/* * Copyright 2017 The WebRTC Project Authors. All rights reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "rtc_base/bitrateallocationstrategy.h" #include #include namespace rtc { // The purpose of this is to allow video streams to use extra bandwidth for FEC. // TODO(bugs.webrtc.org/8541): May be worth to refactor to keep this logic in // video send stream. Similar logic is implemented in BitrateAllocator. const int kTransmissionMaxBitrateMultiplier = 2; std::vector BitrateAllocationStrategy::SetAllBitratesToMinimum( const ArrayView track_configs) { std::vector track_allocations; for (const auto* track_config : track_configs) { track_allocations.push_back(track_config->min_bitrate_bps); } return track_allocations; } std::vector BitrateAllocationStrategy::DistributeBitratesEvenly( const ArrayView track_configs, uint32_t available_bitrate) { std::vector track_allocations = SetAllBitratesToMinimum(track_configs); uint32_t sum_min_bitrates = 0; uint32_t sum_max_bitrates = 0; for (const auto* track_config : track_configs) { sum_min_bitrates += track_config->min_bitrate_bps; sum_max_bitrates += track_config->max_bitrate_bps; } if (sum_min_bitrates >= available_bitrate) { return track_allocations; } else if (available_bitrate >= sum_max_bitrates) { auto track_allocations_it = track_allocations.begin(); for (const auto* track_config : track_configs) { *track_allocations_it++ = track_config->max_bitrate_bps; } return track_allocations; } else { // If sum_min_bitrates < available_bitrate < sum_max_bitrates allocate // bitrates evenly up to max_bitrate_bps starting from the track with the // lowest max_bitrate_bps. Remainder of available bitrate split evenly among // remaining tracks. std::multimap max_bitrate_sorted_configs; for (const TrackConfig** track_configs_it = track_configs.begin(); track_configs_it != track_configs.end(); ++track_configs_it) { max_bitrate_sorted_configs.insert( std::make_pair((*track_configs_it)->max_bitrate_bps, track_configs_it - track_configs.begin())); } uint32_t total_available_increase = available_bitrate - sum_min_bitrates; int processed_configs = 0; for (const auto& track_config_pair : max_bitrate_sorted_configs) { uint32_t available_increase = total_available_increase / (static_cast(track_configs.size() - processed_configs)); uint32_t consumed_increase = std::min(track_configs[track_config_pair.second]->max_bitrate_bps - track_configs[track_config_pair.second]->min_bitrate_bps, available_increase); track_allocations[track_config_pair.second] += consumed_increase; total_available_increase -= consumed_increase; ++processed_configs; } return track_allocations; } } AudioPriorityBitrateAllocationStrategy::AudioPriorityBitrateAllocationStrategy( std::string audio_track_id, uint32_t sufficient_audio_bitrate) : audio_track_id_(audio_track_id), sufficient_audio_bitrate_(sufficient_audio_bitrate) {} std::vector AudioPriorityBitrateAllocationStrategy::AllocateBitrates( uint32_t available_bitrate, const ArrayView track_configs) { const TrackConfig* audio_track_config = NULL; size_t audio_config_index = 0; uint32_t sum_min_bitrates = 0; uint32_t sum_max_bitrates = 0; for (const auto*& track_config : track_configs) { sum_min_bitrates += track_config->min_bitrate_bps; sum_max_bitrates += track_config->max_bitrate_bps; if (track_config->track_id == audio_track_id_) { audio_track_config = track_config; audio_config_index = &track_config - &track_configs[0]; } } if (sum_max_bitrates < available_bitrate) { // Allow non audio streams to go above max upto // kTransmissionMaxBitrateMultiplier * max_bitrate_bps size_t track_configs_size = track_configs.size(); std::vector increased_track_configs(track_configs_size); std::vector increased_track_configs_ptr( track_configs_size); for (unsigned long i = 0; i < track_configs_size; i++) { increased_track_configs[i] = (*track_configs[i]); increased_track_configs_ptr[i] = &increased_track_configs[i]; if (track_configs[i]->track_id != audio_track_id_) { increased_track_configs[i].max_bitrate_bps = track_configs[i]->max_bitrate_bps * kTransmissionMaxBitrateMultiplier; } } return DistributeBitratesEvenly(increased_track_configs_ptr, available_bitrate); } if (audio_track_config == nullptr) { return DistributeBitratesEvenly(track_configs, available_bitrate); } auto safe_sufficient_audio_bitrate = std::min( std::max(audio_track_config->min_bitrate_bps, sufficient_audio_bitrate_), audio_track_config->max_bitrate_bps); if (available_bitrate <= sum_min_bitrates) { return SetAllBitratesToMinimum(track_configs); } else { if (available_bitrate <= sum_min_bitrates + safe_sufficient_audio_bitrate - audio_track_config->min_bitrate_bps) { std::vector track_allocations = SetAllBitratesToMinimum(track_configs); track_allocations[audio_config_index] += available_bitrate - sum_min_bitrates; return track_allocations; } else { // Setting audio track minimum to safe_sufficient_audio_bitrate will // allow using DistributeBitratesEvenly to allocate at least sufficient // bitrate for audio and the rest evenly. TrackConfig sufficient_track_config(*track_configs[audio_config_index]); sufficient_track_config.min_bitrate_bps = safe_sufficient_audio_bitrate; track_configs[audio_config_index] = &sufficient_track_config; std::vector track_allocations = DistributeBitratesEvenly(track_configs, available_bitrate); return track_allocations; } } } } // namespace rtc