use crate::Config; #[cfg(any(feature = "alloc", feature = "std", test))] use crate::{chunked_encoder, STANDARD}; #[cfg(any(feature = "alloc", feature = "std", test))] use alloc::{string::String, vec}; use core::convert::TryInto; ///Encode arbitrary octets as base64. ///Returns a String. ///Convenience for `encode_config(input, base64::STANDARD);`. /// ///# Example /// ///```rust ///extern crate base64; /// ///fn main() { /// let b64 = base64::encode(b"hello world"); /// println!("{}", b64); ///} ///``` #[cfg(any(feature = "alloc", feature = "std", test))] pub fn encode>(input: T) -> String { encode_config(input, STANDARD) } ///Encode arbitrary octets as base64. ///Returns a String. /// ///# Example /// ///```rust ///extern crate base64; /// ///fn main() { /// let b64 = base64::encode_config(b"hello world~", base64::STANDARD); /// println!("{}", b64); /// /// let b64_url = base64::encode_config(b"hello internet~", base64::URL_SAFE); /// println!("{}", b64_url); ///} ///``` #[cfg(any(feature = "alloc", feature = "std", test))] pub fn encode_config>(input: T, config: Config) -> String { let mut buf = match encoded_size(input.as_ref().len(), config) { Some(n) => vec![0; n], None => panic!("integer overflow when calculating buffer size"), }; encode_with_padding(input.as_ref(), config, buf.len(), &mut buf[..]); String::from_utf8(buf).expect("Invalid UTF8") } ///Encode arbitrary octets as base64. ///Writes into the supplied output buffer, which will grow the buffer if needed. /// ///# Example /// ///```rust ///extern crate base64; /// ///fn main() { /// let mut buf = String::new(); /// base64::encode_config_buf(b"hello world~", base64::STANDARD, &mut buf); /// println!("{}", buf); /// /// buf.clear(); /// base64::encode_config_buf(b"hello internet~", base64::URL_SAFE, &mut buf); /// println!("{}", buf); ///} ///``` #[cfg(any(feature = "alloc", feature = "std", test))] pub fn encode_config_buf>(input: T, config: Config, buf: &mut String) { let input_bytes = input.as_ref(); { let mut sink = chunked_encoder::StringSink::new(buf); let encoder = chunked_encoder::ChunkedEncoder::new(config); encoder .encode(input_bytes, &mut sink) .expect("Writing to a String shouldn't fail") } } /// Encode arbitrary octets as base64. /// Writes into the supplied output buffer. /// /// This is useful if you wish to avoid allocation entirely (e.g. encoding into a stack-resident /// or statically-allocated buffer). /// /// # Panics /// /// If `output` is too small to hold the encoded version of `input`, a panic will result. /// /// # Example /// /// ```rust /// extern crate base64; /// /// fn main() { /// let s = b"hello internet!"; /// let mut buf = Vec::new(); /// // make sure we'll have a slice big enough for base64 + padding /// buf.resize(s.len() * 4 / 3 + 4, 0); /// /// let bytes_written = base64::encode_config_slice(s, /// base64::STANDARD, &mut buf); /// /// // shorten our vec down to just what was written /// buf.resize(bytes_written, 0); /// /// assert_eq!(s, base64::decode(&buf).unwrap().as_slice()); /// } /// ``` pub fn encode_config_slice>(input: T, config: Config, output: &mut [u8]) -> usize { let input_bytes = input.as_ref(); let encoded_size = encoded_size(input_bytes.len(), config) .expect("usize overflow when calculating buffer size"); let mut b64_output = &mut output[0..encoded_size]; encode_with_padding(&input_bytes, config, encoded_size, &mut b64_output); encoded_size } /// B64-encode and pad (if configured). /// /// This helper exists to avoid recalculating encoded_size, which is relatively expensive on short /// inputs. /// /// `encoded_size` is the encoded size calculated for `input`. /// /// `output` must be of size `encoded_size`. /// /// All bytes in `output` will be written to since it is exactly the size of the output. fn encode_with_padding(input: &[u8], config: Config, encoded_size: usize, output: &mut [u8]) { debug_assert_eq!(encoded_size, output.len()); let b64_bytes_written = encode_to_slice(input, output, config.char_set.encode_table()); let padding_bytes = if config.pad { add_padding(input.len(), &mut output[b64_bytes_written..]) } else { 0 }; let encoded_bytes = b64_bytes_written .checked_add(padding_bytes) .expect("usize overflow when calculating b64 length"); debug_assert_eq!(encoded_size, encoded_bytes); } #[inline] fn read_u64(s: &[u8]) -> u64 { u64::from_be_bytes(s[..8].try_into().unwrap()) } /// Encode input bytes to utf8 base64 bytes. Does not pad. /// `output` must be long enough to hold the encoded `input` without padding. /// Returns the number of bytes written. #[inline] pub fn encode_to_slice(input: &[u8], output: &mut [u8], encode_table: &[u8; 64]) -> usize { let mut input_index: usize = 0; const BLOCKS_PER_FAST_LOOP: usize = 4; const LOW_SIX_BITS: u64 = 0x3F; // we read 8 bytes at a time (u64) but only actually consume 6 of those bytes. Thus, we need // 2 trailing bytes to be available to read.. let last_fast_index = input.len().saturating_sub(BLOCKS_PER_FAST_LOOP * 6 + 2); let mut output_index = 0; if last_fast_index > 0 { while input_index <= last_fast_index { // Major performance wins from letting the optimizer do the bounds check once, mostly // on the output side let input_chunk = &input[input_index..(input_index + (BLOCKS_PER_FAST_LOOP * 6 + 2))]; let output_chunk = &mut output[output_index..(output_index + BLOCKS_PER_FAST_LOOP * 8)]; // Hand-unrolling for 32 vs 16 or 8 bytes produces yields performance about equivalent // to unsafe pointer code on a Xeon E5-1650v3. 64 byte unrolling was slightly better for // large inputs but significantly worse for 50-byte input, unsurprisingly. I suspect // that it's a not uncommon use case to encode smallish chunks of data (e.g. a 64-byte // SHA-512 digest), so it would be nice if that fit in the unrolled loop at least once. // Plus, single-digit percentage performance differences might well be quite different // on different hardware. let input_u64 = read_u64(&input_chunk[0..]); output_chunk[0] = encode_table[((input_u64 >> 58) & LOW_SIX_BITS) as usize]; output_chunk[1] = encode_table[((input_u64 >> 52) & LOW_SIX_BITS) as usize]; output_chunk[2] = encode_table[((input_u64 >> 46) & LOW_SIX_BITS) as usize]; output_chunk[3] = encode_table[((input_u64 >> 40) & LOW_SIX_BITS) as usize]; output_chunk[4] = encode_table[((input_u64 >> 34) & LOW_SIX_BITS) as usize]; output_chunk[5] = encode_table[((input_u64 >> 28) & LOW_SIX_BITS) as usize]; output_chunk[6] = encode_table[((input_u64 >> 22) & LOW_SIX_BITS) as usize]; output_chunk[7] = encode_table[((input_u64 >> 16) & LOW_SIX_BITS) as usize]; let input_u64 = read_u64(&input_chunk[6..]); output_chunk[8] = encode_table[((input_u64 >> 58) & LOW_SIX_BITS) as usize]; output_chunk[9] = encode_table[((input_u64 >> 52) & LOW_SIX_BITS) as usize]; output_chunk[10] = encode_table[((input_u64 >> 46) & LOW_SIX_BITS) as usize]; output_chunk[11] = encode_table[((input_u64 >> 40) & LOW_SIX_BITS) as usize]; output_chunk[12] = encode_table[((input_u64 >> 34) & LOW_SIX_BITS) as usize]; output_chunk[13] = encode_table[((input_u64 >> 28) & LOW_SIX_BITS) as usize]; output_chunk[14] = encode_table[((input_u64 >> 22) & LOW_SIX_BITS) as usize]; output_chunk[15] = encode_table[((input_u64 >> 16) & LOW_SIX_BITS) as usize]; let input_u64 = read_u64(&input_chunk[12..]); output_chunk[16] = encode_table[((input_u64 >> 58) & LOW_SIX_BITS) as usize]; output_chunk[17] = encode_table[((input_u64 >> 52) & LOW_SIX_BITS) as usize]; output_chunk[18] = encode_table[((input_u64 >> 46) & LOW_SIX_BITS) as usize]; output_chunk[19] = encode_table[((input_u64 >> 40) & LOW_SIX_BITS) as usize]; output_chunk[20] = encode_table[((input_u64 >> 34) & LOW_SIX_BITS) as usize]; output_chunk[21] = encode_table[((input_u64 >> 28) & LOW_SIX_BITS) as usize]; output_chunk[22] = encode_table[((input_u64 >> 22) & LOW_SIX_BITS) as usize]; output_chunk[23] = encode_table[((input_u64 >> 16) & LOW_SIX_BITS) as usize]; let input_u64 = read_u64(&input_chunk[18..]); output_chunk[24] = encode_table[((input_u64 >> 58) & LOW_SIX_BITS) as usize]; output_chunk[25] = encode_table[((input_u64 >> 52) & LOW_SIX_BITS) as usize]; output_chunk[26] = encode_table[((input_u64 >> 46) & LOW_SIX_BITS) as usize]; output_chunk[27] = encode_table[((input_u64 >> 40) & LOW_SIX_BITS) as usize]; output_chunk[28] = encode_table[((input_u64 >> 34) & LOW_SIX_BITS) as usize]; output_chunk[29] = encode_table[((input_u64 >> 28) & LOW_SIX_BITS) as usize]; output_chunk[30] = encode_table[((input_u64 >> 22) & LOW_SIX_BITS) as usize]; output_chunk[31] = encode_table[((input_u64 >> 16) & LOW_SIX_BITS) as usize]; output_index += BLOCKS_PER_FAST_LOOP * 8; input_index += BLOCKS_PER_FAST_LOOP * 6; } } // Encode what's left after the fast loop. const LOW_SIX_BITS_U8: u8 = 0x3F; let rem = input.len() % 3; let start_of_rem = input.len() - rem; // start at the first index not handled by fast loop, which may be 0. while input_index < start_of_rem { let input_chunk = &input[input_index..(input_index + 3)]; let output_chunk = &mut output[output_index..(output_index + 4)]; output_chunk[0] = encode_table[(input_chunk[0] >> 2) as usize]; output_chunk[1] = encode_table[((input_chunk[0] << 4 | input_chunk[1] >> 4) & LOW_SIX_BITS_U8) as usize]; output_chunk[2] = encode_table[((input_chunk[1] << 2 | input_chunk[2] >> 6) & LOW_SIX_BITS_U8) as usize]; output_chunk[3] = encode_table[(input_chunk[2] & LOW_SIX_BITS_U8) as usize]; input_index += 3; output_index += 4; } if rem == 2 { output[output_index] = encode_table[(input[start_of_rem] >> 2) as usize]; output[output_index + 1] = encode_table[((input[start_of_rem] << 4 | input[start_of_rem + 1] >> 4) & LOW_SIX_BITS_U8) as usize]; output[output_index + 2] = encode_table[((input[start_of_rem + 1] << 2) & LOW_SIX_BITS_U8) as usize]; output_index += 3; } else if rem == 1 { output[output_index] = encode_table[(input[start_of_rem] >> 2) as usize]; output[output_index + 1] = encode_table[((input[start_of_rem] << 4) & LOW_SIX_BITS_U8) as usize]; output_index += 2; } output_index } /// calculate the base64 encoded string size, including padding if appropriate pub fn encoded_size(bytes_len: usize, config: Config) -> Option { let rem = bytes_len % 3; let complete_input_chunks = bytes_len / 3; let complete_chunk_output = complete_input_chunks.checked_mul(4); if rem > 0 { if config.pad { complete_chunk_output.and_then(|c| c.checked_add(4)) } else { let encoded_rem = match rem { 1 => 2, 2 => 3, _ => unreachable!("Impossible remainder"), }; complete_chunk_output.and_then(|c| c.checked_add(encoded_rem)) } } else { complete_chunk_output } } /// Write padding characters. /// `output` is the slice where padding should be written, of length at least 2. /// /// Returns the number of padding bytes written. pub fn add_padding(input_len: usize, output: &mut [u8]) -> usize { let rem = input_len % 3; let mut bytes_written = 0; for _ in 0..((3 - rem) % 3) { output[bytes_written] = b'='; bytes_written += 1; } bytes_written } #[cfg(test)] mod tests { use super::*; use crate::{ decode::decode_config_buf, tests::{assert_encode_sanity, random_config}, Config, STANDARD, URL_SAFE_NO_PAD, }; use rand::{ distributions::{Distribution, Uniform}, FromEntropy, Rng, }; use std; use std::str; #[test] fn encoded_size_correct_standard() { assert_encoded_length(0, 0, STANDARD); assert_encoded_length(1, 4, STANDARD); assert_encoded_length(2, 4, STANDARD); assert_encoded_length(3, 4, STANDARD); assert_encoded_length(4, 8, STANDARD); assert_encoded_length(5, 8, STANDARD); assert_encoded_length(6, 8, STANDARD); assert_encoded_length(7, 12, STANDARD); assert_encoded_length(8, 12, STANDARD); assert_encoded_length(9, 12, STANDARD); assert_encoded_length(54, 72, STANDARD); assert_encoded_length(55, 76, STANDARD); assert_encoded_length(56, 76, STANDARD); assert_encoded_length(57, 76, STANDARD); assert_encoded_length(58, 80, STANDARD); } #[test] fn encoded_size_correct_no_pad() { assert_encoded_length(0, 0, URL_SAFE_NO_PAD); assert_encoded_length(1, 2, URL_SAFE_NO_PAD); assert_encoded_length(2, 3, URL_SAFE_NO_PAD); assert_encoded_length(3, 4, URL_SAFE_NO_PAD); assert_encoded_length(4, 6, URL_SAFE_NO_PAD); assert_encoded_length(5, 7, URL_SAFE_NO_PAD); assert_encoded_length(6, 8, URL_SAFE_NO_PAD); assert_encoded_length(7, 10, URL_SAFE_NO_PAD); assert_encoded_length(8, 11, URL_SAFE_NO_PAD); assert_encoded_length(9, 12, URL_SAFE_NO_PAD); assert_encoded_length(54, 72, URL_SAFE_NO_PAD); assert_encoded_length(55, 74, URL_SAFE_NO_PAD); assert_encoded_length(56, 75, URL_SAFE_NO_PAD); assert_encoded_length(57, 76, URL_SAFE_NO_PAD); assert_encoded_length(58, 78, URL_SAFE_NO_PAD); } #[test] fn encoded_size_overflow() { assert_eq!(None, encoded_size(std::usize::MAX, STANDARD)); } #[test] fn encode_config_buf_into_nonempty_buffer_doesnt_clobber_prefix() { let mut orig_data = Vec::new(); let mut prefix = String::new(); let mut encoded_data_no_prefix = String::new(); let mut encoded_data_with_prefix = String::new(); let mut decoded = Vec::new(); let prefix_len_range = Uniform::new(0, 1000); let input_len_range = Uniform::new(0, 1000); let mut rng = rand::rngs::SmallRng::from_entropy(); for _ in 0..10_000 { orig_data.clear(); prefix.clear(); encoded_data_no_prefix.clear(); encoded_data_with_prefix.clear(); decoded.clear(); let input_len = input_len_range.sample(&mut rng); for _ in 0..input_len { orig_data.push(rng.gen()); } let prefix_len = prefix_len_range.sample(&mut rng); for _ in 0..prefix_len { // getting convenient random single-byte printable chars that aren't base64 is // annoying prefix.push('#'); } encoded_data_with_prefix.push_str(&prefix); let config = random_config(&mut rng); encode_config_buf(&orig_data, config, &mut encoded_data_no_prefix); encode_config_buf(&orig_data, config, &mut encoded_data_with_prefix); assert_eq!( encoded_data_no_prefix.len() + prefix_len, encoded_data_with_prefix.len() ); assert_encode_sanity(&encoded_data_no_prefix, config, input_len); assert_encode_sanity(&encoded_data_with_prefix[prefix_len..], config, input_len); // append plain encode onto prefix prefix.push_str(&mut encoded_data_no_prefix); assert_eq!(prefix, encoded_data_with_prefix); decode_config_buf(&encoded_data_no_prefix, config, &mut decoded).unwrap(); assert_eq!(orig_data, decoded); } } #[test] fn encode_config_slice_into_nonempty_buffer_doesnt_clobber_suffix() { let mut orig_data = Vec::new(); let mut encoded_data = Vec::new(); let mut encoded_data_original_state = Vec::new(); let mut decoded = Vec::new(); let input_len_range = Uniform::new(0, 1000); let mut rng = rand::rngs::SmallRng::from_entropy(); for _ in 0..10_000 { orig_data.clear(); encoded_data.clear(); encoded_data_original_state.clear(); decoded.clear(); let input_len = input_len_range.sample(&mut rng); for _ in 0..input_len { orig_data.push(rng.gen()); } // plenty of existing garbage in the encoded buffer for _ in 0..10 * input_len { encoded_data.push(rng.gen()); } encoded_data_original_state.extend_from_slice(&encoded_data); let config = random_config(&mut rng); let encoded_size = encoded_size(input_len, config).unwrap(); assert_eq!( encoded_size, encode_config_slice(&orig_data, config, &mut encoded_data) ); assert_encode_sanity( std::str::from_utf8(&encoded_data[0..encoded_size]).unwrap(), config, input_len, ); assert_eq!( &encoded_data[encoded_size..], &encoded_data_original_state[encoded_size..] ); decode_config_buf(&encoded_data[0..encoded_size], config, &mut decoded).unwrap(); assert_eq!(orig_data, decoded); } } #[test] fn encode_config_slice_fits_into_precisely_sized_slice() { let mut orig_data = Vec::new(); let mut encoded_data = Vec::new(); let mut decoded = Vec::new(); let input_len_range = Uniform::new(0, 1000); let mut rng = rand::rngs::SmallRng::from_entropy(); for _ in 0..10_000 { orig_data.clear(); encoded_data.clear(); decoded.clear(); let input_len = input_len_range.sample(&mut rng); for _ in 0..input_len { orig_data.push(rng.gen()); } let config = random_config(&mut rng); let encoded_size = encoded_size(input_len, config).unwrap(); encoded_data.resize(encoded_size, 0); assert_eq!( encoded_size, encode_config_slice(&orig_data, config, &mut encoded_data) ); assert_encode_sanity( std::str::from_utf8(&encoded_data[0..encoded_size]).unwrap(), config, input_len, ); decode_config_buf(&encoded_data[0..encoded_size], config, &mut decoded).unwrap(); assert_eq!(orig_data, decoded); } } #[test] fn encode_to_slice_random_valid_utf8() { let mut input = Vec::new(); let mut output = Vec::new(); let input_len_range = Uniform::new(0, 1000); let mut rng = rand::rngs::SmallRng::from_entropy(); for _ in 0..10_000 { input.clear(); output.clear(); let input_len = input_len_range.sample(&mut rng); for _ in 0..input_len { input.push(rng.gen()); } let config = random_config(&mut rng); // fill up the output buffer with garbage let encoded_size = encoded_size(input_len, config).unwrap(); for _ in 0..encoded_size { output.push(rng.gen()); } let orig_output_buf = output.to_vec(); let bytes_written = encode_to_slice(&input, &mut output, config.char_set.encode_table()); // make sure the part beyond bytes_written is the same garbage it was before assert_eq!(orig_output_buf[bytes_written..], output[bytes_written..]); // make sure the encoded bytes are UTF-8 let _ = str::from_utf8(&output[0..bytes_written]).unwrap(); } } #[test] fn encode_with_padding_random_valid_utf8() { let mut input = Vec::new(); let mut output = Vec::new(); let input_len_range = Uniform::new(0, 1000); let mut rng = rand::rngs::SmallRng::from_entropy(); for _ in 0..10_000 { input.clear(); output.clear(); let input_len = input_len_range.sample(&mut rng); for _ in 0..input_len { input.push(rng.gen()); } let config = random_config(&mut rng); // fill up the output buffer with garbage let encoded_size = encoded_size(input_len, config).unwrap(); for _ in 0..encoded_size + 1000 { output.push(rng.gen()); } let orig_output_buf = output.to_vec(); encode_with_padding(&input, config, encoded_size, &mut output[0..encoded_size]); // make sure the part beyond b64 is the same garbage it was before assert_eq!(orig_output_buf[encoded_size..], output[encoded_size..]); // make sure the encoded bytes are UTF-8 let _ = str::from_utf8(&output[0..encoded_size]).unwrap(); } } #[test] fn add_padding_random_valid_utf8() { let mut output = Vec::new(); let mut rng = rand::rngs::SmallRng::from_entropy(); // cover our bases for length % 3 for input_len in 0..10 { output.clear(); // fill output with random for _ in 0..10 { output.push(rng.gen()); } let orig_output_buf = output.to_vec(); let bytes_written = add_padding(input_len, &mut output); // make sure the part beyond bytes_written is the same garbage it was before assert_eq!(orig_output_buf[bytes_written..], output[bytes_written..]); // make sure the encoded bytes are UTF-8 let _ = str::from_utf8(&output[0..bytes_written]).unwrap(); } } fn assert_encoded_length(input_len: usize, encoded_len: usize, config: Config) { assert_eq!(encoded_len, encoded_size(input_len, config).unwrap()); let mut bytes: Vec = Vec::new(); let mut rng = rand::rngs::SmallRng::from_entropy(); for _ in 0..input_len { bytes.push(rng.gen()); } let encoded = encode_config(&bytes, config); assert_encode_sanity(&encoded, config, input_len); assert_eq!(encoded_len, encoded.len()); } #[test] fn encode_imap() { assert_eq!( encode_config(b"\xFB\xFF", crate::IMAP_MUTF7), encode_config(b"\xFB\xFF", crate::STANDARD_NO_PAD).replace("/", ",") ); } }