/* * Copyright (c) 2013 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "test/fake_encoder.h" #include #include #include #include "common_types.h" // NOLINT(build/include) #include "modules/video_coding/include/video_codec_interface.h" #include "rtc_base/checks.h" #include "system_wrappers/include/sleep.h" #include "test/gtest.h" namespace webrtc { namespace test { const int kKeyframeSizeFactor = 10; FakeEncoder::FakeEncoder(Clock* clock) : clock_(clock), callback_(nullptr), configured_input_framerate_(-1), max_target_bitrate_kbps_(-1), pending_keyframe_(true), debt_bytes_(0) { // Generate some arbitrary not-all-zero data for (size_t i = 0; i < sizeof(encoded_buffer_); ++i) { encoded_buffer_[i] = static_cast(i); } } void FakeEncoder::SetMaxBitrate(int max_kbps) { RTC_DCHECK_GE(max_kbps, -1); // max_kbps == -1 disables it. rtc::CritScope cs(&crit_sect_); max_target_bitrate_kbps_ = max_kbps; } int32_t FakeEncoder::InitEncode(const VideoCodec* config, int32_t number_of_cores, size_t max_payload_size) { rtc::CritScope cs(&crit_sect_); config_ = *config; target_bitrate_.SetBitrate(0, 0, config_.startBitrate * 1000); configured_input_framerate_ = config_.maxFramerate; pending_keyframe_ = true; return 0; } int32_t FakeEncoder::Encode(const VideoFrame& input_image, const CodecSpecificInfo* codec_specific_info, const std::vector* frame_types) { unsigned char max_framerate; unsigned char num_simulcast_streams; SimulcastStream simulcast_streams[kMaxSimulcastStreams]; EncodedImageCallback* callback; uint32_t target_bitrate_sum_kbps; int max_target_bitrate_kbps; size_t num_encoded_bytes; int framerate; VideoCodecMode mode; bool keyframe; { rtc::CritScope cs(&crit_sect_); max_framerate = config_.maxFramerate; num_simulcast_streams = config_.numberOfSimulcastStreams; for (int i = 0; i < num_simulcast_streams; ++i) { simulcast_streams[i] = config_.simulcastStream[i]; } callback = callback_; target_bitrate_sum_kbps = target_bitrate_.get_sum_kbps(); max_target_bitrate_kbps = max_target_bitrate_kbps_; num_encoded_bytes = sizeof(encoded_buffer_); mode = config_.mode; if (configured_input_framerate_ > 0) { framerate = configured_input_framerate_; } else { framerate = max_framerate; } keyframe = pending_keyframe_; pending_keyframe_ = false; } for (FrameType frame_type : *frame_types) { if (frame_type == kVideoFrameKey) { keyframe = true; break; } } RTC_DCHECK_GT(max_framerate, 0); size_t bitrate = std::max(target_bitrate_sum_kbps, simulcast_streams[0].minBitrate); if (max_target_bitrate_kbps > 0) bitrate = std::min(bitrate, static_cast(max_target_bitrate_kbps)); size_t bits_available = bitrate * 1000 / framerate; RTC_DCHECK_GT(num_simulcast_streams, 0); for (unsigned char i = 0; i < num_simulcast_streams; ++i) { CodecSpecificInfo specifics; memset(&specifics, 0, sizeof(specifics)); specifics.codecType = kVideoCodecGeneric; specifics.codecSpecific.generic.simulcast_idx = i; size_t min_stream_bits = static_cast( (simulcast_streams[i].minBitrate * 1000) / framerate); size_t max_stream_bits = static_cast( (simulcast_streams[i].maxBitrate * 1000) / framerate); size_t stream_bits = (bits_available > max_stream_bits) ? max_stream_bits : bits_available; size_t stream_bytes = (stream_bits + 7) / 8; if (keyframe) { // The first frame is a key frame and should be larger. // Store the overshoot bytes and distribute them over the coming frames, // so that we on average meet the bitrate target. debt_bytes_ += (kKeyframeSizeFactor - 1) * stream_bytes; stream_bytes *= kKeyframeSizeFactor; } else { if (debt_bytes_ > 0) { // Pay at most half of the frame size for old debts. size_t payment_size = std::min(stream_bytes / 2, debt_bytes_); debt_bytes_ -= payment_size; stream_bytes -= payment_size; } } if (stream_bytes > num_encoded_bytes) stream_bytes = num_encoded_bytes; // Always encode something on the first frame. if (min_stream_bits > bits_available && i > 0) continue; std::unique_ptr encoded_buffer(new uint8_t[num_encoded_bytes]); memcpy(encoded_buffer.get(), encoded_buffer_, num_encoded_bytes); EncodedImage encoded(encoded_buffer.get(), stream_bytes, num_encoded_bytes); encoded._timeStamp = input_image.timestamp(); encoded.capture_time_ms_ = input_image.render_time_ms(); encoded._frameType = (*frame_types)[i]; encoded._encodedWidth = simulcast_streams[i].width; encoded._encodedHeight = simulcast_streams[i].height; encoded.rotation_ = input_image.rotation(); encoded.content_type_ = (mode == kScreensharing) ? VideoContentType::SCREENSHARE : VideoContentType::UNSPECIFIED; specifics.codec_name = ImplementationName(); specifics.codecSpecific.generic.simulcast_idx = i; RTC_DCHECK(callback); if (callback->OnEncodedImage(encoded, &specifics, nullptr).error != EncodedImageCallback::Result::OK) { return -1; } bits_available -= std::min(encoded._length * 8, bits_available); } return 0; } int32_t FakeEncoder::RegisterEncodeCompleteCallback( EncodedImageCallback* callback) { rtc::CritScope cs(&crit_sect_); callback_ = callback; return 0; } int32_t FakeEncoder::Release() { return 0; } int32_t FakeEncoder::SetChannelParameters(uint32_t packet_loss, int64_t rtt) { return 0; } int32_t FakeEncoder::SetRateAllocation(const BitrateAllocation& rate_allocation, uint32_t framerate) { rtc::CritScope cs(&crit_sect_); target_bitrate_ = rate_allocation; configured_input_framerate_ = framerate; return 0; } const char* FakeEncoder::kImplementationName = "fake_encoder"; const char* FakeEncoder::ImplementationName() const { return kImplementationName; } int FakeEncoder::GetConfiguredInputFramerate() const { rtc::CritScope cs(&crit_sect_); return configured_input_framerate_; } FakeH264Encoder::FakeH264Encoder(Clock* clock) : FakeEncoder(clock), callback_(nullptr), idr_counter_(0) { FakeEncoder::RegisterEncodeCompleteCallback(this); } int32_t FakeH264Encoder::RegisterEncodeCompleteCallback( EncodedImageCallback* callback) { rtc::CritScope cs(&local_crit_sect_); callback_ = callback; return 0; } EncodedImageCallback::Result FakeH264Encoder::OnEncodedImage( const EncodedImage& encoded_image, const CodecSpecificInfo* codec_specific_info, const RTPFragmentationHeader* fragments) { const size_t kSpsSize = 8; const size_t kPpsSize = 11; const int kIdrFrequency = 10; EncodedImageCallback* callback; int current_idr_counter; { rtc::CritScope cs(&local_crit_sect_); callback = callback_; current_idr_counter = idr_counter_; ++idr_counter_; } RTPFragmentationHeader fragmentation; if (current_idr_counter % kIdrFrequency == 0 && encoded_image._length > kSpsSize + kPpsSize + 1) { const size_t kNumSlices = 3; fragmentation.VerifyAndAllocateFragmentationHeader(kNumSlices); fragmentation.fragmentationOffset[0] = 0; fragmentation.fragmentationLength[0] = kSpsSize; fragmentation.fragmentationOffset[1] = kSpsSize; fragmentation.fragmentationLength[1] = kPpsSize; fragmentation.fragmentationOffset[2] = kSpsSize + kPpsSize; fragmentation.fragmentationLength[2] = encoded_image._length - (kSpsSize + kPpsSize); const size_t kSpsNalHeader = 0x67; const size_t kPpsNalHeader = 0x68; const size_t kIdrNalHeader = 0x65; encoded_image._buffer[fragmentation.fragmentationOffset[0]] = kSpsNalHeader; encoded_image._buffer[fragmentation.fragmentationOffset[1]] = kPpsNalHeader; encoded_image._buffer[fragmentation.fragmentationOffset[2]] = kIdrNalHeader; } else { const size_t kNumSlices = 1; fragmentation.VerifyAndAllocateFragmentationHeader(kNumSlices); fragmentation.fragmentationOffset[0] = 0; fragmentation.fragmentationLength[0] = encoded_image._length; const size_t kNalHeader = 0x41; encoded_image._buffer[fragmentation.fragmentationOffset[0]] = kNalHeader; } uint8_t value = 0; int fragment_counter = 0; for (size_t i = 0; i < encoded_image._length; ++i) { if (fragment_counter == fragmentation.fragmentationVectorSize || i != fragmentation.fragmentationOffset[fragment_counter]) { encoded_image._buffer[i] = value++; } else { ++fragment_counter; } } CodecSpecificInfo specifics; memset(&specifics, 0, sizeof(specifics)); specifics.codecType = kVideoCodecH264; specifics.codecSpecific.H264.packetization_mode = H264PacketizationMode::NonInterleaved; RTC_DCHECK(callback); return callback->OnEncodedImage(encoded_image, &specifics, &fragmentation); } DelayedEncoder::DelayedEncoder(Clock* clock, int delay_ms) : test::FakeEncoder(clock), delay_ms_(delay_ms) { // The encoder could be created on a different thread than // it is being used on. sequence_checker_.Detach(); } void DelayedEncoder::SetDelay(int delay_ms) { RTC_DCHECK_CALLED_SEQUENTIALLY(&sequence_checker_); delay_ms_ = delay_ms; } int32_t DelayedEncoder::Encode(const VideoFrame& input_image, const CodecSpecificInfo* codec_specific_info, const std::vector* frame_types) { RTC_DCHECK_CALLED_SEQUENTIALLY(&sequence_checker_); SleepMs(delay_ms_); return FakeEncoder::Encode(input_image, codec_specific_info, frame_types); } MultithreadedFakeH264Encoder::MultithreadedFakeH264Encoder(Clock* clock) : test::FakeH264Encoder(clock), current_queue_(0), queue1_(nullptr), queue2_(nullptr) { // The encoder could be created on a different thread than // it is being used on. sequence_checker_.Detach(); } int32_t MultithreadedFakeH264Encoder::InitEncode(const VideoCodec* config, int32_t number_of_cores, size_t max_payload_size) { RTC_DCHECK_CALLED_SEQUENTIALLY(&sequence_checker_); queue1_.reset(new rtc::TaskQueue("Queue 1")); queue2_.reset(new rtc::TaskQueue("Queue 2")); return FakeH264Encoder::InitEncode(config, number_of_cores, max_payload_size); } class MultithreadedFakeH264Encoder::EncodeTask : public rtc::QueuedTask { public: EncodeTask(MultithreadedFakeH264Encoder* encoder, const VideoFrame& input_image, const CodecSpecificInfo* codec_specific_info, const std::vector* frame_types) : encoder_(encoder), input_image_(input_image), codec_specific_info_(), frame_types_(*frame_types) { if (codec_specific_info) codec_specific_info_ = *codec_specific_info; } private: bool Run() override { encoder_->EncodeCallback(input_image_, &codec_specific_info_, &frame_types_); return true; } MultithreadedFakeH264Encoder* const encoder_; VideoFrame input_image_; CodecSpecificInfo codec_specific_info_; std::vector frame_types_; }; int32_t MultithreadedFakeH264Encoder::Encode( const VideoFrame& input_image, const CodecSpecificInfo* codec_specific_info, const std::vector* frame_types) { RTC_DCHECK_CALLED_SEQUENTIALLY(&sequence_checker_); std::unique_ptr& queue = (current_queue_++ % 2 == 0) ? queue1_ : queue2_; if (!queue) { return WEBRTC_VIDEO_CODEC_UNINITIALIZED; } queue->PostTask(std::unique_ptr( new EncodeTask(this, input_image, codec_specific_info, frame_types))); return WEBRTC_VIDEO_CODEC_OK; } int32_t MultithreadedFakeH264Encoder::EncodeCallback( const VideoFrame& input_image, const CodecSpecificInfo* codec_specific_info, const std::vector* frame_types) { return FakeH264Encoder::Encode(input_image, codec_specific_info, frame_types); } int32_t MultithreadedFakeH264Encoder::Release() { RTC_DCHECK_CALLED_SEQUENTIALLY(&sequence_checker_); queue1_.reset(); queue2_.reset(); return FakeH264Encoder::Release(); } } // namespace test } // namespace webrtc