//! Michael-Scott lock-free queue. //! //! Usable with any number of producers and consumers. //! //! Michael and Scott. Simple, Fast, and Practical Non-Blocking and Blocking Concurrent Queue //! Algorithms. PODC 1996. //! //! Simon Doherty, Lindsay Groves, Victor Luchangco, and Mark Moir. 2004b. Formal Verification of a //! Practical Lock-Free Queue Algorithm. use core::mem::MaybeUninit; use core::sync::atomic::Ordering::{Acquire, Relaxed, Release}; use crossbeam_utils::CachePadded; use crate::{unprotected, Atomic, Guard, Owned, Shared}; // The representation here is a singly-linked list, with a sentinel node at the front. In general // the `tail` pointer may lag behind the actual tail. Non-sentinel nodes are either all `Data` or // all `Blocked` (requests for data from blocked threads). #[derive(Debug)] pub struct Queue { head: CachePadded>>, tail: CachePadded>>, } struct Node { /// The slot in which a value of type `T` can be stored. /// /// The type of `data` is `MaybeUninit` because a `Node` doesn't always contain a `T`. /// For example, the sentinel node in a queue never contains a value: its slot is always empty. /// Other nodes start their life with a push operation and contain a value until it gets popped /// out. After that such empty nodes get added to the collector for destruction. data: MaybeUninit, next: Atomic>, } // Any particular `T` should never be accessed concurrently, so no need for `Sync`. unsafe impl Sync for Queue {} unsafe impl Send for Queue {} impl Queue { /// Create a new, empty queue. pub fn new() -> Queue { let q = Queue { head: CachePadded::new(Atomic::null()), tail: CachePadded::new(Atomic::null()), }; let sentinel = Owned::new(Node { data: MaybeUninit::uninit(), next: Atomic::null(), }); unsafe { let guard = unprotected(); let sentinel = sentinel.into_shared(guard); q.head.store(sentinel, Relaxed); q.tail.store(sentinel, Relaxed); q } } /// Attempts to atomically place `n` into the `next` pointer of `onto`, and returns `true` on /// success. The queue's `tail` pointer may be updated. #[inline(always)] fn push_internal( &self, onto: Shared<'_, Node>, new: Shared<'_, Node>, guard: &Guard, ) -> bool { // is `onto` the actual tail? let o = unsafe { onto.deref() }; let next = o.next.load(Acquire, guard); if unsafe { next.as_ref().is_some() } { // if not, try to "help" by moving the tail pointer forward let _ = self.tail.compare_and_set(onto, next, Release, guard); false } else { // looks like the actual tail; attempt to link in `n` let result = o .next .compare_and_set(Shared::null(), new, Release, guard) .is_ok(); if result { // try to move the tail pointer forward let _ = self.tail.compare_and_set(onto, new, Release, guard); } result } } /// Adds `t` to the back of the queue, possibly waking up threads blocked on `pop`. pub fn push(&self, t: T, guard: &Guard) { let new = Owned::new(Node { data: MaybeUninit::new(t), next: Atomic::null(), }); let new = Owned::into_shared(new, guard); loop { // We push onto the tail, so we'll start optimistically by looking there first. let tail = self.tail.load(Acquire, guard); // Attempt to push onto the `tail` snapshot; fails if `tail.next` has changed. if self.push_internal(tail, new, guard) { break; } } } /// Attempts to pop a data node. `Ok(None)` if queue is empty; `Err(())` if lost race to pop. #[inline(always)] fn pop_internal(&self, guard: &Guard) -> Result, ()> { let head = self.head.load(Acquire, guard); let h = unsafe { head.deref() }; let next = h.next.load(Acquire, guard); match unsafe { next.as_ref() } { Some(n) => unsafe { self.head .compare_and_set(head, next, Release, guard) .map(|_| { let tail = self.tail.load(Relaxed, guard); // Advance the tail so that we don't retire a pointer to a reachable node. if head == tail { let _ = self.tail.compare_and_set(tail, next, Release, guard); } guard.defer_destroy(head); // TODO: Replace with MaybeUninit::read when api is stable Some(n.data.as_ptr().read()) }) .map_err(|_| ()) }, None => Ok(None), } } /// Attempts to pop a data node, if the data satisfies the given condition. `Ok(None)` if queue /// is empty or the data does not satisfy the condition; `Err(())` if lost race to pop. #[inline(always)] fn pop_if_internal(&self, condition: F, guard: &Guard) -> Result, ()> where T: Sync, F: Fn(&T) -> bool, { let head = self.head.load(Acquire, guard); let h = unsafe { head.deref() }; let next = h.next.load(Acquire, guard); match unsafe { next.as_ref() } { Some(n) if condition(unsafe { &*n.data.as_ptr() }) => unsafe { self.head .compare_and_set(head, next, Release, guard) .map(|_| { let tail = self.tail.load(Relaxed, guard); // Advance the tail so that we don't retire a pointer to a reachable node. if head == tail { let _ = self.tail.compare_and_set(tail, next, Release, guard); } guard.defer_destroy(head); Some(n.data.as_ptr().read()) }) .map_err(|_| ()) }, None | Some(_) => Ok(None), } } /// Attempts to dequeue from the front. /// /// Returns `None` if the queue is observed to be empty. pub fn try_pop(&self, guard: &Guard) -> Option { loop { if let Ok(head) = self.pop_internal(guard) { return head; } } } /// Attempts to dequeue from the front, if the item satisfies the given condition. /// /// Returns `None` if the queue is observed to be empty, or the head does not satisfy the given /// condition. pub fn try_pop_if(&self, condition: F, guard: &Guard) -> Option where T: Sync, F: Fn(&T) -> bool, { loop { if let Ok(head) = self.pop_if_internal(&condition, guard) { return head; } } } } impl Drop for Queue { fn drop(&mut self) { unsafe { let guard = unprotected(); while self.try_pop(guard).is_some() {} // Destroy the remaining sentinel node. let sentinel = self.head.load(Relaxed, guard); drop(sentinel.into_owned()); } } } #[cfg(test)] mod test { use super::*; use crate::pin; use crossbeam_utils::thread; struct Queue { queue: super::Queue, } impl Queue { pub fn new() -> Queue { Queue { queue: super::Queue::new(), } } pub fn push(&self, t: T) { let guard = &pin(); self.queue.push(t, guard); } pub fn is_empty(&self) -> bool { let guard = &pin(); let head = self.queue.head.load(Acquire, guard); let h = unsafe { head.deref() }; h.next.load(Acquire, guard).is_null() } pub fn try_pop(&self) -> Option { let guard = &pin(); self.queue.try_pop(guard) } pub fn pop(&self) -> T { loop { match self.try_pop() { None => continue, Some(t) => return t, } } } } const CONC_COUNT: i64 = 1000000; #[test] fn push_try_pop_1() { let q: Queue = Queue::new(); assert!(q.is_empty()); q.push(37); assert!(!q.is_empty()); assert_eq!(q.try_pop(), Some(37)); assert!(q.is_empty()); } #[test] fn push_try_pop_2() { let q: Queue = Queue::new(); assert!(q.is_empty()); q.push(37); q.push(48); assert_eq!(q.try_pop(), Some(37)); assert!(!q.is_empty()); assert_eq!(q.try_pop(), Some(48)); assert!(q.is_empty()); } #[test] fn push_try_pop_many_seq() { let q: Queue = Queue::new(); assert!(q.is_empty()); for i in 0..200 { q.push(i) } assert!(!q.is_empty()); for i in 0..200 { assert_eq!(q.try_pop(), Some(i)); } assert!(q.is_empty()); } #[test] fn push_pop_1() { let q: Queue = Queue::new(); assert!(q.is_empty()); q.push(37); assert!(!q.is_empty()); assert_eq!(q.pop(), 37); assert!(q.is_empty()); } #[test] fn push_pop_2() { let q: Queue = Queue::new(); q.push(37); q.push(48); assert_eq!(q.pop(), 37); assert_eq!(q.pop(), 48); } #[test] fn push_pop_many_seq() { let q: Queue = Queue::new(); assert!(q.is_empty()); for i in 0..200 { q.push(i) } assert!(!q.is_empty()); for i in 0..200 { assert_eq!(q.pop(), i); } assert!(q.is_empty()); } #[test] fn push_try_pop_many_spsc() { let q: Queue = Queue::new(); assert!(q.is_empty()); thread::scope(|scope| { scope.spawn(|_| { let mut next = 0; while next < CONC_COUNT { if let Some(elem) = q.try_pop() { assert_eq!(elem, next); next += 1; } } }); for i in 0..CONC_COUNT { q.push(i) } }) .unwrap(); } #[test] fn push_try_pop_many_spmc() { fn recv(_t: i32, q: &Queue) { let mut cur = -1; for _i in 0..CONC_COUNT { if let Some(elem) = q.try_pop() { assert!(elem > cur); cur = elem; if cur == CONC_COUNT - 1 { break; } } } } let q: Queue = Queue::new(); assert!(q.is_empty()); thread::scope(|scope| { for i in 0..3 { let q = &q; scope.spawn(move |_| recv(i, q)); } scope.spawn(|_| { for i in 0..CONC_COUNT { q.push(i); } }); }) .unwrap(); } #[test] fn push_try_pop_many_mpmc() { enum LR { Left(i64), Right(i64), } let q: Queue = Queue::new(); assert!(q.is_empty()); thread::scope(|scope| { for _t in 0..2 { scope.spawn(|_| { for i in CONC_COUNT - 1..CONC_COUNT { q.push(LR::Left(i)) } }); scope.spawn(|_| { for i in CONC_COUNT - 1..CONC_COUNT { q.push(LR::Right(i)) } }); scope.spawn(|_| { let mut vl = vec![]; let mut vr = vec![]; for _i in 0..CONC_COUNT { match q.try_pop() { Some(LR::Left(x)) => vl.push(x), Some(LR::Right(x)) => vr.push(x), _ => {} } } let mut vl2 = vl.clone(); let mut vr2 = vr.clone(); vl2.sort(); vr2.sort(); assert_eq!(vl, vl2); assert_eq!(vr, vr2); }); } }) .unwrap(); } #[test] fn push_pop_many_spsc() { let q: Queue = Queue::new(); thread::scope(|scope| { scope.spawn(|_| { let mut next = 0; while next < CONC_COUNT { assert_eq!(q.pop(), next); next += 1; } }); for i in 0..CONC_COUNT { q.push(i) } }) .unwrap(); assert!(q.is_empty()); } #[test] fn is_empty_dont_pop() { let q: Queue = Queue::new(); q.push(20); q.push(20); assert!(!q.is_empty()); assert!(!q.is_empty()); assert!(q.try_pop().is_some()); } }