// This is a part of Chrono. // See README.md and LICENSE.txt for details. //! ISO 8601 date and time without timezone. #[cfg(any(feature = "alloc", feature = "std", test))] use core::borrow::Borrow; use core::{str, fmt, hash}; use core::ops::{Add, Sub, AddAssign, SubAssign}; use num_traits::ToPrimitive; use oldtime::Duration as OldDuration; use {Weekday, Timelike, Datelike}; use div::div_mod_floor; use naive::{NaiveTime, NaiveDate, IsoWeek}; use format::{Item, Numeric, Pad, Fixed}; use format::{parse, Parsed, ParseError, ParseResult, StrftimeItems}; #[cfg(any(feature = "alloc", feature = "std", test))] use format::DelayedFormat; /// The tight upper bound guarantees that a duration with `|Duration| >= 2^MAX_SECS_BITS` /// will always overflow the addition with any date and time type. /// /// So why is this needed? `Duration::seconds(rhs)` may overflow, and we don't have /// an alternative returning `Option` or `Result`. Thus we need some early bound to avoid /// touching that call when we are already sure that it WILL overflow... const MAX_SECS_BITS: usize = 44; /// ISO 8601 combined date and time without timezone. /// /// # Example /// /// `NaiveDateTime` is commonly created from [`NaiveDate`](./struct.NaiveDate.html). /// /// ~~~~ /// use chrono::{NaiveDate, NaiveDateTime}; /// /// let dt: NaiveDateTime = NaiveDate::from_ymd(2016, 7, 8).and_hms(9, 10, 11); /// # let _ = dt; /// ~~~~ /// /// You can use typical [date-like](../trait.Datelike.html) and /// [time-like](../trait.Timelike.html) methods, /// provided that relevant traits are in the scope. /// /// ~~~~ /// # use chrono::{NaiveDate, NaiveDateTime}; /// # let dt: NaiveDateTime = NaiveDate::from_ymd(2016, 7, 8).and_hms(9, 10, 11); /// use chrono::{Datelike, Timelike, Weekday}; /// /// assert_eq!(dt.weekday(), Weekday::Fri); /// assert_eq!(dt.num_seconds_from_midnight(), 33011); /// ~~~~ #[derive(PartialEq, Eq, PartialOrd, Ord, Copy, Clone)] pub struct NaiveDateTime { date: NaiveDate, time: NaiveTime, } impl NaiveDateTime { /// Makes a new `NaiveDateTime` from date and time components. /// Equivalent to [`date.and_time(time)`](./struct.NaiveDate.html#method.and_time) /// and many other helper constructors on `NaiveDate`. /// /// # Example /// /// ~~~~ /// use chrono::{NaiveDate, NaiveTime, NaiveDateTime}; /// /// let d = NaiveDate::from_ymd(2015, 6, 3); /// let t = NaiveTime::from_hms_milli(12, 34, 56, 789); /// /// let dt = NaiveDateTime::new(d, t); /// assert_eq!(dt.date(), d); /// assert_eq!(dt.time(), t); /// ~~~~ #[inline] pub fn new(date: NaiveDate, time: NaiveTime) -> NaiveDateTime { NaiveDateTime { date: date, time: time } } /// Makes a new `NaiveDateTime` corresponding to a UTC date and time, /// from the number of non-leap seconds /// since the midnight UTC on January 1, 1970 (aka "UNIX timestamp") /// and the number of nanoseconds since the last whole non-leap second. /// /// For a non-naive version of this function see /// [`TimeZone::timestamp`](../offset/trait.TimeZone.html#method.timestamp). /// /// The nanosecond part can exceed 1,000,000,000 in order to represent the /// [leap second](./struct.NaiveTime.html#leap-second-handling). (The true "UNIX /// timestamp" cannot represent a leap second unambiguously.) /// /// Panics on the out-of-range number of seconds and/or invalid nanosecond. /// /// # Example /// /// ~~~~ /// use chrono::{NaiveDateTime, NaiveDate}; /// /// let dt = NaiveDateTime::from_timestamp(0, 42_000_000); /// assert_eq!(dt, NaiveDate::from_ymd(1970, 1, 1).and_hms_milli(0, 0, 0, 42)); /// /// let dt = NaiveDateTime::from_timestamp(1_000_000_000, 0); /// assert_eq!(dt, NaiveDate::from_ymd(2001, 9, 9).and_hms(1, 46, 40)); /// ~~~~ #[inline] pub fn from_timestamp(secs: i64, nsecs: u32) -> NaiveDateTime { let datetime = NaiveDateTime::from_timestamp_opt(secs, nsecs); datetime.expect("invalid or out-of-range datetime") } /// Makes a new `NaiveDateTime` corresponding to a UTC date and time, /// from the number of non-leap seconds /// since the midnight UTC on January 1, 1970 (aka "UNIX timestamp") /// and the number of nanoseconds since the last whole non-leap second. /// /// The nanosecond part can exceed 1,000,000,000 /// in order to represent the [leap second](./struct.NaiveTime.html#leap-second-handling). /// (The true "UNIX timestamp" cannot represent a leap second unambiguously.) /// /// Returns `None` on the out-of-range number of seconds and/or invalid nanosecond. /// /// # Example /// /// ~~~~ /// use chrono::{NaiveDateTime, NaiveDate}; /// use std::i64; /// /// let from_timestamp_opt = NaiveDateTime::from_timestamp_opt; /// /// assert!(from_timestamp_opt(0, 0).is_some()); /// assert!(from_timestamp_opt(0, 999_999_999).is_some()); /// assert!(from_timestamp_opt(0, 1_500_000_000).is_some()); // leap second /// assert!(from_timestamp_opt(0, 2_000_000_000).is_none()); /// assert!(from_timestamp_opt(i64::MAX, 0).is_none()); /// ~~~~ #[inline] pub fn from_timestamp_opt(secs: i64, nsecs: u32) -> Option { let (days, secs) = div_mod_floor(secs, 86_400); let date = days.to_i32().and_then(|days| days.checked_add(719_163)) .and_then(NaiveDate::from_num_days_from_ce_opt); let time = NaiveTime::from_num_seconds_from_midnight_opt(secs as u32, nsecs); match (date, time) { (Some(date), Some(time)) => Some(NaiveDateTime { date: date, time: time }), (_, _) => None, } } /// Parses a string with the specified format string and returns a new `NaiveDateTime`. /// See the [`format::strftime` module](../format/strftime/index.html) /// on the supported escape sequences. /// /// # Example /// /// ~~~~ /// use chrono::{NaiveDateTime, NaiveDate}; /// /// let parse_from_str = NaiveDateTime::parse_from_str; /// /// assert_eq!(parse_from_str("2015-09-05 23:56:04", "%Y-%m-%d %H:%M:%S"), /// Ok(NaiveDate::from_ymd(2015, 9, 5).and_hms(23, 56, 4))); /// assert_eq!(parse_from_str("5sep2015pm012345.6789", "%d%b%Y%p%I%M%S%.f"), /// Ok(NaiveDate::from_ymd(2015, 9, 5).and_hms_micro(13, 23, 45, 678_900))); /// ~~~~ /// /// Offset is ignored for the purpose of parsing. /// /// ~~~~ /// # use chrono::{NaiveDateTime, NaiveDate}; /// # let parse_from_str = NaiveDateTime::parse_from_str; /// assert_eq!(parse_from_str("2014-5-17T12:34:56+09:30", "%Y-%m-%dT%H:%M:%S%z"), /// Ok(NaiveDate::from_ymd(2014, 5, 17).and_hms(12, 34, 56))); /// ~~~~ /// /// [Leap seconds](./struct.NaiveTime.html#leap-second-handling) are correctly handled by /// treating any time of the form `hh:mm:60` as a leap second. /// (This equally applies to the formatting, so the round trip is possible.) /// /// ~~~~ /// # use chrono::{NaiveDateTime, NaiveDate}; /// # let parse_from_str = NaiveDateTime::parse_from_str; /// assert_eq!(parse_from_str("2015-07-01 08:59:60.123", "%Y-%m-%d %H:%M:%S%.f"), /// Ok(NaiveDate::from_ymd(2015, 7, 1).and_hms_milli(8, 59, 59, 1_123))); /// ~~~~ /// /// Missing seconds are assumed to be zero, /// but out-of-bound times or insufficient fields are errors otherwise. /// /// ~~~~ /// # use chrono::{NaiveDateTime, NaiveDate}; /// # let parse_from_str = NaiveDateTime::parse_from_str; /// assert_eq!(parse_from_str("94/9/4 7:15", "%y/%m/%d %H:%M"), /// Ok(NaiveDate::from_ymd(1994, 9, 4).and_hms(7, 15, 0))); /// /// assert!(parse_from_str("04m33s", "%Mm%Ss").is_err()); /// assert!(parse_from_str("94/9/4 12", "%y/%m/%d %H").is_err()); /// assert!(parse_from_str("94/9/4 17:60", "%y/%m/%d %H:%M").is_err()); /// assert!(parse_from_str("94/9/4 24:00:00", "%y/%m/%d %H:%M:%S").is_err()); /// ~~~~ /// /// All parsed fields should be consistent to each other, otherwise it's an error. /// /// ~~~~ /// # use chrono::NaiveDateTime; /// # let parse_from_str = NaiveDateTime::parse_from_str; /// let fmt = "%Y-%m-%d %H:%M:%S = UNIX timestamp %s"; /// assert!(parse_from_str("2001-09-09 01:46:39 = UNIX timestamp 999999999", fmt).is_ok()); /// assert!(parse_from_str("1970-01-01 00:00:00 = UNIX timestamp 1", fmt).is_err()); /// ~~~~ pub fn parse_from_str(s: &str, fmt: &str) -> ParseResult { let mut parsed = Parsed::new(); parse(&mut parsed, s, StrftimeItems::new(fmt))?; parsed.to_naive_datetime_with_offset(0) // no offset adjustment } /// Retrieves a date component. /// /// # Example /// /// ~~~~ /// use chrono::NaiveDate; /// /// let dt = NaiveDate::from_ymd(2016, 7, 8).and_hms(9, 10, 11); /// assert_eq!(dt.date(), NaiveDate::from_ymd(2016, 7, 8)); /// ~~~~ #[inline] pub fn date(&self) -> NaiveDate { self.date } /// Retrieves a time component. /// /// # Example /// /// ~~~~ /// use chrono::{NaiveDate, NaiveTime}; /// /// let dt = NaiveDate::from_ymd(2016, 7, 8).and_hms(9, 10, 11); /// assert_eq!(dt.time(), NaiveTime::from_hms(9, 10, 11)); /// ~~~~ #[inline] pub fn time(&self) -> NaiveTime { self.time } /// Returns the number of non-leap seconds since the midnight on January 1, 1970. /// /// Note that this does *not* account for the timezone! /// The true "UNIX timestamp" would count seconds since the midnight *UTC* on the epoch. /// /// # Example /// /// ~~~~ /// use chrono::NaiveDate; /// /// let dt = NaiveDate::from_ymd(1970, 1, 1).and_hms_milli(0, 0, 1, 980); /// assert_eq!(dt.timestamp(), 1); /// /// let dt = NaiveDate::from_ymd(2001, 9, 9).and_hms(1, 46, 40); /// assert_eq!(dt.timestamp(), 1_000_000_000); /// /// let dt = NaiveDate::from_ymd(1969, 12, 31).and_hms(23, 59, 59); /// assert_eq!(dt.timestamp(), -1); /// /// let dt = NaiveDate::from_ymd(-1, 1, 1).and_hms(0, 0, 0); /// assert_eq!(dt.timestamp(), -62198755200); /// ~~~~ #[inline] pub fn timestamp(&self) -> i64 { const UNIX_EPOCH_DAY: i64 = 719_163; let gregorian_day = i64::from(self.date.num_days_from_ce()); let seconds_from_midnight = i64::from(self.time.num_seconds_from_midnight()); (gregorian_day - UNIX_EPOCH_DAY) * 86_400 + seconds_from_midnight } /// Returns the number of non-leap *milliseconds* since midnight on January 1, 1970. /// /// Note that this does *not* account for the timezone! /// The true "UNIX timestamp" would count seconds since the midnight *UTC* on the epoch. /// /// Note also that this does reduce the number of years that can be /// represented from ~584 Billion to ~584 Million. (If this is a problem, /// please file an issue to let me know what domain needs millisecond /// precision over billions of years, I'm curious.) /// /// # Example /// /// ~~~~ /// use chrono::NaiveDate; /// /// let dt = NaiveDate::from_ymd(1970, 1, 1).and_hms_milli(0, 0, 1, 444); /// assert_eq!(dt.timestamp_millis(), 1_444); /// /// let dt = NaiveDate::from_ymd(2001, 9, 9).and_hms_milli(1, 46, 40, 555); /// assert_eq!(dt.timestamp_millis(), 1_000_000_000_555); /// /// let dt = NaiveDate::from_ymd(1969, 12, 31).and_hms_milli(23, 59, 59, 100); /// assert_eq!(dt.timestamp_millis(), -900); /// ~~~~ #[inline] pub fn timestamp_millis(&self) -> i64 { let as_ms = self.timestamp() * 1000; as_ms + i64::from(self.timestamp_subsec_millis()) } /// Returns the number of non-leap *nanoseconds* since midnight on January 1, 1970. /// /// Note that this does *not* account for the timezone! /// The true "UNIX timestamp" would count seconds since the midnight *UTC* on the epoch. /// /// # Panics /// /// Note also that this does reduce the number of years that can be /// represented from ~584 Billion to ~584 years. The dates that can be /// represented as nanoseconds are between 1677-09-21T00:12:44.0 and /// 2262-04-11T23:47:16.854775804. /// /// (If this is a problem, please file an issue to let me know what domain /// needs nanosecond precision over millenia, I'm curious.) /// /// # Example /// /// ~~~~ /// use chrono::{NaiveDate, NaiveDateTime}; /// /// let dt = NaiveDate::from_ymd(1970, 1, 1).and_hms_nano(0, 0, 1, 444); /// assert_eq!(dt.timestamp_nanos(), 1_000_000_444); /// /// let dt = NaiveDate::from_ymd(2001, 9, 9).and_hms_nano(1, 46, 40, 555); /// /// const A_BILLION: i64 = 1_000_000_000; /// let nanos = dt.timestamp_nanos(); /// assert_eq!(nanos, 1_000_000_000_000_000_555); /// assert_eq!( /// dt, /// NaiveDateTime::from_timestamp(nanos / A_BILLION, (nanos % A_BILLION) as u32) /// ); /// ~~~~ #[inline] pub fn timestamp_nanos(&self) -> i64 { let as_ns = self.timestamp() * 1_000_000_000; as_ns + i64::from(self.timestamp_subsec_nanos()) } /// Returns the number of milliseconds since the last whole non-leap second. /// /// The return value ranges from 0 to 999, /// or for [leap seconds](./struct.NaiveTime.html#leap-second-handling), to 1,999. /// /// # Example /// /// ~~~~ /// use chrono::NaiveDate; /// /// let dt = NaiveDate::from_ymd(2016, 7, 8).and_hms_nano(9, 10, 11, 123_456_789); /// assert_eq!(dt.timestamp_subsec_millis(), 123); /// /// let dt = NaiveDate::from_ymd(2015, 7, 1).and_hms_nano(8, 59, 59, 1_234_567_890); /// assert_eq!(dt.timestamp_subsec_millis(), 1_234); /// ~~~~ #[inline] pub fn timestamp_subsec_millis(&self) -> u32 { self.timestamp_subsec_nanos() / 1_000_000 } /// Returns the number of microseconds since the last whole non-leap second. /// /// The return value ranges from 0 to 999,999, /// or for [leap seconds](./struct.NaiveTime.html#leap-second-handling), to 1,999,999. /// /// # Example /// /// ~~~~ /// use chrono::NaiveDate; /// /// let dt = NaiveDate::from_ymd(2016, 7, 8).and_hms_nano(9, 10, 11, 123_456_789); /// assert_eq!(dt.timestamp_subsec_micros(), 123_456); /// /// let dt = NaiveDate::from_ymd(2015, 7, 1).and_hms_nano(8, 59, 59, 1_234_567_890); /// assert_eq!(dt.timestamp_subsec_micros(), 1_234_567); /// ~~~~ #[inline] pub fn timestamp_subsec_micros(&self) -> u32 { self.timestamp_subsec_nanos() / 1_000 } /// Returns the number of nanoseconds since the last whole non-leap second. /// /// The return value ranges from 0 to 999,999,999, /// or for [leap seconds](./struct.NaiveTime.html#leap-second-handling), to 1,999,999,999. /// /// # Example /// /// ~~~~ /// use chrono::NaiveDate; /// /// let dt = NaiveDate::from_ymd(2016, 7, 8).and_hms_nano(9, 10, 11, 123_456_789); /// assert_eq!(dt.timestamp_subsec_nanos(), 123_456_789); /// /// let dt = NaiveDate::from_ymd(2015, 7, 1).and_hms_nano(8, 59, 59, 1_234_567_890); /// assert_eq!(dt.timestamp_subsec_nanos(), 1_234_567_890); /// ~~~~ #[inline] pub fn timestamp_subsec_nanos(&self) -> u32 { self.time.nanosecond() } /// Adds given `Duration` to the current date and time. /// /// As a part of Chrono's [leap second handling](./struct.NaiveTime.html#leap-second-handling), /// the addition assumes that **there is no leap second ever**, /// except when the `NaiveDateTime` itself represents a leap second /// in which case the assumption becomes that **there is exactly a single leap second ever**. /// /// Returns `None` when it will result in overflow. /// /// # Example /// /// ~~~~ /// # extern crate chrono; extern crate time; fn main() { /// use chrono::NaiveDate; /// use time::Duration; /// /// let from_ymd = NaiveDate::from_ymd; /// /// let d = from_ymd(2016, 7, 8); /// let hms = |h, m, s| d.and_hms(h, m, s); /// assert_eq!(hms(3, 5, 7).checked_add_signed(Duration::zero()), /// Some(hms(3, 5, 7))); /// assert_eq!(hms(3, 5, 7).checked_add_signed(Duration::seconds(1)), /// Some(hms(3, 5, 8))); /// assert_eq!(hms(3, 5, 7).checked_add_signed(Duration::seconds(-1)), /// Some(hms(3, 5, 6))); /// assert_eq!(hms(3, 5, 7).checked_add_signed(Duration::seconds(3600 + 60)), /// Some(hms(4, 6, 7))); /// assert_eq!(hms(3, 5, 7).checked_add_signed(Duration::seconds(86_400)), /// Some(from_ymd(2016, 7, 9).and_hms(3, 5, 7))); /// /// let hmsm = |h, m, s, milli| d.and_hms_milli(h, m, s, milli); /// assert_eq!(hmsm(3, 5, 7, 980).checked_add_signed(Duration::milliseconds(450)), /// Some(hmsm(3, 5, 8, 430))); /// # } /// ~~~~ /// /// Overflow returns `None`. /// /// ~~~~ /// # extern crate chrono; extern crate time; fn main() { /// # use chrono::NaiveDate; /// # use time::Duration; /// # let hms = |h, m, s| NaiveDate::from_ymd(2016, 7, 8).and_hms(h, m, s); /// assert_eq!(hms(3, 5, 7).checked_add_signed(Duration::days(1_000_000_000)), None); /// # } /// ~~~~ /// /// Leap seconds are handled, /// but the addition assumes that it is the only leap second happened. /// /// ~~~~ /// # extern crate chrono; extern crate time; fn main() { /// # use chrono::NaiveDate; /// # use time::Duration; /// # let from_ymd = NaiveDate::from_ymd; /// # let hmsm = |h, m, s, milli| from_ymd(2016, 7, 8).and_hms_milli(h, m, s, milli); /// let leap = hmsm(3, 5, 59, 1_300); /// assert_eq!(leap.checked_add_signed(Duration::zero()), /// Some(hmsm(3, 5, 59, 1_300))); /// assert_eq!(leap.checked_add_signed(Duration::milliseconds(-500)), /// Some(hmsm(3, 5, 59, 800))); /// assert_eq!(leap.checked_add_signed(Duration::milliseconds(500)), /// Some(hmsm(3, 5, 59, 1_800))); /// assert_eq!(leap.checked_add_signed(Duration::milliseconds(800)), /// Some(hmsm(3, 6, 0, 100))); /// assert_eq!(leap.checked_add_signed(Duration::seconds(10)), /// Some(hmsm(3, 6, 9, 300))); /// assert_eq!(leap.checked_add_signed(Duration::seconds(-10)), /// Some(hmsm(3, 5, 50, 300))); /// assert_eq!(leap.checked_add_signed(Duration::days(1)), /// Some(from_ymd(2016, 7, 9).and_hms_milli(3, 5, 59, 300))); /// # } /// ~~~~ pub fn checked_add_signed(self, rhs: OldDuration) -> Option { let (time, rhs) = self.time.overflowing_add_signed(rhs); // early checking to avoid overflow in OldDuration::seconds if rhs <= (-1 << MAX_SECS_BITS) || rhs >= (1 << MAX_SECS_BITS) { return None; } let date = try_opt!(self.date.checked_add_signed(OldDuration::seconds(rhs))); Some(NaiveDateTime { date: date, time: time }) } /// Subtracts given `Duration` from the current date and time. /// /// As a part of Chrono's [leap second handling](./struct.NaiveTime.html#leap-second-handling), /// the subtraction assumes that **there is no leap second ever**, /// except when the `NaiveDateTime` itself represents a leap second /// in which case the assumption becomes that **there is exactly a single leap second ever**. /// /// Returns `None` when it will result in overflow. /// /// # Example /// /// ~~~~ /// # extern crate chrono; extern crate time; fn main() { /// use chrono::NaiveDate; /// use time::Duration; /// /// let from_ymd = NaiveDate::from_ymd; /// /// let d = from_ymd(2016, 7, 8); /// let hms = |h, m, s| d.and_hms(h, m, s); /// assert_eq!(hms(3, 5, 7).checked_sub_signed(Duration::zero()), /// Some(hms(3, 5, 7))); /// assert_eq!(hms(3, 5, 7).checked_sub_signed(Duration::seconds(1)), /// Some(hms(3, 5, 6))); /// assert_eq!(hms(3, 5, 7).checked_sub_signed(Duration::seconds(-1)), /// Some(hms(3, 5, 8))); /// assert_eq!(hms(3, 5, 7).checked_sub_signed(Duration::seconds(3600 + 60)), /// Some(hms(2, 4, 7))); /// assert_eq!(hms(3, 5, 7).checked_sub_signed(Duration::seconds(86_400)), /// Some(from_ymd(2016, 7, 7).and_hms(3, 5, 7))); /// /// let hmsm = |h, m, s, milli| d.and_hms_milli(h, m, s, milli); /// assert_eq!(hmsm(3, 5, 7, 450).checked_sub_signed(Duration::milliseconds(670)), /// Some(hmsm(3, 5, 6, 780))); /// # } /// ~~~~ /// /// Overflow returns `None`. /// /// ~~~~ /// # extern crate chrono; extern crate time; fn main() { /// # use chrono::NaiveDate; /// # use time::Duration; /// # let hms = |h, m, s| NaiveDate::from_ymd(2016, 7, 8).and_hms(h, m, s); /// assert_eq!(hms(3, 5, 7).checked_sub_signed(Duration::days(1_000_000_000)), None); /// # } /// ~~~~ /// /// Leap seconds are handled, /// but the subtraction assumes that it is the only leap second happened. /// /// ~~~~ /// # extern crate chrono; extern crate time; fn main() { /// # use chrono::NaiveDate; /// # use time::Duration; /// # let from_ymd = NaiveDate::from_ymd; /// # let hmsm = |h, m, s, milli| from_ymd(2016, 7, 8).and_hms_milli(h, m, s, milli); /// let leap = hmsm(3, 5, 59, 1_300); /// assert_eq!(leap.checked_sub_signed(Duration::zero()), /// Some(hmsm(3, 5, 59, 1_300))); /// assert_eq!(leap.checked_sub_signed(Duration::milliseconds(200)), /// Some(hmsm(3, 5, 59, 1_100))); /// assert_eq!(leap.checked_sub_signed(Duration::milliseconds(500)), /// Some(hmsm(3, 5, 59, 800))); /// assert_eq!(leap.checked_sub_signed(Duration::seconds(60)), /// Some(hmsm(3, 5, 0, 300))); /// assert_eq!(leap.checked_sub_signed(Duration::days(1)), /// Some(from_ymd(2016, 7, 7).and_hms_milli(3, 6, 0, 300))); /// # } /// ~~~~ pub fn checked_sub_signed(self, rhs: OldDuration) -> Option { let (time, rhs) = self.time.overflowing_sub_signed(rhs); // early checking to avoid overflow in OldDuration::seconds if rhs <= (-1 << MAX_SECS_BITS) || rhs >= (1 << MAX_SECS_BITS) { return None; } let date = try_opt!(self.date.checked_sub_signed(OldDuration::seconds(rhs))); Some(NaiveDateTime { date: date, time: time }) } /// Subtracts another `NaiveDateTime` from the current date and time. /// This does not overflow or underflow at all. /// /// As a part of Chrono's [leap second handling](./struct.NaiveTime.html#leap-second-handling), /// the subtraction assumes that **there is no leap second ever**, /// except when any of the `NaiveDateTime`s themselves represents a leap second /// in which case the assumption becomes that /// **there are exactly one (or two) leap second(s) ever**. /// /// # Example /// /// ~~~~ /// # extern crate chrono; extern crate time; fn main() { /// use chrono::NaiveDate; /// use time::Duration; /// /// let from_ymd = NaiveDate::from_ymd; /// /// let d = from_ymd(2016, 7, 8); /// assert_eq!(d.and_hms(3, 5, 7).signed_duration_since(d.and_hms(2, 4, 6)), /// Duration::seconds(3600 + 60 + 1)); /// /// // July 8 is 190th day in the year 2016 /// let d0 = from_ymd(2016, 1, 1); /// assert_eq!(d.and_hms_milli(0, 7, 6, 500).signed_duration_since(d0.and_hms(0, 0, 0)), /// Duration::seconds(189 * 86_400 + 7 * 60 + 6) + Duration::milliseconds(500)); /// # } /// ~~~~ /// /// Leap seconds are handled, but the subtraction assumes that /// there were no other leap seconds happened. /// /// ~~~~ /// # extern crate chrono; extern crate time; fn main() { /// # use chrono::NaiveDate; /// # use time::Duration; /// # let from_ymd = NaiveDate::from_ymd; /// let leap = from_ymd(2015, 6, 30).and_hms_milli(23, 59, 59, 1_500); /// assert_eq!(leap.signed_duration_since(from_ymd(2015, 6, 30).and_hms(23, 0, 0)), /// Duration::seconds(3600) + Duration::milliseconds(500)); /// assert_eq!(from_ymd(2015, 7, 1).and_hms(1, 0, 0).signed_duration_since(leap), /// Duration::seconds(3600) - Duration::milliseconds(500)); /// # } /// ~~~~ pub fn signed_duration_since(self, rhs: NaiveDateTime) -> OldDuration { self.date.signed_duration_since(rhs.date) + self.time.signed_duration_since(rhs.time) } /// Formats the combined date and time with the specified formatting items. /// Otherwise it is same to the ordinary [`format`](#method.format) method. /// /// The `Iterator` of items should be `Clone`able, /// since the resulting `DelayedFormat` value may be formatted multiple times. /// /// # Example /// /// ~~~~ /// use chrono::NaiveDate; /// use chrono::format::strftime::StrftimeItems; /// /// let fmt = StrftimeItems::new("%Y-%m-%d %H:%M:%S"); /// let dt = NaiveDate::from_ymd(2015, 9, 5).and_hms(23, 56, 4); /// assert_eq!(dt.format_with_items(fmt.clone()).to_string(), "2015-09-05 23:56:04"); /// assert_eq!(dt.format("%Y-%m-%d %H:%M:%S").to_string(), "2015-09-05 23:56:04"); /// ~~~~ /// /// The resulting `DelayedFormat` can be formatted directly via the `Display` trait. /// /// ~~~~ /// # use chrono::NaiveDate; /// # use chrono::format::strftime::StrftimeItems; /// # let fmt = StrftimeItems::new("%Y-%m-%d %H:%M:%S").clone(); /// # let dt = NaiveDate::from_ymd(2015, 9, 5).and_hms(23, 56, 4); /// assert_eq!(format!("{}", dt.format_with_items(fmt)), "2015-09-05 23:56:04"); /// ~~~~ #[cfg(any(feature = "alloc", feature = "std", test))] #[inline] pub fn format_with_items<'a, I, B>(&self, items: I) -> DelayedFormat where I: Iterator + Clone, B: Borrow> { DelayedFormat::new(Some(self.date), Some(self.time), items) } /// Formats the combined date and time with the specified format string. /// See the [`format::strftime` module](../format/strftime/index.html) /// on the supported escape sequences. /// /// This returns a `DelayedFormat`, /// which gets converted to a string only when actual formatting happens. /// You may use the `to_string` method to get a `String`, /// or just feed it into `print!` and other formatting macros. /// (In this way it avoids the redundant memory allocation.) /// /// A wrong format string does *not* issue an error immediately. /// Rather, converting or formatting the `DelayedFormat` fails. /// You are recommended to immediately use `DelayedFormat` for this reason. /// /// # Example /// /// ~~~~ /// use chrono::NaiveDate; /// /// let dt = NaiveDate::from_ymd(2015, 9, 5).and_hms(23, 56, 4); /// assert_eq!(dt.format("%Y-%m-%d %H:%M:%S").to_string(), "2015-09-05 23:56:04"); /// assert_eq!(dt.format("around %l %p on %b %-d").to_string(), "around 11 PM on Sep 5"); /// ~~~~ /// /// The resulting `DelayedFormat` can be formatted directly via the `Display` trait. /// /// ~~~~ /// # use chrono::NaiveDate; /// # let dt = NaiveDate::from_ymd(2015, 9, 5).and_hms(23, 56, 4); /// assert_eq!(format!("{}", dt.format("%Y-%m-%d %H:%M:%S")), "2015-09-05 23:56:04"); /// assert_eq!(format!("{}", dt.format("around %l %p on %b %-d")), "around 11 PM on Sep 5"); /// ~~~~ #[cfg(any(feature = "alloc", feature = "std", test))] #[inline] pub fn format<'a>(&self, fmt: &'a str) -> DelayedFormat> { self.format_with_items(StrftimeItems::new(fmt)) } } impl Datelike for NaiveDateTime { /// Returns the year number in the [calendar date](./index.html#calendar-date). /// /// See also the [`NaiveDate::year`](./struct.NaiveDate.html#method.year) method. /// /// # Example /// /// ~~~~ /// use chrono::{NaiveDate, NaiveDateTime, Datelike}; /// /// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 25).and_hms(12, 34, 56); /// assert_eq!(dt.year(), 2015); /// ~~~~ #[inline] fn year(&self) -> i32 { self.date.year() } /// Returns the month number starting from 1. /// /// The return value ranges from 1 to 12. /// /// See also the [`NaiveDate::month`](./struct.NaiveDate.html#method.month) method. /// /// # Example /// /// ~~~~ /// use chrono::{NaiveDate, NaiveDateTime, Datelike}; /// /// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 25).and_hms(12, 34, 56); /// assert_eq!(dt.month(), 9); /// ~~~~ #[inline] fn month(&self) -> u32 { self.date.month() } /// Returns the month number starting from 0. /// /// The return value ranges from 0 to 11. /// /// See also the [`NaiveDate::month0`](./struct.NaiveDate.html#method.month0) method. /// /// # Example /// /// ~~~~ /// use chrono::{NaiveDate, NaiveDateTime, Datelike}; /// /// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 25).and_hms(12, 34, 56); /// assert_eq!(dt.month0(), 8); /// ~~~~ #[inline] fn month0(&self) -> u32 { self.date.month0() } /// Returns the day of month starting from 1. /// /// The return value ranges from 1 to 31. (The last day of month differs by months.) /// /// See also the [`NaiveDate::day`](./struct.NaiveDate.html#method.day) method. /// /// # Example /// /// ~~~~ /// use chrono::{NaiveDate, NaiveDateTime, Datelike}; /// /// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 25).and_hms(12, 34, 56); /// assert_eq!(dt.day(), 25); /// ~~~~ #[inline] fn day(&self) -> u32 { self.date.day() } /// Returns the day of month starting from 0. /// /// The return value ranges from 0 to 30. (The last day of month differs by months.) /// /// See also the [`NaiveDate::day0`](./struct.NaiveDate.html#method.day0) method. /// /// # Example /// /// ~~~~ /// use chrono::{NaiveDate, NaiveDateTime, Datelike}; /// /// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 25).and_hms(12, 34, 56); /// assert_eq!(dt.day0(), 24); /// ~~~~ #[inline] fn day0(&self) -> u32 { self.date.day0() } /// Returns the day of year starting from 1. /// /// The return value ranges from 1 to 366. (The last day of year differs by years.) /// /// See also the [`NaiveDate::ordinal`](./struct.NaiveDate.html#method.ordinal) method. /// /// # Example /// /// ~~~~ /// use chrono::{NaiveDate, NaiveDateTime, Datelike}; /// /// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 25).and_hms(12, 34, 56); /// assert_eq!(dt.ordinal(), 268); /// ~~~~ #[inline] fn ordinal(&self) -> u32 { self.date.ordinal() } /// Returns the day of year starting from 0. /// /// The return value ranges from 0 to 365. (The last day of year differs by years.) /// /// See also the [`NaiveDate::ordinal0`](./struct.NaiveDate.html#method.ordinal0) method. /// /// # Example /// /// ~~~~ /// use chrono::{NaiveDate, NaiveDateTime, Datelike}; /// /// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 25).and_hms(12, 34, 56); /// assert_eq!(dt.ordinal0(), 267); /// ~~~~ #[inline] fn ordinal0(&self) -> u32 { self.date.ordinal0() } /// Returns the day of week. /// /// See also the [`NaiveDate::weekday`](./struct.NaiveDate.html#method.weekday) method. /// /// # Example /// /// ~~~~ /// use chrono::{NaiveDate, NaiveDateTime, Datelike, Weekday}; /// /// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 25).and_hms(12, 34, 56); /// assert_eq!(dt.weekday(), Weekday::Fri); /// ~~~~ #[inline] fn weekday(&self) -> Weekday { self.date.weekday() } #[inline] fn iso_week(&self) -> IsoWeek { self.date.iso_week() } /// Makes a new `NaiveDateTime` with the year number changed. /// /// Returns `None` when the resulting `NaiveDateTime` would be invalid. /// /// See also the /// [`NaiveDate::with_year`](./struct.NaiveDate.html#method.with_year) method. /// /// # Example /// /// ~~~~ /// use chrono::{NaiveDate, NaiveDateTime, Datelike}; /// /// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 25).and_hms(12, 34, 56); /// assert_eq!(dt.with_year(2016), Some(NaiveDate::from_ymd(2016, 9, 25).and_hms(12, 34, 56))); /// assert_eq!(dt.with_year(-308), Some(NaiveDate::from_ymd(-308, 9, 25).and_hms(12, 34, 56))); /// ~~~~ #[inline] fn with_year(&self, year: i32) -> Option { self.date.with_year(year).map(|d| NaiveDateTime { date: d, ..*self }) } /// Makes a new `NaiveDateTime` with the month number (starting from 1) changed. /// /// Returns `None` when the resulting `NaiveDateTime` would be invalid. /// /// See also the /// [`NaiveDate::with_month`](./struct.NaiveDate.html#method.with_month) method. /// /// # Example /// /// ~~~~ /// use chrono::{NaiveDate, NaiveDateTime, Datelike}; /// /// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 30).and_hms(12, 34, 56); /// assert_eq!(dt.with_month(10), Some(NaiveDate::from_ymd(2015, 10, 30).and_hms(12, 34, 56))); /// assert_eq!(dt.with_month(13), None); // no month 13 /// assert_eq!(dt.with_month(2), None); // no February 30 /// ~~~~ #[inline] fn with_month(&self, month: u32) -> Option { self.date.with_month(month).map(|d| NaiveDateTime { date: d, ..*self }) } /// Makes a new `NaiveDateTime` with the month number (starting from 0) changed. /// /// Returns `None` when the resulting `NaiveDateTime` would be invalid. /// /// See also the /// [`NaiveDate::with_month0`](./struct.NaiveDate.html#method.with_month0) method. /// /// # Example /// /// ~~~~ /// use chrono::{NaiveDate, NaiveDateTime, Datelike}; /// /// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 30).and_hms(12, 34, 56); /// assert_eq!(dt.with_month0(9), Some(NaiveDate::from_ymd(2015, 10, 30).and_hms(12, 34, 56))); /// assert_eq!(dt.with_month0(12), None); // no month 13 /// assert_eq!(dt.with_month0(1), None); // no February 30 /// ~~~~ #[inline] fn with_month0(&self, month0: u32) -> Option { self.date.with_month0(month0).map(|d| NaiveDateTime { date: d, ..*self }) } /// Makes a new `NaiveDateTime` with the day of month (starting from 1) changed. /// /// Returns `None` when the resulting `NaiveDateTime` would be invalid. /// /// See also the /// [`NaiveDate::with_day`](./struct.NaiveDate.html#method.with_day) method. /// /// # Example /// /// ~~~~ /// use chrono::{NaiveDate, NaiveDateTime, Datelike}; /// /// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 8).and_hms(12, 34, 56); /// assert_eq!(dt.with_day(30), Some(NaiveDate::from_ymd(2015, 9, 30).and_hms(12, 34, 56))); /// assert_eq!(dt.with_day(31), None); // no September 31 /// ~~~~ #[inline] fn with_day(&self, day: u32) -> Option { self.date.with_day(day).map(|d| NaiveDateTime { date: d, ..*self }) } /// Makes a new `NaiveDateTime` with the day of month (starting from 0) changed. /// /// Returns `None` when the resulting `NaiveDateTime` would be invalid. /// /// See also the /// [`NaiveDate::with_day0`](./struct.NaiveDate.html#method.with_day0) method. /// /// # Example /// /// ~~~~ /// use chrono::{NaiveDate, NaiveDateTime, Datelike}; /// /// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 8).and_hms(12, 34, 56); /// assert_eq!(dt.with_day0(29), Some(NaiveDate::from_ymd(2015, 9, 30).and_hms(12, 34, 56))); /// assert_eq!(dt.with_day0(30), None); // no September 31 /// ~~~~ #[inline] fn with_day0(&self, day0: u32) -> Option { self.date.with_day0(day0).map(|d| NaiveDateTime { date: d, ..*self }) } /// Makes a new `NaiveDateTime` with the day of year (starting from 1) changed. /// /// Returns `None` when the resulting `NaiveDateTime` would be invalid. /// /// See also the /// [`NaiveDate::with_ordinal`](./struct.NaiveDate.html#method.with_ordinal) method. /// /// # Example /// /// ~~~~ /// use chrono::{NaiveDate, NaiveDateTime, Datelike}; /// /// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 8).and_hms(12, 34, 56); /// assert_eq!(dt.with_ordinal(60), /// Some(NaiveDate::from_ymd(2015, 3, 1).and_hms(12, 34, 56))); /// assert_eq!(dt.with_ordinal(366), None); // 2015 had only 365 days /// /// let dt: NaiveDateTime = NaiveDate::from_ymd(2016, 9, 8).and_hms(12, 34, 56); /// assert_eq!(dt.with_ordinal(60), /// Some(NaiveDate::from_ymd(2016, 2, 29).and_hms(12, 34, 56))); /// assert_eq!(dt.with_ordinal(366), /// Some(NaiveDate::from_ymd(2016, 12, 31).and_hms(12, 34, 56))); /// ~~~~ #[inline] fn with_ordinal(&self, ordinal: u32) -> Option { self.date.with_ordinal(ordinal).map(|d| NaiveDateTime { date: d, ..*self }) } /// Makes a new `NaiveDateTime` with the day of year (starting from 0) changed. /// /// Returns `None` when the resulting `NaiveDateTime` would be invalid. /// /// See also the /// [`NaiveDate::with_ordinal0`](./struct.NaiveDate.html#method.with_ordinal0) method. /// /// # Example /// /// ~~~~ /// use chrono::{NaiveDate, NaiveDateTime, Datelike}; /// /// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 8).and_hms(12, 34, 56); /// assert_eq!(dt.with_ordinal0(59), /// Some(NaiveDate::from_ymd(2015, 3, 1).and_hms(12, 34, 56))); /// assert_eq!(dt.with_ordinal0(365), None); // 2015 had only 365 days /// /// let dt: NaiveDateTime = NaiveDate::from_ymd(2016, 9, 8).and_hms(12, 34, 56); /// assert_eq!(dt.with_ordinal0(59), /// Some(NaiveDate::from_ymd(2016, 2, 29).and_hms(12, 34, 56))); /// assert_eq!(dt.with_ordinal0(365), /// Some(NaiveDate::from_ymd(2016, 12, 31).and_hms(12, 34, 56))); /// ~~~~ #[inline] fn with_ordinal0(&self, ordinal0: u32) -> Option { self.date.with_ordinal0(ordinal0).map(|d| NaiveDateTime { date: d, ..*self }) } } impl Timelike for NaiveDateTime { /// Returns the hour number from 0 to 23. /// /// See also the [`NaiveTime::hour`](./struct.NaiveTime.html#method.hour) method. /// /// # Example /// /// ~~~~ /// use chrono::{NaiveDate, NaiveDateTime, Timelike}; /// /// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 8).and_hms_milli(12, 34, 56, 789); /// assert_eq!(dt.hour(), 12); /// ~~~~ #[inline] fn hour(&self) -> u32 { self.time.hour() } /// Returns the minute number from 0 to 59. /// /// See also the [`NaiveTime::minute`](./struct.NaiveTime.html#method.minute) method. /// /// # Example /// /// ~~~~ /// use chrono::{NaiveDate, NaiveDateTime, Timelike}; /// /// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 8).and_hms_milli(12, 34, 56, 789); /// assert_eq!(dt.minute(), 34); /// ~~~~ #[inline] fn minute(&self) -> u32 { self.time.minute() } /// Returns the second number from 0 to 59. /// /// See also the [`NaiveTime::second`](./struct.NaiveTime.html#method.second) method. /// /// # Example /// /// ~~~~ /// use chrono::{NaiveDate, NaiveDateTime, Timelike}; /// /// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 8).and_hms_milli(12, 34, 56, 789); /// assert_eq!(dt.second(), 56); /// ~~~~ #[inline] fn second(&self) -> u32 { self.time.second() } /// Returns the number of nanoseconds since the whole non-leap second. /// The range from 1,000,000,000 to 1,999,999,999 represents /// the [leap second](./struct.NaiveTime.html#leap-second-handling). /// /// See also the /// [`NaiveTime::nanosecond`](./struct.NaiveTime.html#method.nanosecond) method. /// /// # Example /// /// ~~~~ /// use chrono::{NaiveDate, NaiveDateTime, Timelike}; /// /// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 8).and_hms_milli(12, 34, 56, 789); /// assert_eq!(dt.nanosecond(), 789_000_000); /// ~~~~ #[inline] fn nanosecond(&self) -> u32 { self.time.nanosecond() } /// Makes a new `NaiveDateTime` with the hour number changed. /// /// Returns `None` when the resulting `NaiveDateTime` would be invalid. /// /// See also the /// [`NaiveTime::with_hour`](./struct.NaiveTime.html#method.with_hour) method. /// /// # Example /// /// ~~~~ /// use chrono::{NaiveDate, NaiveDateTime, Timelike}; /// /// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 8).and_hms_milli(12, 34, 56, 789); /// assert_eq!(dt.with_hour(7), /// Some(NaiveDate::from_ymd(2015, 9, 8).and_hms_milli(7, 34, 56, 789))); /// assert_eq!(dt.with_hour(24), None); /// ~~~~ #[inline] fn with_hour(&self, hour: u32) -> Option { self.time.with_hour(hour).map(|t| NaiveDateTime { time: t, ..*self }) } /// Makes a new `NaiveDateTime` with the minute number changed. /// /// Returns `None` when the resulting `NaiveDateTime` would be invalid. /// /// See also the /// [`NaiveTime::with_minute`](./struct.NaiveTime.html#method.with_minute) method. /// /// # Example /// /// ~~~~ /// use chrono::{NaiveDate, NaiveDateTime, Timelike}; /// /// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 8).and_hms_milli(12, 34, 56, 789); /// assert_eq!(dt.with_minute(45), /// Some(NaiveDate::from_ymd(2015, 9, 8).and_hms_milli(12, 45, 56, 789))); /// assert_eq!(dt.with_minute(60), None); /// ~~~~ #[inline] fn with_minute(&self, min: u32) -> Option { self.time.with_minute(min).map(|t| NaiveDateTime { time: t, ..*self }) } /// Makes a new `NaiveDateTime` with the second number changed. /// /// Returns `None` when the resulting `NaiveDateTime` would be invalid. /// As with the [`second`](#method.second) method, /// the input range is restricted to 0 through 59. /// /// See also the /// [`NaiveTime::with_second`](./struct.NaiveTime.html#method.with_second) method. /// /// # Example /// /// ~~~~ /// use chrono::{NaiveDate, NaiveDateTime, Timelike}; /// /// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 8).and_hms_milli(12, 34, 56, 789); /// assert_eq!(dt.with_second(17), /// Some(NaiveDate::from_ymd(2015, 9, 8).and_hms_milli(12, 34, 17, 789))); /// assert_eq!(dt.with_second(60), None); /// ~~~~ #[inline] fn with_second(&self, sec: u32) -> Option { self.time.with_second(sec).map(|t| NaiveDateTime { time: t, ..*self }) } /// Makes a new `NaiveDateTime` with nanoseconds since the whole non-leap second changed. /// /// Returns `None` when the resulting `NaiveDateTime` would be invalid. /// As with the [`nanosecond`](#method.nanosecond) method, /// the input range can exceed 1,000,000,000 for leap seconds. /// /// See also the /// [`NaiveTime::with_nanosecond`](./struct.NaiveTime.html#method.with_nanosecond) /// method. /// /// # Example /// /// ~~~~ /// use chrono::{NaiveDate, NaiveDateTime, Timelike}; /// /// let dt: NaiveDateTime = NaiveDate::from_ymd(2015, 9, 8).and_hms_milli(12, 34, 56, 789); /// assert_eq!(dt.with_nanosecond(333_333_333), /// Some(NaiveDate::from_ymd(2015, 9, 8).and_hms_nano(12, 34, 56, 333_333_333))); /// assert_eq!(dt.with_nanosecond(1_333_333_333), // leap second /// Some(NaiveDate::from_ymd(2015, 9, 8).and_hms_nano(12, 34, 56, 1_333_333_333))); /// assert_eq!(dt.with_nanosecond(2_000_000_000), None); /// ~~~~ #[inline] fn with_nanosecond(&self, nano: u32) -> Option { self.time.with_nanosecond(nano).map(|t| NaiveDateTime { time: t, ..*self }) } } /// `NaiveDateTime` can be used as a key to the hash maps (in principle). /// /// Practically this also takes account of fractional seconds, so it is not recommended. /// (For the obvious reason this also distinguishes leap seconds from non-leap seconds.) #[cfg_attr(feature = "cargo-clippy", allow(derive_hash_xor_eq))] impl hash::Hash for NaiveDateTime { fn hash(&self, state: &mut H) { self.date.hash(state); self.time.hash(state); } } /// An addition of `Duration` to `NaiveDateTime` yields another `NaiveDateTime`. /// /// As a part of Chrono's [leap second handling](./struct.NaiveTime.html#leap-second-handling), /// the addition assumes that **there is no leap second ever**, /// except when the `NaiveDateTime` itself represents a leap second /// in which case the assumption becomes that **there is exactly a single leap second ever**. /// /// Panics on underflow or overflow. /// Use [`NaiveDateTime::checked_add_signed`](#method.checked_add_signed) to detect that. /// /// # Example /// /// ~~~~ /// # extern crate chrono; extern crate time; fn main() { /// use chrono::NaiveDate; /// use time::Duration; /// /// let from_ymd = NaiveDate::from_ymd; /// /// let d = from_ymd(2016, 7, 8); /// let hms = |h, m, s| d.and_hms(h, m, s); /// assert_eq!(hms(3, 5, 7) + Duration::zero(), hms(3, 5, 7)); /// assert_eq!(hms(3, 5, 7) + Duration::seconds(1), hms(3, 5, 8)); /// assert_eq!(hms(3, 5, 7) + Duration::seconds(-1), hms(3, 5, 6)); /// assert_eq!(hms(3, 5, 7) + Duration::seconds(3600 + 60), hms(4, 6, 7)); /// assert_eq!(hms(3, 5, 7) + Duration::seconds(86_400), /// from_ymd(2016, 7, 9).and_hms(3, 5, 7)); /// assert_eq!(hms(3, 5, 7) + Duration::days(365), /// from_ymd(2017, 7, 8).and_hms(3, 5, 7)); /// /// let hmsm = |h, m, s, milli| d.and_hms_milli(h, m, s, milli); /// assert_eq!(hmsm(3, 5, 7, 980) + Duration::milliseconds(450), hmsm(3, 5, 8, 430)); /// # } /// ~~~~ /// /// Leap seconds are handled, /// but the addition assumes that it is the only leap second happened. /// /// ~~~~ /// # extern crate chrono; extern crate time; fn main() { /// # use chrono::NaiveDate; /// # use time::Duration; /// # let from_ymd = NaiveDate::from_ymd; /// # let hmsm = |h, m, s, milli| from_ymd(2016, 7, 8).and_hms_milli(h, m, s, milli); /// let leap = hmsm(3, 5, 59, 1_300); /// assert_eq!(leap + Duration::zero(), hmsm(3, 5, 59, 1_300)); /// assert_eq!(leap + Duration::milliseconds(-500), hmsm(3, 5, 59, 800)); /// assert_eq!(leap + Duration::milliseconds(500), hmsm(3, 5, 59, 1_800)); /// assert_eq!(leap + Duration::milliseconds(800), hmsm(3, 6, 0, 100)); /// assert_eq!(leap + Duration::seconds(10), hmsm(3, 6, 9, 300)); /// assert_eq!(leap + Duration::seconds(-10), hmsm(3, 5, 50, 300)); /// assert_eq!(leap + Duration::days(1), /// from_ymd(2016, 7, 9).and_hms_milli(3, 5, 59, 300)); /// # } /// ~~~~ impl Add for NaiveDateTime { type Output = NaiveDateTime; #[inline] fn add(self, rhs: OldDuration) -> NaiveDateTime { self.checked_add_signed(rhs).expect("`NaiveDateTime + Duration` overflowed") } } impl AddAssign for NaiveDateTime { #[inline] fn add_assign(&mut self, rhs: OldDuration) { *self = self.add(rhs); } } /// A subtraction of `Duration` from `NaiveDateTime` yields another `NaiveDateTime`. /// It is same to the addition with a negated `Duration`. /// /// As a part of Chrono's [leap second handling](./struct.NaiveTime.html#leap-second-handling), /// the addition assumes that **there is no leap second ever**, /// except when the `NaiveDateTime` itself represents a leap second /// in which case the assumption becomes that **there is exactly a single leap second ever**. /// /// Panics on underflow or overflow. /// Use [`NaiveDateTime::checked_sub_signed`](#method.checked_sub_signed) to detect that. /// /// # Example /// /// ~~~~ /// # extern crate chrono; extern crate time; fn main() { /// use chrono::NaiveDate; /// use time::Duration; /// /// let from_ymd = NaiveDate::from_ymd; /// /// let d = from_ymd(2016, 7, 8); /// let hms = |h, m, s| d.and_hms(h, m, s); /// assert_eq!(hms(3, 5, 7) - Duration::zero(), hms(3, 5, 7)); /// assert_eq!(hms(3, 5, 7) - Duration::seconds(1), hms(3, 5, 6)); /// assert_eq!(hms(3, 5, 7) - Duration::seconds(-1), hms(3, 5, 8)); /// assert_eq!(hms(3, 5, 7) - Duration::seconds(3600 + 60), hms(2, 4, 7)); /// assert_eq!(hms(3, 5, 7) - Duration::seconds(86_400), /// from_ymd(2016, 7, 7).and_hms(3, 5, 7)); /// assert_eq!(hms(3, 5, 7) - Duration::days(365), /// from_ymd(2015, 7, 9).and_hms(3, 5, 7)); /// /// let hmsm = |h, m, s, milli| d.and_hms_milli(h, m, s, milli); /// assert_eq!(hmsm(3, 5, 7, 450) - Duration::milliseconds(670), hmsm(3, 5, 6, 780)); /// # } /// ~~~~ /// /// Leap seconds are handled, /// but the subtraction assumes that it is the only leap second happened. /// /// ~~~~ /// # extern crate chrono; extern crate time; fn main() { /// # use chrono::NaiveDate; /// # use time::Duration; /// # let from_ymd = NaiveDate::from_ymd; /// # let hmsm = |h, m, s, milli| from_ymd(2016, 7, 8).and_hms_milli(h, m, s, milli); /// let leap = hmsm(3, 5, 59, 1_300); /// assert_eq!(leap - Duration::zero(), hmsm(3, 5, 59, 1_300)); /// assert_eq!(leap - Duration::milliseconds(200), hmsm(3, 5, 59, 1_100)); /// assert_eq!(leap - Duration::milliseconds(500), hmsm(3, 5, 59, 800)); /// assert_eq!(leap - Duration::seconds(60), hmsm(3, 5, 0, 300)); /// assert_eq!(leap - Duration::days(1), /// from_ymd(2016, 7, 7).and_hms_milli(3, 6, 0, 300)); /// # } /// ~~~~ impl Sub for NaiveDateTime { type Output = NaiveDateTime; #[inline] fn sub(self, rhs: OldDuration) -> NaiveDateTime { self.checked_sub_signed(rhs).expect("`NaiveDateTime - Duration` overflowed") } } impl SubAssign for NaiveDateTime { #[inline] fn sub_assign(&mut self, rhs: OldDuration) { *self = self.sub(rhs); } } /// Subtracts another `NaiveDateTime` from the current date and time. /// This does not overflow or underflow at all. /// /// As a part of Chrono's [leap second handling](./struct.NaiveTime.html#leap-second-handling), /// the subtraction assumes that **there is no leap second ever**, /// except when any of the `NaiveDateTime`s themselves represents a leap second /// in which case the assumption becomes that /// **there are exactly one (or two) leap second(s) ever**. /// /// The implementation is a wrapper around /// [`NaiveDateTime::signed_duration_since`](#method.signed_duration_since). /// /// # Example /// /// ~~~~ /// # extern crate chrono; extern crate time; fn main() { /// use chrono::NaiveDate; /// use time::Duration; /// /// let from_ymd = NaiveDate::from_ymd; /// /// let d = from_ymd(2016, 7, 8); /// assert_eq!(d.and_hms(3, 5, 7) - d.and_hms(2, 4, 6), Duration::seconds(3600 + 60 + 1)); /// /// // July 8 is 190th day in the year 2016 /// let d0 = from_ymd(2016, 1, 1); /// assert_eq!(d.and_hms_milli(0, 7, 6, 500) - d0.and_hms(0, 0, 0), /// Duration::seconds(189 * 86_400 + 7 * 60 + 6) + Duration::milliseconds(500)); /// # } /// ~~~~ /// /// Leap seconds are handled, but the subtraction assumes that /// there were no other leap seconds happened. /// /// ~~~~ /// # extern crate chrono; extern crate time; fn main() { /// # use chrono::NaiveDate; /// # use time::Duration; /// # let from_ymd = NaiveDate::from_ymd; /// let leap = from_ymd(2015, 6, 30).and_hms_milli(23, 59, 59, 1_500); /// assert_eq!(leap - from_ymd(2015, 6, 30).and_hms(23, 0, 0), /// Duration::seconds(3600) + Duration::milliseconds(500)); /// assert_eq!(from_ymd(2015, 7, 1).and_hms(1, 0, 0) - leap, /// Duration::seconds(3600) - Duration::milliseconds(500)); /// # } /// ~~~~ impl Sub for NaiveDateTime { type Output = OldDuration; #[inline] fn sub(self, rhs: NaiveDateTime) -> OldDuration { self.signed_duration_since(rhs) } } /// The `Debug` output of the naive date and time `dt` is same to /// [`dt.format("%Y-%m-%dT%H:%M:%S%.f")`](../format/strftime/index.html). /// /// The string printed can be readily parsed via the `parse` method on `str`. /// /// It should be noted that, for leap seconds not on the minute boundary, /// it may print a representation not distinguishable from non-leap seconds. /// This doesn't matter in practice, since such leap seconds never happened. /// (By the time of the first leap second on 1972-06-30, /// every time zone offset around the world has standardized to the 5-minute alignment.) /// /// # Example /// /// ~~~~ /// use chrono::NaiveDate; /// /// let dt = NaiveDate::from_ymd(2016, 11, 15).and_hms(7, 39, 24); /// assert_eq!(format!("{:?}", dt), "2016-11-15T07:39:24"); /// ~~~~ /// /// Leap seconds may also be used. /// /// ~~~~ /// # use chrono::NaiveDate; /// let dt = NaiveDate::from_ymd(2015, 6, 30).and_hms_milli(23, 59, 59, 1_500); /// assert_eq!(format!("{:?}", dt), "2015-06-30T23:59:60.500"); /// ~~~~ impl fmt::Debug for NaiveDateTime { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{:?}T{:?}", self.date, self.time) } } /// The `Debug` output of the naive date and time `dt` is same to /// [`dt.format("%Y-%m-%d %H:%M:%S%.f")`](../format/strftime/index.html). /// /// It should be noted that, for leap seconds not on the minute boundary, /// it may print a representation not distinguishable from non-leap seconds. /// This doesn't matter in practice, since such leap seconds never happened. /// (By the time of the first leap second on 1972-06-30, /// every time zone offset around the world has standardized to the 5-minute alignment.) /// /// # Example /// /// ~~~~ /// use chrono::NaiveDate; /// /// let dt = NaiveDate::from_ymd(2016, 11, 15).and_hms(7, 39, 24); /// assert_eq!(format!("{}", dt), "2016-11-15 07:39:24"); /// ~~~~ /// /// Leap seconds may also be used. /// /// ~~~~ /// # use chrono::NaiveDate; /// let dt = NaiveDate::from_ymd(2015, 6, 30).and_hms_milli(23, 59, 59, 1_500); /// assert_eq!(format!("{}", dt), "2015-06-30 23:59:60.500"); /// ~~~~ impl fmt::Display for NaiveDateTime { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{} {}", self.date, self.time) } } /// Parsing a `str` into a `NaiveDateTime` uses the same format, /// [`%Y-%m-%dT%H:%M:%S%.f`](../format/strftime/index.html), as in `Debug`. /// /// # Example /// /// ~~~~ /// use chrono::{NaiveDateTime, NaiveDate}; /// /// let dt = NaiveDate::from_ymd(2015, 9, 18).and_hms(23, 56, 4); /// assert_eq!("2015-09-18T23:56:04".parse::(), Ok(dt)); /// /// let dt = NaiveDate::from_ymd(12345, 6, 7).and_hms_milli(7, 59, 59, 1_500); // leap second /// assert_eq!("+12345-6-7T7:59:60.5".parse::(), Ok(dt)); /// /// assert!("foo".parse::().is_err()); /// ~~~~ impl str::FromStr for NaiveDateTime { type Err = ParseError; fn from_str(s: &str) -> ParseResult { const ITEMS: &'static [Item<'static>] = &[ Item::Numeric(Numeric::Year, Pad::Zero), Item::Space(""), Item::Literal("-"), Item::Numeric(Numeric::Month, Pad::Zero), Item::Space(""), Item::Literal("-"), Item::Numeric(Numeric::Day, Pad::Zero), Item::Space(""), Item::Literal("T"), // XXX shouldn't this be case-insensitive? Item::Numeric(Numeric::Hour, Pad::Zero), Item::Space(""), Item::Literal(":"), Item::Numeric(Numeric::Minute, Pad::Zero), Item::Space(""), Item::Literal(":"), Item::Numeric(Numeric::Second, Pad::Zero), Item::Fixed(Fixed::Nanosecond), Item::Space(""), ]; let mut parsed = Parsed::new(); parse(&mut parsed, s, ITEMS.iter())?; parsed.to_naive_datetime_with_offset(0) } } #[cfg(all(test, any(feature = "rustc-serialize", feature = "serde")))] fn test_encodable_json(to_string: F) where F: Fn(&NaiveDateTime) -> Result, E: ::std::fmt::Debug { use naive::{MIN_DATE, MAX_DATE}; assert_eq!( to_string(&NaiveDate::from_ymd(2016, 7, 8).and_hms_milli(9, 10, 48, 90)).ok(), Some(r#""2016-07-08T09:10:48.090""#.into())); assert_eq!( to_string(&NaiveDate::from_ymd(2014, 7, 24).and_hms(12, 34, 6)).ok(), Some(r#""2014-07-24T12:34:06""#.into())); assert_eq!( to_string(&NaiveDate::from_ymd(0, 1, 1).and_hms_milli(0, 0, 59, 1_000)).ok(), Some(r#""0000-01-01T00:00:60""#.into())); assert_eq!( to_string(&NaiveDate::from_ymd(-1, 12, 31).and_hms_nano(23, 59, 59, 7)).ok(), Some(r#""-0001-12-31T23:59:59.000000007""#.into())); assert_eq!( to_string(&MIN_DATE.and_hms(0, 0, 0)).ok(), Some(r#""-262144-01-01T00:00:00""#.into())); assert_eq!( to_string(&MAX_DATE.and_hms_nano(23, 59, 59, 1_999_999_999)).ok(), Some(r#""+262143-12-31T23:59:60.999999999""#.into())); } #[cfg(all(test, any(feature = "rustc-serialize", feature = "serde")))] fn test_decodable_json(from_str: F) where F: Fn(&str) -> Result, E: ::std::fmt::Debug { use naive::{MIN_DATE, MAX_DATE}; assert_eq!( from_str(r#""2016-07-08T09:10:48.090""#).ok(), Some(NaiveDate::from_ymd(2016, 7, 8).and_hms_milli(9, 10, 48, 90))); assert_eq!( from_str(r#""2016-7-8T9:10:48.09""#).ok(), Some(NaiveDate::from_ymd(2016, 7, 8).and_hms_milli(9, 10, 48, 90))); assert_eq!( from_str(r#""2014-07-24T12:34:06""#).ok(), Some(NaiveDate::from_ymd(2014, 7, 24).and_hms(12, 34, 6))); assert_eq!( from_str(r#""0000-01-01T00:00:60""#).ok(), Some(NaiveDate::from_ymd(0, 1, 1).and_hms_milli(0, 0, 59, 1_000))); assert_eq!( from_str(r#""0-1-1T0:0:60""#).ok(), Some(NaiveDate::from_ymd(0, 1, 1).and_hms_milli(0, 0, 59, 1_000))); assert_eq!( from_str(r#""-0001-12-31T23:59:59.000000007""#).ok(), Some(NaiveDate::from_ymd(-1, 12, 31).and_hms_nano(23, 59, 59, 7))); assert_eq!( from_str(r#""-262144-01-01T00:00:00""#).ok(), Some(MIN_DATE.and_hms(0, 0, 0))); assert_eq!( from_str(r#""+262143-12-31T23:59:60.999999999""#).ok(), Some(MAX_DATE.and_hms_nano(23, 59, 59, 1_999_999_999))); assert_eq!( from_str(r#""+262143-12-31T23:59:60.9999999999997""#).ok(), // excess digits are ignored Some(MAX_DATE.and_hms_nano(23, 59, 59, 1_999_999_999))); // bad formats assert!(from_str(r#""""#).is_err()); assert!(from_str(r#""2016-07-08""#).is_err()); assert!(from_str(r#""09:10:48.090""#).is_err()); assert!(from_str(r#""20160708T091048.090""#).is_err()); assert!(from_str(r#""2000-00-00T00:00:00""#).is_err()); assert!(from_str(r#""2000-02-30T00:00:00""#).is_err()); assert!(from_str(r#""2001-02-29T00:00:00""#).is_err()); assert!(from_str(r#""2002-02-28T24:00:00""#).is_err()); assert!(from_str(r#""2002-02-28T23:60:00""#).is_err()); assert!(from_str(r#""2002-02-28T23:59:61""#).is_err()); assert!(from_str(r#""2016-07-08T09:10:48,090""#).is_err()); assert!(from_str(r#""2016-07-08 09:10:48.090""#).is_err()); assert!(from_str(r#""2016-007-08T09:10:48.090""#).is_err()); assert!(from_str(r#""yyyy-mm-ddThh:mm:ss.fffffffff""#).is_err()); assert!(from_str(r#"20160708000000"#).is_err()); assert!(from_str(r#"{}"#).is_err()); // pre-0.3.0 rustc-serialize format is now invalid assert!(from_str(r#"{"date":{"ymdf":20},"time":{"secs":0,"frac":0}}"#).is_err()); assert!(from_str(r#"null"#).is_err()); } #[cfg(all(test, feature = "rustc-serialize"))] fn test_decodable_json_timestamp(from_str: F) where F: Fn(&str) -> Result, E: ::std::fmt::Debug { assert_eq!( *from_str("0").unwrap(), NaiveDate::from_ymd(1970, 1, 1).and_hms(0, 0, 0), "should parse integers as timestamps" ); assert_eq!( *from_str("-1").unwrap(), NaiveDate::from_ymd(1969, 12, 31).and_hms(23, 59, 59), "should parse integers as timestamps" ); } #[cfg(feature = "rustc-serialize")] pub mod rustc_serialize { use std::ops::Deref; use super::NaiveDateTime; use rustc_serialize::{Encodable, Encoder, Decodable, Decoder}; impl Encodable for NaiveDateTime { fn encode(&self, s: &mut S) -> Result<(), S::Error> { format!("{:?}", self).encode(s) } } impl Decodable for NaiveDateTime { fn decode(d: &mut D) -> Result { d.read_str()?.parse().map_err(|_| d.error("invalid date time string")) } } /// A `DateTime` that can be deserialized from a seconds-based timestamp #[derive(Debug)] #[deprecated(since = "1.4.2", note = "RustcSerialize will be removed before chrono 1.0, use Serde instead")] pub struct TsSeconds(NaiveDateTime); #[allow(deprecated)] impl From for NaiveDateTime { /// Pull the internal NaiveDateTime out #[allow(deprecated)] fn from(obj: TsSeconds) -> NaiveDateTime { obj.0 } } #[allow(deprecated)] impl Deref for TsSeconds { type Target = NaiveDateTime; #[allow(deprecated)] fn deref(&self) -> &Self::Target { &self.0 } } #[allow(deprecated)] impl Decodable for TsSeconds { #[allow(deprecated)] fn decode(d: &mut D) -> Result { Ok(TsSeconds( NaiveDateTime::from_timestamp_opt(d.read_i64()?, 0) .ok_or_else(|| d.error("invalid timestamp"))?)) } } #[cfg(test)] use rustc_serialize::json; #[test] fn test_encodable() { super::test_encodable_json(json::encode); } #[test] fn test_decodable() { super::test_decodable_json(json::decode); } #[test] fn test_decodable_timestamps() { super::test_decodable_json_timestamp(json::decode); } } /// Tools to help serializing/deserializing `NaiveDateTime`s #[cfg(feature = "serde")] pub mod serde { use core::fmt; use super::{NaiveDateTime}; use serdelib::{ser, de}; /// Serialize a `NaiveDateTime` as an RFC 3339 string /// /// See [the `serde` module](./serde/index.html) for alternate /// serialization formats. impl ser::Serialize for NaiveDateTime { fn serialize(&self, serializer: S) -> Result where S: ser::Serializer { struct FormatWrapped<'a, D: 'a> { inner: &'a D } impl<'a, D: fmt::Debug> fmt::Display for FormatWrapped<'a, D> { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { self.inner.fmt(f) } } serializer.collect_str(&FormatWrapped { inner: &self }) } } struct NaiveDateTimeVisitor; impl<'de> de::Visitor<'de> for NaiveDateTimeVisitor { type Value = NaiveDateTime; fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result { write!(formatter, "a formatted date and time string") } fn visit_str(self, value: &str) -> Result where E: de::Error { value.parse().map_err(E::custom) } } impl<'de> de::Deserialize<'de> for NaiveDateTime { fn deserialize(deserializer: D) -> Result where D: de::Deserializer<'de> { deserializer.deserialize_str(NaiveDateTimeVisitor) } } /// Used to serialize/deserialize from nanosecond-precision timestamps /// /// # Example: /// /// ```rust /// # // We mark this ignored so that we can test on 1.13 (which does not /// # // support custom derive), and run tests with --ignored on beta and /// # // nightly to actually trigger these. /// # /// # #[macro_use] extern crate serde_derive; /// # extern crate serde_json; /// # extern crate serde; /// # extern crate chrono; /// # use chrono::{TimeZone, NaiveDate, NaiveDateTime, Utc}; /// use chrono::naive::serde::ts_nanoseconds; /// #[derive(Deserialize, Serialize)] /// struct S { /// #[serde(with = "ts_nanoseconds")] /// time: NaiveDateTime /// } /// /// # fn example() -> Result { /// let time = NaiveDate::from_ymd(2018, 5, 17).and_hms_nano(02, 04, 59, 918355733); /// let my_s = S { /// time: time.clone(), /// }; /// /// let as_string = serde_json::to_string(&my_s)?; /// assert_eq!(as_string, r#"{"time":1526522699918355733}"#); /// let my_s: S = serde_json::from_str(&as_string)?; /// assert_eq!(my_s.time, time); /// # Ok(my_s) /// # } /// # fn main() { example().unwrap(); } /// ``` pub mod ts_nanoseconds { use core::fmt; use serdelib::{ser, de}; use {NaiveDateTime, ne_timestamp}; /// Serialize a UTC datetime into an integer number of nanoseconds since the epoch /// /// Intended for use with `serde`s `serialize_with` attribute. /// /// # Example: /// /// ```rust /// # // We mark this ignored so that we can test on 1.13 (which does not /// # // support custom derive), and run tests with --ignored on beta and /// # // nightly to actually trigger these. /// # /// # #[macro_use] extern crate serde_derive; /// # #[macro_use] extern crate serde_json; /// # #[macro_use] extern crate serde; /// # extern crate chrono; /// # use chrono::{TimeZone, NaiveDate, NaiveDateTime, Utc}; /// # use serde::Serialize; /// use chrono::naive::serde::ts_nanoseconds::serialize as to_nano_ts; /// #[derive(Serialize)] /// struct S { /// #[serde(serialize_with = "to_nano_ts")] /// time: NaiveDateTime /// } /// /// # fn example() -> Result { /// let my_s = S { /// time: NaiveDate::from_ymd(2018, 5, 17).and_hms_nano(02, 04, 59, 918355733), /// }; /// let as_string = serde_json::to_string(&my_s)?; /// assert_eq!(as_string, r#"{"time":1526522699918355733}"#); /// # Ok(as_string) /// # } /// # fn main() { example().unwrap(); } /// ``` pub fn serialize(dt: &NaiveDateTime, serializer: S) -> Result where S: ser::Serializer { serializer.serialize_i64(dt.timestamp_nanos()) } /// Deserialize a `DateTime` from a nanoseconds timestamp /// /// Intended for use with `serde`s `deserialize_with` attribute. /// /// # Example: /// /// ```rust /// # // We mark this ignored so that we can test on 1.13 (which does not /// # // support custom derive), and run tests with --ignored on beta and /// # // nightly to actually trigger these. /// # /// # #[macro_use] extern crate serde_derive; /// # #[macro_use] extern crate serde_json; /// # extern crate serde; /// # extern crate chrono; /// # use chrono::{NaiveDateTime, Utc}; /// # use serde::Deserialize; /// use chrono::naive::serde::ts_nanoseconds::deserialize as from_nano_ts; /// #[derive(Deserialize)] /// struct S { /// #[serde(deserialize_with = "from_nano_ts")] /// time: NaiveDateTime /// } /// /// # fn example() -> Result { /// let my_s: S = serde_json::from_str(r#"{ "time": 1526522699918355733 }"#)?; /// # Ok(my_s) /// # } /// # fn main() { example().unwrap(); } /// ``` pub fn deserialize<'de, D>(d: D) -> Result where D: de::Deserializer<'de> { Ok(d.deserialize_i64(NaiveDateTimeFromNanoSecondsVisitor)?) } struct NaiveDateTimeFromNanoSecondsVisitor; impl<'de> de::Visitor<'de> for NaiveDateTimeFromNanoSecondsVisitor { type Value = NaiveDateTime; fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result { formatter.write_str("a unix timestamp") } fn visit_i64(self, value: i64) -> Result where E: de::Error { NaiveDateTime::from_timestamp_opt(value / 1_000_000_000, (value % 1_000_000_000) as u32) .ok_or_else(|| E::custom(ne_timestamp(value))) } fn visit_u64(self, value: u64) -> Result where E: de::Error { NaiveDateTime::from_timestamp_opt(value as i64 / 1_000_000_000, (value as i64 % 1_000_000_000) as u32) .ok_or_else(|| E::custom(ne_timestamp(value))) } } } /// Used to serialize/deserialize from millisecond-precision timestamps /// /// # Example: /// /// ```rust /// # // We mark this ignored so that we can test on 1.13 (which does not /// # // support custom derive), and run tests with --ignored on beta and /// # // nightly to actually trigger these. /// # /// # #[macro_use] extern crate serde_derive; /// # extern crate serde_json; /// # extern crate serde; /// # extern crate chrono; /// # use chrono::{TimeZone, NaiveDate, NaiveDateTime, Utc}; /// use chrono::naive::serde::ts_milliseconds; /// #[derive(Deserialize, Serialize)] /// struct S { /// #[serde(with = "ts_milliseconds")] /// time: NaiveDateTime /// } /// /// # fn example() -> Result { /// let time = NaiveDate::from_ymd(2018, 5, 17).and_hms_milli(02, 04, 59, 918); /// let my_s = S { /// time: time.clone(), /// }; /// /// let as_string = serde_json::to_string(&my_s)?; /// assert_eq!(as_string, r#"{"time":1526522699918}"#); /// let my_s: S = serde_json::from_str(&as_string)?; /// assert_eq!(my_s.time, time); /// # Ok(my_s) /// # } /// # fn main() { example().unwrap(); } /// ``` pub mod ts_milliseconds { use core::fmt; use serdelib::{ser, de}; use {NaiveDateTime, ne_timestamp}; /// Serialize a UTC datetime into an integer number of milliseconds since the epoch /// /// Intended for use with `serde`s `serialize_with` attribute. /// /// # Example: /// /// ```rust /// # // We mark this ignored so that we can test on 1.13 (which does not /// # // support custom derive), and run tests with --ignored on beta and /// # // nightly to actually trigger these. /// # /// # #[macro_use] extern crate serde_derive; /// # #[macro_use] extern crate serde_json; /// # #[macro_use] extern crate serde; /// # extern crate chrono; /// # use chrono::{TimeZone, NaiveDate, NaiveDateTime, Utc}; /// # use serde::Serialize; /// use chrono::naive::serde::ts_milliseconds::serialize as to_milli_ts; /// #[derive(Serialize)] /// struct S { /// #[serde(serialize_with = "to_milli_ts")] /// time: NaiveDateTime /// } /// /// # fn example() -> Result { /// let my_s = S { /// time: NaiveDate::from_ymd(2018, 5, 17).and_hms_milli(02, 04, 59, 918), /// }; /// let as_string = serde_json::to_string(&my_s)?; /// assert_eq!(as_string, r#"{"time":1526522699918}"#); /// # Ok(as_string) /// # } /// # fn main() { example().unwrap(); } /// ``` pub fn serialize(dt: &NaiveDateTime, serializer: S) -> Result where S: ser::Serializer { serializer.serialize_i64(dt.timestamp_millis()) } /// Deserialize a `DateTime` from a milliseconds timestamp /// /// Intended for use with `serde`s `deserialize_with` attribute. /// /// # Example: /// /// ```rust /// # // We mark this ignored so that we can test on 1.13 (which does not /// # // support custom derive), and run tests with --ignored on beta and /// # // nightly to actually trigger these. /// # /// # #[macro_use] extern crate serde_derive; /// # #[macro_use] extern crate serde_json; /// # extern crate serde; /// # extern crate chrono; /// # use chrono::{NaiveDateTime, Utc}; /// # use serde::Deserialize; /// use chrono::naive::serde::ts_milliseconds::deserialize as from_milli_ts; /// #[derive(Deserialize)] /// struct S { /// #[serde(deserialize_with = "from_milli_ts")] /// time: NaiveDateTime /// } /// /// # fn example() -> Result { /// let my_s: S = serde_json::from_str(r#"{ "time": 1526522699918 }"#)?; /// # Ok(my_s) /// # } /// # fn main() { example().unwrap(); } /// ``` pub fn deserialize<'de, D>(d: D) -> Result where D: de::Deserializer<'de> { Ok(d.deserialize_i64(NaiveDateTimeFromMilliSecondsVisitor)?) } struct NaiveDateTimeFromMilliSecondsVisitor; impl<'de> de::Visitor<'de> for NaiveDateTimeFromMilliSecondsVisitor { type Value = NaiveDateTime; fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result { formatter.write_str("a unix timestamp") } fn visit_i64(self, value: i64) -> Result where E: de::Error { NaiveDateTime::from_timestamp_opt(value / 1000, ((value % 1000) * 1_000_000) as u32) .ok_or_else(|| E::custom(ne_timestamp(value))) } fn visit_u64(self, value: u64) -> Result where E: de::Error { NaiveDateTime::from_timestamp_opt((value / 1000) as i64, ((value % 1000) * 1_000_000) as u32) .ok_or_else(|| E::custom(ne_timestamp(value))) } } } /// Used to serialize/deserialize from second-precision timestamps /// /// # Example: /// /// ```rust /// # // We mark this ignored so that we can test on 1.13 (which does not /// # // support custom derive), and run tests with --ignored on beta and /// # // nightly to actually trigger these. /// # /// # #[macro_use] extern crate serde_derive; /// # extern crate serde_json; /// # extern crate serde; /// # extern crate chrono; /// # use chrono::{TimeZone, NaiveDate, NaiveDateTime, Utc}; /// use chrono::naive::serde::ts_seconds; /// #[derive(Deserialize, Serialize)] /// struct S { /// #[serde(with = "ts_seconds")] /// time: NaiveDateTime /// } /// /// # fn example() -> Result { /// let time = NaiveDate::from_ymd(2015, 5, 15).and_hms(10, 0, 0); /// let my_s = S { /// time: time.clone(), /// }; /// /// let as_string = serde_json::to_string(&my_s)?; /// assert_eq!(as_string, r#"{"time":1431684000}"#); /// let my_s: S = serde_json::from_str(&as_string)?; /// assert_eq!(my_s.time, time); /// # Ok(my_s) /// # } /// # fn main() { example().unwrap(); } /// ``` pub mod ts_seconds { use core::fmt; use serdelib::{ser, de}; use {NaiveDateTime, ne_timestamp}; /// Serialize a UTC datetime into an integer number of seconds since the epoch /// /// Intended for use with `serde`s `serialize_with` attribute. /// /// # Example: /// /// ```rust /// # // We mark this ignored so that we can test on 1.13 (which does not /// # // support custom derive), and run tests with --ignored on beta and /// # // nightly to actually trigger these. /// # /// # #[macro_use] extern crate serde_derive; /// # #[macro_use] extern crate serde_json; /// # #[macro_use] extern crate serde; /// # extern crate chrono; /// # use chrono::{TimeZone, NaiveDate, NaiveDateTime, Utc}; /// # use serde::Serialize; /// use chrono::naive::serde::ts_seconds::serialize as to_ts; /// #[derive(Serialize)] /// struct S { /// #[serde(serialize_with = "to_ts")] /// time: NaiveDateTime /// } /// /// # fn example() -> Result { /// let my_s = S { /// time: NaiveDate::from_ymd(2015, 5, 15).and_hms(10, 0, 0), /// }; /// let as_string = serde_json::to_string(&my_s)?; /// assert_eq!(as_string, r#"{"time":1431684000}"#); /// # Ok(as_string) /// # } /// # fn main() { example().unwrap(); } /// ``` pub fn serialize(dt: &NaiveDateTime, serializer: S) -> Result where S: ser::Serializer { serializer.serialize_i64(dt.timestamp()) } /// Deserialize a `DateTime` from a seconds timestamp /// /// Intended for use with `serde`s `deserialize_with` attribute. /// /// # Example: /// /// ```rust /// # // We mark this ignored so that we can test on 1.13 (which does not /// # // support custom derive), and run tests with --ignored on beta and /// # // nightly to actually trigger these. /// # /// # #[macro_use] extern crate serde_derive; /// # #[macro_use] extern crate serde_json; /// # extern crate serde; /// # extern crate chrono; /// # use chrono::{NaiveDateTime, Utc}; /// # use serde::Deserialize; /// use chrono::naive::serde::ts_seconds::deserialize as from_ts; /// #[derive(Deserialize)] /// struct S { /// #[serde(deserialize_with = "from_ts")] /// time: NaiveDateTime /// } /// /// # fn example() -> Result { /// let my_s: S = serde_json::from_str(r#"{ "time": 1431684000 }"#)?; /// # Ok(my_s) /// # } /// # fn main() { example().unwrap(); } /// ``` pub fn deserialize<'de, D>(d: D) -> Result where D: de::Deserializer<'de> { Ok(d.deserialize_i64(NaiveDateTimeFromSecondsVisitor)?) } struct NaiveDateTimeFromSecondsVisitor; impl<'de> de::Visitor<'de> for NaiveDateTimeFromSecondsVisitor { type Value = NaiveDateTime; fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result { formatter.write_str("a unix timestamp") } fn visit_i64(self, value: i64) -> Result where E: de::Error { NaiveDateTime::from_timestamp_opt(value, 0) .ok_or_else(|| E::custom(ne_timestamp(value))) } fn visit_u64(self, value: u64) -> Result where E: de::Error { NaiveDateTime::from_timestamp_opt(value as i64, 0) .ok_or_else(|| E::custom(ne_timestamp(value))) } } } #[cfg(test)] extern crate serde_json; #[cfg(test)] extern crate bincode; #[test] fn test_serde_serialize() { super::test_encodable_json(self::serde_json::to_string); } #[test] fn test_serde_deserialize() { super::test_decodable_json(|input| self::serde_json::from_str(&input)); } #[test] fn test_serde_bincode() { // Bincode is relevant to test separately from JSON because // it is not self-describing. use naive::NaiveDate; use self::bincode::{Infinite, serialize, deserialize}; let dt = NaiveDate::from_ymd(2016, 7, 8).and_hms_milli(9, 10, 48, 90); let encoded = serialize(&dt, Infinite).unwrap(); let decoded: NaiveDateTime = deserialize(&encoded).unwrap(); assert_eq!(dt, decoded); } } #[cfg(test)] mod tests { use super::NaiveDateTime; use Datelike; use naive::{NaiveDate, MIN_DATE, MAX_DATE}; use std::i64; use oldtime::Duration; #[test] fn test_datetime_from_timestamp() { let from_timestamp = |secs| NaiveDateTime::from_timestamp_opt(secs, 0); let ymdhms = |y,m,d,h,n,s| NaiveDate::from_ymd(y,m,d).and_hms(h,n,s); assert_eq!(from_timestamp(-1), Some(ymdhms(1969, 12, 31, 23, 59, 59))); assert_eq!(from_timestamp(0), Some(ymdhms(1970, 1, 1, 0, 0, 0))); assert_eq!(from_timestamp(1), Some(ymdhms(1970, 1, 1, 0, 0, 1))); assert_eq!(from_timestamp(1_000_000_000), Some(ymdhms(2001, 9, 9, 1, 46, 40))); assert_eq!(from_timestamp(0x7fffffff), Some(ymdhms(2038, 1, 19, 3, 14, 7))); assert_eq!(from_timestamp(i64::MIN), None); assert_eq!(from_timestamp(i64::MAX), None); } #[test] fn test_datetime_add() { fn check((y,m,d,h,n,s): (i32,u32,u32,u32,u32,u32), rhs: Duration, result: Option<(i32,u32,u32,u32,u32,u32)>) { let lhs = NaiveDate::from_ymd(y, m, d).and_hms(h, n, s); let sum = result.map(|(y,m,d,h,n,s)| NaiveDate::from_ymd(y, m, d).and_hms(h, n, s)); assert_eq!(lhs.checked_add_signed(rhs), sum); assert_eq!(lhs.checked_sub_signed(-rhs), sum); }; check((2014,5,6, 7,8,9), Duration::seconds(3600 + 60 + 1), Some((2014,5,6, 8,9,10))); check((2014,5,6, 7,8,9), Duration::seconds(-(3600 + 60 + 1)), Some((2014,5,6, 6,7,8))); check((2014,5,6, 7,8,9), Duration::seconds(86399), Some((2014,5,7, 7,8,8))); check((2014,5,6, 7,8,9), Duration::seconds(86_400 * 10), Some((2014,5,16, 7,8,9))); check((2014,5,6, 7,8,9), Duration::seconds(-86_400 * 10), Some((2014,4,26, 7,8,9))); check((2014,5,6, 7,8,9), Duration::seconds(86_400 * 10), Some((2014,5,16, 7,8,9))); // overflow check // assumes that we have correct values for MAX/MIN_DAYS_FROM_YEAR_0 from `naive::date`. // (they are private constants, but the equivalence is tested in that module.) let max_days_from_year_0 = MAX_DATE.signed_duration_since(NaiveDate::from_ymd(0,1,1)); check((0,1,1, 0,0,0), max_days_from_year_0, Some((MAX_DATE.year(),12,31, 0,0,0))); check((0,1,1, 0,0,0), max_days_from_year_0 + Duration::seconds(86399), Some((MAX_DATE.year(),12,31, 23,59,59))); check((0,1,1, 0,0,0), max_days_from_year_0 + Duration::seconds(86_400), None); check((0,1,1, 0,0,0), Duration::max_value(), None); let min_days_from_year_0 = MIN_DATE.signed_duration_since(NaiveDate::from_ymd(0,1,1)); check((0,1,1, 0,0,0), min_days_from_year_0, Some((MIN_DATE.year(),1,1, 0,0,0))); check((0,1,1, 0,0,0), min_days_from_year_0 - Duration::seconds(1), None); check((0,1,1, 0,0,0), Duration::min_value(), None); } #[test] fn test_datetime_sub() { let ymdhms = |y,m,d,h,n,s| NaiveDate::from_ymd(y,m,d).and_hms(h,n,s); let since = NaiveDateTime::signed_duration_since; assert_eq!(since(ymdhms(2014, 5, 6, 7, 8, 9), ymdhms(2014, 5, 6, 7, 8, 9)), Duration::zero()); assert_eq!(since(ymdhms(2014, 5, 6, 7, 8, 10), ymdhms(2014, 5, 6, 7, 8, 9)), Duration::seconds(1)); assert_eq!(since(ymdhms(2014, 5, 6, 7, 8, 9), ymdhms(2014, 5, 6, 7, 8, 10)), Duration::seconds(-1)); assert_eq!(since(ymdhms(2014, 5, 7, 7, 8, 9), ymdhms(2014, 5, 6, 7, 8, 10)), Duration::seconds(86399)); assert_eq!(since(ymdhms(2001, 9, 9, 1, 46, 39), ymdhms(1970, 1, 1, 0, 0, 0)), Duration::seconds(999_999_999)); } #[test] fn test_datetime_addassignment() { let ymdhms = |y,m,d,h,n,s| NaiveDate::from_ymd(y,m,d).and_hms(h,n,s); let mut date = ymdhms(2016, 10, 1, 10, 10, 10); date += Duration::minutes(10_000_000); assert_eq!(date, ymdhms(2035, 10, 6, 20, 50, 10)); date += Duration::days(10); assert_eq!(date, ymdhms(2035, 10, 16, 20, 50, 10)); } #[test] fn test_datetime_subassignment() { let ymdhms = |y,m,d,h,n,s| NaiveDate::from_ymd(y,m,d).and_hms(h,n,s); let mut date = ymdhms(2016, 10, 1, 10, 10, 10); date -= Duration::minutes(10_000_000); assert_eq!(date, ymdhms(1997, 9, 26, 23, 30, 10)); date -= Duration::days(10); assert_eq!(date, ymdhms(1997, 9, 16, 23, 30, 10)); } #[test] fn test_datetime_timestamp() { let to_timestamp = |y,m,d,h,n,s| NaiveDate::from_ymd(y,m,d).and_hms(h,n,s).timestamp(); assert_eq!(to_timestamp(1969, 12, 31, 23, 59, 59), -1); assert_eq!(to_timestamp(1970, 1, 1, 0, 0, 0), 0); assert_eq!(to_timestamp(1970, 1, 1, 0, 0, 1), 1); assert_eq!(to_timestamp(2001, 9, 9, 1, 46, 40), 1_000_000_000); assert_eq!(to_timestamp(2038, 1, 19, 3, 14, 7), 0x7fffffff); } #[test] fn test_datetime_from_str() { // valid cases let valid = [ "2015-2-18T23:16:9.15", "-77-02-18T23:16:09", " +82701 - 05 - 6 T 15 : 9 : 60.898989898989 ", ]; for &s in &valid { let d = match s.parse::() { Ok(d) => d, Err(e) => panic!("parsing `{}` has failed: {}", s, e) }; let s_ = format!("{:?}", d); // `s` and `s_` may differ, but `s.parse()` and `s_.parse()` must be same let d_ = match s_.parse::() { Ok(d) => d, Err(e) => panic!("`{}` is parsed into `{:?}`, but reparsing that has failed: {}", s, d, e) }; assert!(d == d_, "`{}` is parsed into `{:?}`, but reparsed result \ `{:?}` does not match", s, d, d_); } // some invalid cases // since `ParseErrorKind` is private, all we can do is to check if there was an error assert!("".parse::().is_err()); assert!("x".parse::().is_err()); assert!("15".parse::().is_err()); assert!("15:8:9".parse::().is_err()); assert!("15-8-9".parse::().is_err()); assert!("2015-15-15T15:15:15".parse::().is_err()); assert!("2012-12-12T12:12:12x".parse::().is_err()); assert!("2012-123-12T12:12:12".parse::().is_err()); assert!("+ 82701-123-12T12:12:12".parse::().is_err()); assert!("+802701-123-12T12:12:12".parse::().is_err()); // out-of-bound } #[test] fn test_datetime_parse_from_str() { let ymdhms = |y,m,d,h,n,s| NaiveDate::from_ymd(y,m,d).and_hms(h,n,s); let ymdhmsn = |y,m,d,h,n,s,nano| NaiveDate::from_ymd(y, m, d).and_hms_nano(h, n, s, nano); assert_eq!(NaiveDateTime::parse_from_str("2014-5-7T12:34:56+09:30", "%Y-%m-%dT%H:%M:%S%z"), Ok(ymdhms(2014, 5, 7, 12, 34, 56))); // ignore offset assert_eq!(NaiveDateTime::parse_from_str("2015-W06-1 000000", "%G-W%V-%u%H%M%S"), Ok(ymdhms(2015, 2, 2, 0, 0, 0))); assert_eq!(NaiveDateTime::parse_from_str("Fri, 09 Aug 2013 23:54:35 GMT", "%a, %d %b %Y %H:%M:%S GMT"), Ok(ymdhms(2013, 8, 9, 23, 54, 35))); assert!(NaiveDateTime::parse_from_str("Sat, 09 Aug 2013 23:54:35 GMT", "%a, %d %b %Y %H:%M:%S GMT").is_err()); assert!(NaiveDateTime::parse_from_str("2014-5-7 12:3456", "%Y-%m-%d %H:%M:%S").is_err()); assert!(NaiveDateTime::parse_from_str("12:34:56", "%H:%M:%S").is_err()); // insufficient assert_eq!(NaiveDateTime::parse_from_str("1441497364", "%s"), Ok(ymdhms(2015, 9, 5, 23, 56, 4))); assert_eq!(NaiveDateTime::parse_from_str("1283929614.1234", "%s.%f"), Ok(ymdhmsn(2010, 9, 8, 7, 6, 54, 1234))); assert_eq!(NaiveDateTime::parse_from_str("1441497364.649", "%s%.3f"), Ok(ymdhmsn(2015, 9, 5, 23, 56, 4, 649000000))); assert_eq!(NaiveDateTime::parse_from_str("1497854303.087654", "%s%.6f"), Ok(ymdhmsn(2017, 6, 19, 6, 38, 23, 87654000))); assert_eq!(NaiveDateTime::parse_from_str("1437742189.918273645", "%s%.9f"), Ok(ymdhmsn(2015, 7, 24, 12, 49, 49, 918273645))); } #[test] fn test_datetime_format() { let dt = NaiveDate::from_ymd(2010, 9, 8).and_hms_milli(7, 6, 54, 321); assert_eq!(dt.format("%c").to_string(), "Wed Sep 8 07:06:54 2010"); assert_eq!(dt.format("%s").to_string(), "1283929614"); assert_eq!(dt.format("%t%n%%%n%t").to_string(), "\t\n%\n\t"); // a horror of leap second: coming near to you. let dt = NaiveDate::from_ymd(2012, 6, 30).and_hms_milli(23, 59, 59, 1_000); assert_eq!(dt.format("%c").to_string(), "Sat Jun 30 23:59:60 2012"); assert_eq!(dt.format("%s").to_string(), "1341100799"); // not 1341100800, it's intentional. } #[test] fn test_datetime_add_sub_invariant() { // issue #37 let base = NaiveDate::from_ymd(2000, 1, 1).and_hms(0, 0, 0); let t = -946684799990000; let time = base + Duration::microseconds(t); assert_eq!(t, time.signed_duration_since(base).num_microseconds().unwrap()); } #[test] fn test_nanosecond_range() { const A_BILLION: i64 = 1_000_000_000; let maximum = "2262-04-11T23:47:16.854775804"; let parsed: NaiveDateTime = maximum.parse().unwrap(); let nanos = parsed.timestamp_nanos(); assert_eq!( parsed, NaiveDateTime::from_timestamp(nanos / A_BILLION, (nanos % A_BILLION) as u32) ); let minimum = "1677-09-21T00:12:44.000000000"; let parsed: NaiveDateTime = minimum.parse().unwrap(); let nanos = parsed.timestamp_nanos(); assert_eq!( parsed, NaiveDateTime::from_timestamp(nanos / A_BILLION, (nanos % A_BILLION) as u32) ); } }