame->TimeStamp(); return true; } VCMEncodedFrame* VCMJitterBuffer::ExtractAndSetDecode(uint32_t timestamp) { rtc::CritScope cs(&crit_sect_); if (!running_) { return NULL; } // Extract the frame with the desired timestamp. VCMFrameBuffer* frame = decodable_frames_.PopFrame(timestamp); bool continuous = true; if (!frame) { frame = incomplete_frames_.PopFrame(timestamp); if (frame) continuous = last_decoded_state_.ContinuousFrame(frame); else return NULL; } TRACE_EVENT_ASYNC_STEP0("webrtc", "Video", timestamp, "Extract"); // Frame pulled out from jitter buffer, update the jitter estimate. const bool retransmitted = (frame->GetNackCount() > 0); if (retransmitted) { if (WaitForRetransmissions()) jitter_estimate_.FrameNacked(); } else if (frame->Length() > 0) { // Ignore retransmitted and empty frames. if (waiting_for_completion_.latest_packet_time >= 0) { UpdateJitterEstimate(waiting_for_completion_, true); } if (frame->GetState() == kStateComplete) { UpdateJitterEstimate(*frame, false); } else { // Wait for this one to get complete. waiting_for_completion_.frame_size = frame->Length(); waiting_for_completion_.latest_packet_time = frame->LatestPacketTimeMs(); waiting_for_completion_.timestamp = frame->TimeStamp(); } } // The state must be changed to decoding before cleaning up zero sized // frames to avoid empty frames being cleaned up and then given to the // decoder. Propagates the missing_frame bit. frame->PrepareForDecode(continuous); // We have a frame - update the last decoded state and nack list. last_decoded_state_.SetState(frame); DropPacketsFromNackList(last_decoded_state_.sequence_num()); if ((*frame).IsSessionComplete()) UpdateAveragePacketsPerFrame(frame->NumPackets()); return frame; } // Release frame when done with decoding. Should never be used to release // frames from within the jitter buffer. void VCMJitterBuffer::ReleaseFrame(VCMEncodedFrame* frame) { RTC_CHECK(frame != nullptr); rtc::CritScope cs(&crit_sect_); VCMFrameBuffer* frame_buffer = static_cast(frame); RecycleFrameBuffer(frame_buffer); } // Gets frame to use for this timestamp. If no match, get empty frame. VCMFrameBufferEnum VCMJitterBuffer::GetFrame(const VCMPacket& packet, VCMFrameBuffer** frame, FrameList** frame_list) { *frame = incomplete_frames_.PopFrame(packet.timestamp); if (*frame != NULL) { *frame_list = &incomplete_frames_; return kNoError; } *frame = decodable_frames_.PopFrame(packet.timestamp); if (*frame != NULL) { *frame_list = &decodable_frames_; return kNoError; } *frame_list = NULL; // No match, return empty frame. *frame = GetEmptyFrame(); if (*frame == NULL) { // No free frame! Try to reclaim some... RTC_LOG(LS_WARNING) << "Unable to get empty frame; Recycling."; bool found_key_frame = RecycleFramesUntilKeyFrame(); *frame = GetEmptyFrame(); RTC_CHECK(*frame); if (!found_key_frame) { RecycleFrameBuffer(*frame); return kFlushIndicator; } } (*frame)->Reset(); return kNoError; } int64_t VCMJitterBuffer::LastPacketTime(const VCMEncodedFrame* frame, bool* retransmitted) const { assert(retransmitted); rtc::CritScope cs(&crit_sect_); const VCMFrameBuffer* frame_buffer = static_cast(frame); *retransmitted = (frame_buffer->GetNackCount() > 0); return frame_buffer->LatestPacketTimeMs(); } VCMFrameBufferEnum VCMJitterBuffer::InsertPacket(const VCMPacket& packet, bool* retransmitted) { rtc::CritScope cs(&crit_sect_); ++num_packets_; if (num_packets_ == 1) { time_first_packet_ms_ = clock_->TimeInMilliseconds(); } // Does this packet belong to an old frame? if (last_decoded_state_.IsOldPacket(&packet)) { // Account only for media packets. if (packet.sizeBytes > 0) { num_discarded_packets_++; num_consecutive_old_packets_++; if (stats_callback_ != NULL) stats_callback_->OnDiscardedPacketsUpdated(num_discarded_packets_); } // Update last decoded sequence number if the packet arrived late and // belongs to a frame with a timestamp equal to the last decoded // timestamp. last_decoded_state_.UpdateOldPacket(&packet); DropPacketsFromNackList(last_decoded_state_.sequence_num()); // Also see if this old packet made more incomplete frames continuous. FindAndInsertContinuousFramesWithState(last_decoded_state_); if (num_consecutive_old_packets_ > kMaxConsecutiveOldPackets) { RTC_LOG(LS_WARNING) << num_consecutive_old_packets_ << " consecutive old packets received. Flushing the jitter buffer."; Flush(); return kFlushIndicator; } return kOldPacket; } num_consecutive_old_packets_ = 0; VCMFrameBuffer* frame; FrameList* frame_list; const VCMFrameBufferEnum error = GetFrame(packet, &frame, &frame_list); if (error != kNoError) return error; int64_t now_ms = clock_->TimeInMilliseconds(); // We are keeping track of the first and latest seq numbers, and // the number of wraps to be able to calculate how many packets we expect. if (first_packet_since_reset_) { // Now it's time to start estimating jitter // reset the delay estimate. inter_frame_delay_.Reset(now_ms); } // Empty packets may bias the jitter estimate (lacking size component), // therefore don't let empty packet trigger the following updates: if (packet.frameType != kEmptyFrame) { if (waiting_for_completion_.timestamp == packet.timestamp) { // This can get bad if we have a lot of duplicate packets, // we will then count some packet multiple times. waiting_for_completion_.frame_size += packet.sizeBytes; waiting_for_completion_.latest_packet_time = now_ms; } else if (waiting_for_completion_.latest_packet_time >= 0 && waiting_for_completion_.latest_packet_time + 2000 <= now_ms) { // A packet should never be more than two seconds late UpdateJitterEstimate(waiting_for_completion_, true); waiting_for_completion_.latest_packet_time = -1; waiting_for_completion_.frame_size = 0; waiting_for_completion_.timestamp = 0; } } VCMFrameBufferStateEnum previous_state = frame->GetState(); // Insert packet. FrameData frame_data; frame_data.rtt_ms = rtt_ms_; frame_data.rolling_average_packets_per_frame = average_packets_per_frame_; VCMFrameBufferEnum buffer_state = frame->InsertPacket(packet, now_ms, decode_error_mode_, frame_data); if (previous_state != kStateComplete) { TRACE_EVENT_ASYNC_BEGIN1("webrtc", "Video", frame->TimeStamp(), "timestamp", frame->TimeStamp()); } if (buffer_state > 0) { incoming_bit_count_ += packet.sizeBytes << 3; if (first_packet_since_reset_) { latest_received_sequence_number_ = packet.seqNum; first_packet_since_reset_ = false; } else { if (IsPacketRetransmitted(packet)) { frame->IncrementNackCount(); } if (!UpdateNackList(packet.seqNum) && packet.frameType != kVideoFrameKey) { buffer_state = kFlushIndicator; } latest_received_sequence_number_ = LatestSequenceNumber(latest_received_sequence_number_, packet.seqNum); } } // Is the frame already in the decodable list? bool continuous = IsContinuous(*frame); switch (buffer_state) { case kGeneralError: case kTimeStampError: case kSizeError: { RecycleFrameBuffer(frame); break; } case kCompleteSession: { if (previous_state != kStateDecodable && previous_state != kStateComplete) { CountFrame(*frame); if (continuous) { // Signal that we have a complete session. frame_event_->Set(); } } FALLTHROUGH(); } // Note: There is no break here - continuing to kDecodableSession. case kDecodableSession: { *retransmitted = (frame->GetNackCount() > 0); if (continuous) { decodable_frames_.InsertFrame(frame); FindAndInsertContinuousFrames(*frame); } else { incomplete_frames_.InsertFrame(frame); // If NACKs are enabled, keyframes are triggered by |GetNackList|. if (nack_mode_ == kNoNack && NonContinuousOrIncompleteDuration() > 90 * kMaxDiscontinuousFramesTime) { return kFlushIndicator; } } break; } case kIncomplete: { if (frame->GetState() == kStateEmpty && last_decoded_state_.UpdateEmptyFrame(frame)) { RecycleFrameBuffer(frame); return kNoError; } else { incomplete_frames_.InsertFrame(frame); // If NACKs are enabled, keyframes are triggered by |GetNackList|. if (nack_mode_ == kNoNack && NonContinuousOrIncompleteDuration() > 90 * kMaxDiscontinuousFramesTime) { return kFlushIndicator; } } break; } case kNoError: case kOutOfBoundsPacket: case kDuplicatePacket: { // Put back the frame where it came from. if (frame_list != NULL) { frame_list->InsertFrame(frame); } else { RecycleFrameBuffer(frame); } ++num_duplicated_packets_; break; } case kFlushIndicator: RecycleFrameBuffer(frame); return kFlushIndicator; default: assert(false); } return buffer_state; } bool VCMJitterBuffer::IsContinuousInState( const VCMFrameBuffer& frame, const VCMDecodingState& decoding_state) const { // Is this frame (complete or decodable) and continuous? // kStateDecodable will never be set when decode_error_mode_ is false // as SessionInfo determines this state based on the error mode (and frame // completeness). return (frame.GetState() == kStateComplete || frame.GetState() == kStateDecodable) && decoding_state.ContinuousFrame(&frame); } bool VCMJitterBuffer::IsContinuous(const VCMFrameBuffer& frame) const { if (IsContinuousInState(frame, last_decoded_state_)) { return true; } VCMDecodingState decoding_state; decoding_state.CopyFrom(last_decoded_state_); for (FrameList::const_iterator it = decodable_frames_.begin(); it != decodable_frames_.end(); ++it) { VCMFrameBuffer* decodable_frame = it->second; if (IsNewerTimestamp(decodable_frame->TimeStamp(), frame.TimeStamp())) { break; } decoding_state.SetState(decodable_frame); if (IsContinuousInState(frame, decoding_state)) { return true; } } return false; } void VCMJitterBuffer::FindAndInsertContinuousFrames( const VCMFrameBuffer& new_frame) { VCMDecodingState decoding_state; decoding_state.CopyFrom(last_decoded_state_); decoding_state.SetState(&new_frame); FindAndInsertContinuousFramesWithState(decoding_state); } void VCMJitterBuffer::FindAndInsertContinuousFramesWithState( const VCMDecodingState& original_decoded_state) { // Copy original_decoded_state so we can move the state forward with each // decodable frame we find. VCMDecodingState decoding_state; decoding_state.CopyFrom(original_decoded_state); // When temporal layers are available, we search for a complete or decodable // frame until we hit one of the following: // 1. Continuous base or sync layer. // 2. The end of the list was reached. for (FrameList::iterator it = incomplete_frames_.begin(); it != incomplete_frames_.end();) { VCMFrameBuffer* frame = it->second; if (IsNewerTimestamp(original_decoded_state.time_stamp(), frame->TimeStamp())) { ++it; continue; } if (IsContinuousInState(*frame, decoding_state)) { decodable_frames_.InsertFrame(frame); incomplete_frames_.erase(it++); decoding_state.SetState(frame); } else if (frame->TemporalId() <= 0) { break; } else { ++it; } } } uint32_t VCMJitterBuffer::EstimatedJitterMs() { rtc::CritScope cs(&crit_sect_); // Compute RTT multiplier for estimation. // low_rtt_nackThresholdMs_ == -1 means no FEC. double rtt_mult = 1.0f; if (low_rtt_nack_threshold_ms_ >= 0 && rtt_ms_ >= low_rtt_nack_threshold_ms_) { // For RTTs above low_rtt_nack_threshold_ms_ we don't apply extra delay // when waiting for retransmissions. rtt_mult = 0.0f; } return jitter_estimate_.GetJitterEstimate(rtt_mult); } void VCMJitterBuffer::UpdateRtt(int64_t rtt_ms) { rtc::CritScope cs(&crit_sect_); rtt_ms_ = rtt_ms; jitter_estimate_.UpdateRtt(rtt_ms); if (!WaitForRetransmissions()) jitter_estimate_.ResetNackCount(); } void VCMJitterBuffer::SetNackMode(VCMNackMode mode, int64_t low_rtt_nack_threshold_ms, int64_t high_rtt_nack_threshold_ms) { rtc::CritScope cs(&crit_sect_); nack_mode_ = mode; if (mode == kNoNack) { missing_sequence_numbers_.clear(); } assert(low_rtt_nack_threshold_ms >= -1 && high_rtt_nack_threshold_ms >= -1); assert(high_rtt_nack_threshold_ms == -1 || low_rtt_nack_threshold_ms <= high_rtt_nack_threshold_ms); assert(low_rtt_nack_threshold_ms > -1 || high_rtt_nack_threshold_ms == -1); low_rtt_nack_threshold_ms_ = low_rtt_nack_threshold_ms; high_rtt_nack_threshold_ms_ = high_rtt_nack_threshold_ms; // Don't set a high start rtt if high_rtt_nack_threshold_ms_ is used, to not // disable NACK in |kNack| mode. if (rtt_ms_ == kDefaultRtt && high_rtt_nack_threshold_ms_ != -1) { rtt_ms_ = 0; } if (!WaitForRetransmissions()) { jitter_estimate_.ResetNackCount(); } } void VCMJitterBuffer::SetNackSettings(size_t max_nack_list_size, int max_packet_age_to_nack, int max_incomplete_time_ms) { rtc::CritScope cs(&crit_sect_); assert(max_packet_age_to_nack >= 0); assert(max_incomplete_time_ms_ >= 0); max_nack_list_size_ = max_nack_list_size; max_packet_age_to_nack_ = max_packet_age_to_nack; max_incomplete_time_ms_ = max_incomplete_time_ms; } VCMNackMode VCMJitterBuffer::nack_mode() const { rtc::CritScope cs(&crit_sect_); return nack_mode_; } int VCMJitterBuffer::NonContinuousOrIncompleteDuration() { if (incomplete_frames_.empty()) { return 0; } uint32_t start_timestamp = incomplete_frames_.Front()->TimeStamp(); if (!decodable_frames_.empty()) { start_timestamp = decodable_frames_.Back()->TimeStamp(); } return incomplete_frames_.Back()->TimeStamp() - start_timestamp; } uint16_t VCMJitterBuffer::EstimatedLowSequenceNumber( const VCMFrameBuffer& frame) const { assert(frame.GetLowSeqNum() >= 0); if (frame.HaveFirstPacket()) return frame.GetLowSeqNum(); // This estimate is not accurate if more than one packet with lower sequence // number is lost. return frame.GetLowSeqNum() - 1; } std::vector VCMJitterBuffer::GetNackList(bool* request_key_frame) { rtc::CritScope cs(&crit_sect_); *request_key_frame = false; if (nack_mode_ == kNoNack) { return std::vector(); } if (last_decoded_state_.in_initial_state()) { VCMFrameBuffer* next_frame = NextFrame(); const bool first_frame_is_key = next_frame && next_frame->FrameType() == kVideoFrameKey && next_frame->HaveFirstPacket(); if (!first_frame_is_key) { bool have_non_empty_frame = decodable_frames_.end() != find_if(decodable_frames_.begin(), decodable_frames_.end(), HasNonEmptyState); if (!have_non_empty_frame) { have_non_empty_frame = incomplete_frames_.end() != find_if(incomplete_frames_.begin(), incomplete_frames_.end(), HasNonEmptyState); } bool found_key_frame = RecycleFramesUntilKeyFrame(); if (!found_key_frame) { *request_key_frame = have_non_empty_frame; return std::vector(); } } } if (TooLargeNackList()) { *request_key_frame = !HandleTooLargeNackList(); } if (max_incomplete_time_ms_ > 0) { int non_continuous_incomplete_duration = NonContinuousOrIncompleteDuration(); if (non_continuous_incomplete_duration > 90 * max_incomplete_time_ms_) { RTC_LOG_F(LS_WARNING) << "Too long non-decodable duration: " << non_continuous_incomplete_duration << " > " << 90 * max_incomplete_time_ms_; FrameList::reverse_iterator rit = find_if( incomplete_frames_.rbegin(), incomplete_frames_.rend(), IsKeyFrame); if (rit == incomplete_frames_.rend()) { // Request a key frame if we don't have one already. *request_key_frame = true; return std::vector(); } else { // Skip to the last key frame. If it's incomplete we will start // NACKing it. // Note that the estimated low sequence number is correct for VP8 // streams because only the first packet of a key frame is marked. last_decoded_state_.Reset(); DropPacketsFromNackList(EstimatedLowSequenceNumber(*rit->second)); } } } std::vector nack_list(missing_sequence_numbers_.begin(), missing_sequence_numbers_.end()); return nack_list; } void VCMJitterBuffer::SetDecodeErrorMode(VCMDecodeErrorMode error_mode) { rtc::CritScope cs(&crit_sect_); decode_error_mode_ = error_mode; } VCMFrameBuffer* VCMJitterBuffer::NextFrame() const { if (!decodable_frames_.empty()) return decodable_frames_.Front(); if (!incomplete_frames_.empty()) return incomplete_frames_.Front(); return NULL; } bool VCMJitterBuffer::UpdateNackList(uint16_t sequence_number) { if (nack_mode_ == kNoNack) { return true; } // Make sure we don't add packets which are already too old to be decoded. if (!last_decoded_state_.in_initial_state()) { latest_received_sequence_number_ = LatestSequenceNumber( latest_received_sequence_number_, last_decoded_state_.sequence_num()); } if (IsNewerSequenceNumber(sequence_number, latest_received_sequence_number_)) { // Push any missing sequence numbers to the NACK list. for (uint16_t i = latest_received_sequence_number_ + 1; IsNewerSequenceNumber(sequence_number, i); ++i) { missing_sequence_numbers_.insert(missing_sequence_numbers_.end(), i); TRACE_EVENT_INSTANT1(TRACE_DISABLED_BY_DEFAULT("webrtc_rtp"), "AddNack", "seqnum", i); } if (TooLargeNackList() && !HandleTooLargeNackList()) { RTC_LOG(LS_WARNING) << "Requesting key frame due to too large NACK list."; return false; } if (MissingTooOldPacket(sequence_number) && !HandleTooOldPackets(sequence_number)) { RTC_LOG(LS_WARNING) << "Requesting key frame due to missing too old packets"; return false; } } else { missing_sequence_numbers_.erase(sequence_number); TRACE_EVENT_INSTANT1(TRACE_DISABLED_BY_DEFAULT("webrtc_rtp"), "RemoveNack", "seqnum", sequence_number); } return true; } bool VCMJitterBuffer::TooLargeNackList() const { return missing_sequence_numbers_.size() > max_nack_list_size_; } bool VCMJitterBuffer::HandleTooLargeNackList() { // Recycle frames until the NACK list is small enough. It is likely cheaper to // request a key frame than to retransmit this many missing packets. RTC_LOG_F(LS_WARNING) << "NACK list has grown too large: " << missing_sequence_numbers_.size() << " > " << max_nack_list_size_; bool key_frame_found = false; while (TooLargeNackList()) { key_frame_found = RecycleFramesUntilKeyFrame(); } return key_frame_found; } bool VCMJitterBuffer::MissingTooOldPacket( uint16_t latest_sequence_number) const { if (missing_sequence_numbers_.empty()) { return false; } const uint16_t age_of_oldest_missing_packet = latest_sequence_number - *missing_sequence_numbers_.begin(); // Recycle frames if the NACK list contains too old sequence numbers as // the packets may have already been dropped by the sender. return age_of_oldest_missing_packet > max_packet_age_to_nack_; } bool VCMJitterBuffer::HandleTooOldPackets(uint16_t latest_sequence_number) { bool key_frame_found = false; const uint16_t age_of_oldest_missing_packet = latest_sequence_number - *missing_sequence_numbers_.begin(); RTC_LOG_F(LS_WARNING) << "NACK list contains too old sequence numbers: " << age_of_oldest_missing_packet << " > " << max_packet_age_to_nack_; while (MissingTooOldPacket(latest_sequence_number)) { key_frame_found = RecycleFramesUntilKeyFrame(); } return key_frame_found; } void VCMJitterBuffer::DropPacketsFromNackList( uint16_t last_decoded_sequence_number) { // Erase all sequence numbers from the NACK list which we won't need any // longer. missing_sequence_numbers_.erase( missing_sequence_numbers_.begin(), missing_sequence_numbers_.upper_bound(last_decoded_sequence_number)); } void VCMJitterBuffer::RegisterStatsCallback( VCMReceiveStatisticsCallback* callback) { rtc::CritScope cs(&crit_sect_); stats_callback_ = callback; } VCMFrameBuffer* VCMJitterBuffer::GetEmptyFrame() { if (free_frames_.empty()) { if (!TryToIncreaseJitterBufferSize()) { return NULL; } } VCMFrameBuffer* frame = free_frames_.front(); free_frames_.pop_front(); return frame; } bool VCMJitterBuffer::TryToIncreaseJitterBufferSize() { if (max_number_of_frames_ >= kMaxNumberOfFrames) return false; free_frames_.push_back(new VCMFrameBuffer()); ++max_number_of_frames_; TRACE_COUNTER1("webrtc", "JBMaxFrames", max_number_of_frames_); return true; } // Recycle oldest frames up to a key frame, used if jitter buffer is completely // full. bool VCMJitterBuffer::RecycleFramesUntilKeyFrame() { // First release incomplete frames, and only release decodable frames if there // are no incomplete ones. FrameList::iterator key_frame_it; bool key_frame_found = false; int dropped_frames = 0; dropped_frames += incomplete_frames_.RecycleFramesUntilKeyFrame( &key_frame_it, &free_frames_); key_frame_found = key_frame_it != incomplete_frames_.end(); if (dropped_frames == 0) { dropped_frames += decodable_frames_.RecycleFramesUntilKeyFrame( &key_frame_it, &free_frames_); key_frame_found = key_frame_it != decodable_frames_.end(); } TRACE_EVENT_INSTANT0("webrtc", "JB::RecycleFramesUntilKeyFrame"); if (key_frame_found) { RTC_LOG(LS_INFO) << "Found key frame while dropping frames."; // Reset last decoded state to make sure the next frame decoded is a key // frame, and start NACKing from here. last_decoded_state_.Reset(); DropPacketsFromNackList(EstimatedLowSequenceNumber(*key_frame_it->second)); } else if (decodable_frames_.empty()) { // All frames dropped. Reset the decoding state and clear missing sequence // numbers as we're starting fresh. last_decoded_state_.Reset(); missing_sequence_numbers_.clear(); } return key_frame_found; } // Must be called under the critical section |crit_sect_|. void VCMJitterBuffer::CountFrame(const VCMFrameBuffer& frame) { incoming_frame_count_++; if (frame.FrameType() == kVideoFrameKey) { TRACE_EVENT_ASYNC_STEP0("webrtc", "Video", frame.TimeStamp(), "KeyComplete"); } else { TRACE_EVENT_ASYNC_STEP0("webrtc", "Video", frame.TimeStamp(), "DeltaComplete"); } // Update receive statistics. We count all layers, thus when you use layers // adding all key and delta frames might differ from frame count. if (frame.IsSessionComplete()) { if (frame.FrameType() == kVideoFrameKey) { ++receive_statistics_.key_frames; if (receive_statistics_.key_frames == 1) { RTC_LOG(LS_INFO) << "Received first complete key frame"; } } else { ++receive_statistics_.delta_frames; } if (stats_callback_ != NULL) stats_callback_->OnFrameCountsUpdated(receive_statistics_); } } void VCMJitterBuffer::UpdateAveragePacketsPerFrame(int current_number_packets) { if (frame_counter_ > kFastConvergeThreshold) { average_packets_per_frame_ = average_packets_per_frame_ * (1 - kNormalConvergeMultiplier) + current_number_packets * kNormalConvergeMultiplier; } else if (frame_counter_ > 0) { average_packets_per_frame_ = average_packets_per_frame_ * (1 - kFastConvergeMultiplier) + current_number_packets * kFastConvergeMultiplier; frame_counter_++; } else { average_packets_per_frame_ = current_number_packets; frame_counter_++; } } // Must be called under the critical section |crit_sect_|. void VCMJitterBuffer::CleanUpOldOrEmptyFrames() { decodable_frames_.CleanUpOldOrEmptyFrames(&last_decoded_state_, &free_frames_); incomplete_frames_.CleanUpOldOrEmptyFrames(&last_decoded_state_, &free_frames_); if (!last_decoded_state_.in_initial_state()) { DropPacketsFromNackList(last_decoded_state_.sequence_num()); } } // Must be called from within |crit_sect_|. bool VCMJitterBuffer::IsPacketRetransmitted(const VCMPacket& packet) const { return missing_sequence_numbers_.find(packet.seqNum) != missing_sequence_numbers_.end(); } // Must be called under the critical section |crit_sect_|. Should never be // called with retransmitted frames, they must be filtered out before this // function is called. void VCMJitterBuffer::UpdateJitterEstimate(const VCMJitterSample& sample, bool incomplete_frame) { if (sample.latest_packet_time == -1) { return; } UpdateJitterEstimate(sample.latest_packet_time, sample.timestamp, sample.frame_size, incomplete_frame); } // Must be called under the critical section crit_sect_. Should never be // called with retransmitted frames, they must be filtered out before this // function is called. void VCMJitterBuffer::UpdateJitterEstimate(const VCMFrameBuffer& frame, bool incomplete_frame) { if (frame.LatestPacketTimeMs() == -1) { return; } // No retransmitted frames should be a part of the jitter // estimate. UpdateJitterEstimate(frame.LatestPacketTimeMs(), frame.TimeStamp(), frame.Length(), incomplete_frame); } // Must be called under the critical section |crit_sect_|. Should never be // called with retransmitted frames, they must be filtered out before this // function is called. void VCMJitterBuffer::UpdateJitterEstimate(int64_t latest_packet_time_ms, uint32_t timestamp, unsigned int frame_size, bool incomplete_frame) { if (latest_packet_time_ms == -1) { return; } int64_t frame_delay; bool not_reordered = inter_frame_delay_.CalculateDelay( timestamp, &frame_delay, latest_packet_time_ms); // Filter out frames which have been reordered in time by the network if (not_reordered) { // Update the jitter estimate with the new samples jitter_estimate_.UpdateEstimate(frame_delay, frame_size, incomplete_frame); } } bool VCMJitterBuffer::WaitForRetransmissions() { if (nack_mode_ == kNoNack) { // NACK disabled -> don't wait for retransmissions. return false; } // Evaluate if the RTT is higher than |high_rtt_nack_threshold_ms_|, and in // that case we don't wait for retransmissions. if (high_rtt_nack_threshold_ms_ >= 0 && rtt_ms_ >= high_rtt_nack_threshold_ms_) { return false; } return true; } void VCMJitterBuffer::RecycleFrameBuffer(VCMFrameBuffer* frame) { frame->Reset(); free_frames_.push_back(frame); } } // namespace webrtc