/* * Copyright 2016 The WebRTC Project Authors. All rights reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #ifndef RTC_BASE_TASK_QUEUE_H_ #define RTC_BASE_TASK_QUEUE_H_ #include #include #include #include #include #include "rtc_base/constructormagic.h" #include "rtc_base/criticalsection.h" #include "rtc_base/ptr_util.h" #include "rtc_base/scoped_ref_ptr.h" namespace rtc { // Base interface for asynchronously executed tasks. // The interface basically consists of a single function, Run(), that executes // on the target queue. For more details see the Run() method and TaskQueue. class QueuedTask { public: QueuedTask() {} virtual ~QueuedTask() {} // Main routine that will run when the task is executed on the desired queue. // The task should return |true| to indicate that it should be deleted or // |false| to indicate that the queue should consider ownership of the task // having been transferred. Returning |false| can be useful if a task has // re-posted itself to a different queue or is otherwise being re-used. virtual bool Run() = 0; private: RTC_DISALLOW_COPY_AND_ASSIGN(QueuedTask); }; // Simple implementation of QueuedTask for use with rtc::Bind and lambdas. template class ClosureTask : public QueuedTask { public: explicit ClosureTask(Closure&& closure) : closure_(std::forward(closure)) {} private: bool Run() override { closure_(); return true; } typename std::remove_const< typename std::remove_reference::type>::type closure_; }; // Extends ClosureTask to also allow specifying cleanup code. // This is useful when using lambdas if guaranteeing cleanup, even if a task // was dropped (queue is too full), is required. template class ClosureTaskWithCleanup : public ClosureTask { public: ClosureTaskWithCleanup(Closure&& closure, Cleanup&& cleanup) : ClosureTask(std::forward(closure)), cleanup_(std::forward(cleanup)) {} ~ClosureTaskWithCleanup() { cleanup_(); } private: typename std::remove_const< typename std::remove_reference::type>::type cleanup_; }; // Convenience function to construct closures that can be passed directly // to methods that support std::unique_ptr but not template // based parameters. template static std::unique_ptr NewClosure(Closure&& closure) { return rtc::MakeUnique>(std::forward(closure)); } template static std::unique_ptr NewClosure(Closure&& closure, Cleanup&& cleanup) { return rtc::MakeUnique>( std::forward(closure), std::forward(cleanup)); } // Implements a task queue that asynchronously executes tasks in a way that // guarantees that they're executed in FIFO order and that tasks never overlap. // Tasks may always execute on the same worker thread and they may not. // To DCHECK that tasks are executing on a known task queue, use IsCurrent(). // // Here are some usage examples: // // 1) Asynchronously running a lambda: // // class MyClass { // ... // TaskQueue queue_("MyQueue"); // }; // // void MyClass::StartWork() { // queue_.PostTask([]() { Work(); }); // ... // // 2) Doing work asynchronously on a worker queue and providing a notification // callback on the current queue, when the work has been done: // // void MyClass::StartWorkAndLetMeKnowWhenDone( // std::unique_ptr callback) { // DCHECK(TaskQueue::Current()) << "Need to be running on a queue"; // queue_.PostTaskAndReply([]() { Work(); }, std::move(callback)); // } // ... // my_class->StartWorkAndLetMeKnowWhenDone( // NewClosure([]() { RTC_LOG(INFO) << "The work is done!";})); // // 3) Posting a custom task on a timer. The task posts itself again after // every running: // // class TimerTask : public QueuedTask { // public: // TimerTask() {} // private: // bool Run() override { // ++count_; // TaskQueue::Current()->PostDelayedTask( // std::unique_ptr(this), 1000); // // Ownership has been transferred to the next occurance, // // so return false to prevent from being deleted now. // return false; // } // int count_ = 0; // }; // ... // queue_.PostDelayedTask( // std::unique_ptr(new TimerTask()), 1000); // // For more examples, see task_queue_unittests.cc. // // A note on destruction: // // When a TaskQueue is deleted, pending tasks will not be executed but they will // be deleted. The deletion of tasks may happen asynchronously after the // TaskQueue itself has been deleted or it may happen synchronously while the // TaskQueue instance is being deleted. This may vary from one OS to the next // so assumptions about lifetimes of pending tasks should not be made. class RTC_LOCKABLE TaskQueue { public: // TaskQueue priority levels. On some platforms these will map to thread // priorities, on others such as Mac and iOS, GCD queue priorities. enum class Priority { NORMAL = 0, HIGH, LOW, }; explicit TaskQueue(const char* queue_name, Priority priority = Priority::NORMAL); ~TaskQueue(); static TaskQueue* Current(); // Used for DCHECKing the current queue. bool IsCurrent() const; // TODO(tommi): For better debuggability, implement RTC_FROM_HERE. // Ownership of the task is passed to PostTask. void PostTask(std::unique_ptr task); void PostTaskAndReply(std::unique_ptr task, std::unique_ptr reply, TaskQueue* reply_queue); void PostTaskAndReply(std::unique_ptr task, std::unique_ptr reply); // Schedules a task to execute a specified number of milliseconds from when // the call is made. The precision should be considered as "best effort" // and in some cases, such as on Windows when all high precision timers have // been used up, can be off by as much as 15 millseconds (although 8 would be // more likely). This can be mitigated by limiting the use of delayed tasks. void PostDelayedTask(std::unique_ptr task, uint32_t milliseconds); // std::enable_if is used here to make sure that calls to PostTask() with // std::unique_ptr would not end up being // caught by this template. template >::value>::type* = nullptr> void PostTask(Closure&& closure) { PostTask(NewClosure(std::forward(closure))); } // See documentation above for performance expectations. template >::value>::type* = nullptr> void PostDelayedTask(Closure&& closure, uint32_t milliseconds) { PostDelayedTask(NewClosure(std::forward(closure)), milliseconds); } template void PostTaskAndReply(Closure1&& task, Closure2&& reply, TaskQueue* reply_queue) { PostTaskAndReply(NewClosure(std::forward(task)), NewClosure(std::forward(reply)), reply_queue); } template void PostTaskAndReply(std::unique_ptr task, Closure&& reply) { PostTaskAndReply(std::move(task), NewClosure(std::forward(reply))); } template void PostTaskAndReply(Closure&& task, std::unique_ptr reply) { PostTaskAndReply(NewClosure(std::forward(task)), std::move(reply)); } template void PostTaskAndReply(Closure1&& task, Closure2&& reply) { PostTaskAndReply(NewClosure(std::forward(task)), NewClosure(std::forward(reply))); } private: class Impl; const scoped_refptr impl_; RTC_DISALLOW_COPY_AND_ASSIGN(TaskQueue); }; } // namespace rtc #endif // RTC_BASE_TASK_QUEUE_H_