use crate::utils::{ add_where_clauses_for_new_ident, AttrParams, DeriveType, MultiFieldData, State, }; use proc_macro2::{Span, TokenStream}; use quote::{quote, ToTokens}; use std::collections::HashMap; use syn::{parse::Result, DeriveInput, Ident, Index}; /// Provides the hook to expand `#[derive(From)]` into an implementation of `From` pub fn expand(input: &DeriveInput, trait_name: &'static str) -> Result { let state = State::with_attr_params( input, trait_name, quote!(::core::convert), trait_name.to_lowercase(), AttrParams { enum_: vec!["forward", "ignore"], variant: vec!["forward", "ignore"], struct_: vec!["forward"], field: vec!["forward"], }, )?; if state.derive_type == DeriveType::Enum { Ok(enum_from(input, state)) } else { Ok(struct_from(input, &state)) } } pub fn struct_from(input: &DeriveInput, state: &State) -> TokenStream { let multi_field_data = state.enabled_fields_data(); let MultiFieldData { fields, infos, input_type, trait_path, .. } = multi_field_data.clone(); let mut new_generics = input.generics.clone(); let sub_items: Vec<_> = infos .iter() .zip(fields.iter()) .enumerate() .map(|(i, (info, field))| { let field_type = &field.ty; let variable = if fields.len() == 1 { quote!(original) } else { let tuple_index = Index::from(i); quote!(original.#tuple_index) }; if info.forward { let type_param = &Ident::new(&format!("__FromT{}", i), Span::call_site()); let sub_trait_path = quote!(#trait_path<#type_param>); let type_where_clauses = quote! { where #field_type: #sub_trait_path }; new_generics = add_where_clauses_for_new_ident( &input.generics, &[field], type_param, type_where_clauses, true, ); let casted_trait = quote!(<#field_type as #sub_trait_path>); (quote!(#casted_trait::from(#variable)), quote!(#type_param)) } else { (variable, quote!(#field_type)) } }) .collect(); let initializers: Vec<_> = sub_items.iter().map(|i| &i.0).collect(); let from_types: Vec<_> = sub_items.iter().map(|i| &i.1).collect(); let body = multi_field_data.initializer(&initializers); let (impl_generics, _, where_clause) = new_generics.split_for_impl(); let (_, ty_generics, _) = input.generics.split_for_impl(); quote! { impl#impl_generics #trait_path<(#(#from_types),*)> for #input_type#ty_generics #where_clause { #[allow(unused_variables)] #[inline] fn from(original: (#(#from_types),*)) -> #input_type#ty_generics { #body } } } } fn enum_from(input: &DeriveInput, state: State) -> TokenStream { let mut tokens = TokenStream::new(); let mut variants_per_types = HashMap::new(); for variant_state in state.enabled_variant_data().variant_states { let multi_field_data = variant_state.enabled_fields_data(); let MultiFieldData { field_types, .. } = multi_field_data.clone(); variants_per_types .entry(field_types.clone()) .or_insert_with(Vec::new) .push(variant_state); } for (ref field_types, ref variant_states) in variants_per_types { for variant_state in variant_states { let multi_field_data = variant_state.enabled_fields_data(); let MultiFieldData { variant_info, infos, .. } = multi_field_data.clone(); // If there would be a conflict on a empty tuple derive, ignore the // variants that are not explicitely enabled or have explicitely enabled // or disabled fields if field_types.is_empty() && variant_states.len() > 1 && !std::iter::once(variant_info) .chain(infos) .any(|info| info.info.enabled.is_some()) { continue; } struct_from(input, variant_state).to_tokens(&mut tokens); } } tokens }