//! Adler-32 checksum implementation. //! //! This implementation features: //! //! - Permissively licensed (0BSD) clean-room implementation. //! - Zero dependencies. //! - Decent performance (3-4 GB/s). //! - `#![no_std]` support (with `default-features = false`). #![doc(html_root_url = "https://docs.rs/adler/0.2.3")] // Deny a few warnings in doctests, since rustdoc `allow`s many warnings by default #![doc(test(attr(deny(unused_imports, unused_must_use))))] #![cfg_attr(docsrs, feature(doc_cfg))] #![warn(missing_debug_implementations)] #![forbid(unsafe_code)] #![cfg_attr(not(feature = "std"), no_std)] #[cfg(not(feature = "std"))] extern crate core as std; mod algo; use std::hash::Hasher; #[cfg(feature = "std")] use std::io::{self, BufRead}; /// Adler-32 checksum calculator. /// /// An instance of this type is equivalent to an Adler-32 checksum: It can be created in the default /// state via [`new`] (or the provided `Default` impl), or from a precalculated checksum via /// [`from_checksum`], and the currently stored checksum can be fetched via [`checksum`]. /// /// This type also implements `Hasher`, which makes it easy to calculate Adler-32 checksums of any /// type that implements or derives `Hash`. This also allows using Adler-32 in a `HashMap`, although /// that is not recommended (while every checksum is a hash, they are not necessarily good at being /// one). /// /// [`new`]: #method.new /// [`from_checksum`]: #method.from_checksum /// [`checksum`]: #method.checksum #[derive(Debug, Copy, Clone)] pub struct Adler32 { a: u16, b: u16, } impl Adler32 { /// Creates a new Adler-32 instance with default state. #[inline] pub fn new() -> Self { Self::default() } /// Creates an `Adler32` instance from a precomputed Adler-32 checksum. /// /// This allows resuming checksum calculation without having to keep the `Adler32` instance /// around. /// /// # Example /// /// ``` /// # use adler::Adler32; /// let parts = [ /// "rust", /// "acean", /// ]; /// let whole = adler::adler32_slice(b"rustacean"); /// /// let mut sum = Adler32::new(); /// sum.write_slice(parts[0].as_bytes()); /// let partial = sum.checksum(); /// /// // ...later /// /// let mut sum = Adler32::from_checksum(partial); /// sum.write_slice(parts[1].as_bytes()); /// assert_eq!(sum.checksum(), whole); /// ``` #[inline] pub fn from_checksum(sum: u32) -> Self { Adler32 { a: sum as u16, b: (sum >> 16) as u16, } } /// Returns the calculated checksum at this point in time. #[inline] pub fn checksum(&self) -> u32 { (u32::from(self.b) << 16) | u32::from(self.a) } /// Adds `bytes` to the checksum calculation. /// /// If efficiency matters, this should be called with Byte slices that contain at least a few /// thousand Bytes. pub fn write_slice(&mut self, bytes: &[u8]) { self.compute(bytes); } } impl Default for Adler32 { #[inline] fn default() -> Self { Adler32 { a: 1, b: 0 } } } impl Hasher for Adler32 { #[inline] fn finish(&self) -> u64 { u64::from(self.checksum()) } fn write(&mut self, bytes: &[u8]) { self.write_slice(bytes); } } /// Calculates the Adler-32 checksum of a byte slice. pub fn adler32_slice(data: &[u8]) -> u32 { let mut h = Adler32::new(); h.write_slice(data); h.checksum() } /// Calculates the Adler-32 checksum of a `BufRead`'s contents. /// /// The passed `BufRead` implementor will be read until it reaches EOF. /// /// If you only have a `Read` implementor, wrap it in `std::io::BufReader`. #[cfg(feature = "std")] #[cfg_attr(docsrs, doc(cfg(feature = "std")))] pub fn adler32_reader(reader: &mut R) -> io::Result { let mut h = Adler32::new(); loop { let len = { let buf = reader.fill_buf()?; if buf.is_empty() { return Ok(h.checksum()); } h.write_slice(buf); buf.len() }; reader.consume(len); } } #[cfg(test)] mod tests { use super::*; use std::io::BufReader; #[test] fn zeroes() { assert_eq!(adler32_slice(&[]), 1); assert_eq!(adler32_slice(&[0]), 1 | 1 << 16); assert_eq!(adler32_slice(&[0, 0]), 1 | 2 << 16); assert_eq!(adler32_slice(&[0; 100]), 0x00640001); assert_eq!(adler32_slice(&[0; 1024]), 0x04000001); assert_eq!(adler32_slice(&[0; 1024 * 1024]), 0x00f00001); } #[test] fn ones() { assert_eq!(adler32_slice(&[0xff; 1024]), 0x79a6fc2e); assert_eq!(adler32_slice(&[0xff; 1024 * 1024]), 0x8e88ef11); } #[test] fn mixed() { assert_eq!(adler32_slice(&[1]), 2 | 2 << 16); assert_eq!(adler32_slice(&[40]), 41 | 41 << 16); assert_eq!(adler32_slice(&[0xA5; 1024 * 1024]), 0xd5009ab1); } /// Example calculation from https://en.wikipedia.org/wiki/Adler-32. #[test] fn wiki() { assert_eq!(adler32_slice(b"Wikipedia"), 0x11E60398); } #[test] fn resume() { let mut adler = Adler32::new(); adler.write_slice(&[0xff; 1024]); let partial = adler.checksum(); assert_eq!(partial, 0x79a6fc2e); // from above adler.write_slice(&[0xff; 1024 * 1024 - 1024]); assert_eq!(adler.checksum(), 0x8e88ef11); // from above // Make sure that we can resume computing from the partial checksum via `from_checksum`. let mut adler = Adler32::from_checksum(partial); adler.write_slice(&[0xff; 1024 * 1024 - 1024]); assert_eq!(adler.checksum(), 0x8e88ef11); // from above } #[test] fn bufread() { fn test(data: &[u8], checksum: u32) { // `BufReader` uses an 8 KB buffer, so this will test buffer refilling. let mut buf = BufReader::new(data); let real_sum = adler32_reader(&mut buf).unwrap(); assert_eq!(checksum, real_sum); } test(&[], 1); test(&[0; 1024], 0x04000001); test(&[0; 1024 * 1024], 0x00f00001); test(&[0xA5; 1024 * 1024], 0xd5009ab1); } }