//! The enum [**Either**](enum.Either.html). //! //! **Crate features:** //! //! * `"use_std"` //! Enabled by default. Disable to make the library `#![no_std]`. //! #![doc(html_root_url = "https://docs.rs/either/1/")] #![cfg_attr(all(not(test), not(feature = "use_std")), no_std)] #[cfg(all(not(test), not(feature = "use_std")))] extern crate core as std; use std::convert::{AsRef, AsMut}; use std::fmt; use std::iter; use std::ops::Deref; use std::ops::DerefMut; #[cfg(any(test, feature = "use_std"))] use std::io::{self, Write, Read, BufRead}; #[cfg(any(test, feature = "use_std"))] use std::error::Error; pub use Either::{Left, Right}; /// `Either` represents an alternative holding one value out of /// either of the two possible values. /// /// `Either` is a general purpose sum type of two parts. For representing /// success or error, use the regular `Result` instead. #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)] pub enum Either { /// A value of type `L`. Left(L), /// A value of type `R`. Right(R), } macro_rules! either { ($value:expr, $pattern:pat => $result:expr) => ( match $value { Either::Left($pattern) => $result, Either::Right($pattern) => $result, } ) } /// Macro for unwrapping the left side of an `Either`, which fails early /// with the opposite side. Can only be used in functions that return /// `Either` because of the early return of `Right` that it provides. /// /// See also `try_right!` for its dual, which applies the same just to the /// right side. /// /// # Example /// /// ``` /// #[macro_use] extern crate either; /// use either::{Either, Left, Right}; /// /// fn twice(wrapper: Either) -> Either { /// let value = try_left!(wrapper); /// Left(value * 2) /// } /// /// fn main() { /// assert_eq!(twice(Left(2)), Left(4)); /// assert_eq!(twice(Right("ups")), Right("ups")); /// } /// ``` #[macro_export] macro_rules! try_left { ($expr:expr) => ( match $expr { $crate::Left(val) => val, $crate::Right(err) => return $crate::Right(::std::convert::From::from(err)) } ) } /// Dual to `try_left!`, see its documentation for more information. #[macro_export] macro_rules! try_right { ($expr:expr) => ( match $expr { $crate::Left(err) => return $crate::Left(::std::convert::From::from(err)), $crate::Right(val) => val } ) } impl Either { /// Return true if the value is the `Left` variant. /// /// ``` /// use either::*; /// /// let values = [Left(1), Right("the right value")]; /// assert_eq!(values[0].is_left(), true); /// assert_eq!(values[1].is_left(), false); /// ``` pub fn is_left(&self) -> bool { match *self { Left(_) => true, Right(_) => false, } } /// Return true if the value is the `Right` variant. /// /// ``` /// use either::*; /// /// let values = [Left(1), Right("the right value")]; /// assert_eq!(values[0].is_right(), false); /// assert_eq!(values[1].is_right(), true); /// ``` pub fn is_right(&self) -> bool { !self.is_left() } /// Convert the left side of `Either` to an `Option`. /// /// ``` /// use either::*; /// /// let left: Either<_, ()> = Left("some value"); /// assert_eq!(left.left(), Some("some value")); /// /// let right: Either<(), _> = Right(321); /// assert_eq!(right.left(), None); /// ``` pub fn left(self) -> Option { match self { Left(l) => Some(l), Right(_) => None, } } /// Convert the right side of `Either` to an `Option`. /// /// ``` /// use either::*; /// /// let left: Either<_, ()> = Left("some value"); /// assert_eq!(left.right(), None); /// /// let right: Either<(), _> = Right(321); /// assert_eq!(right.right(), Some(321)); /// ``` pub fn right(self) -> Option { match self { Left(_) => None, Right(r) => Some(r), } } /// Convert `&Either` to `Either<&L, &R>`. /// /// ``` /// use either::*; /// /// let left: Either<_, ()> = Left("some value"); /// assert_eq!(left.as_ref(), Left(&"some value")); /// /// let right: Either<(), _> = Right("some value"); /// assert_eq!(right.as_ref(), Right(&"some value")); /// ``` pub fn as_ref(&self) -> Either<&L, &R> { match *self { Left(ref inner) => Left(inner), Right(ref inner) => Right(inner), } } /// Convert `&mut Either` to `Either<&mut L, &mut R>`. /// /// ``` /// use either::*; /// /// fn mutate_left(value: &mut Either) { /// if let Some(l) = value.as_mut().left() { /// *l = 999; /// } /// } /// /// let mut left = Left(123); /// let mut right = Right(123); /// mutate_left(&mut left); /// mutate_left(&mut right); /// assert_eq!(left, Left(999)); /// assert_eq!(right, Right(123)); /// ``` pub fn as_mut(&mut self) -> Either<&mut L, &mut R> { match *self { Left(ref mut inner) => Left(inner), Right(ref mut inner) => Right(inner), } } /// Convert `Either` to `Either`. /// /// ``` /// use either::*; /// /// let left: Either<_, ()> = Left(123); /// assert_eq!(left.flip(), Right(123)); /// /// let right: Either<(), _> = Right("some value"); /// assert_eq!(right.flip(), Left("some value")); /// ``` pub fn flip(self) -> Either { match self { Left(l) => Right(l), Right(r) => Left(r), } } /// Apply the function `f` on the value in the `Left` variant if it is present rewrapping the /// result in `Left`. /// /// ``` /// use either::*; /// /// let left: Either<_, u32> = Left(123); /// assert_eq!(left.map_left(|x| x * 2), Left(246)); /// /// let right: Either = Right(123); /// assert_eq!(right.map_left(|x| x * 2), Right(123)); /// ``` pub fn map_left(self, f: F) -> Either where F: FnOnce(L) -> M { match self { Left(l) => Left(f(l)), Right(r) => Right(r), } } /// Apply the function `f` on the value in the `Right` variant if it is present rewrapping the /// result in `Right`. /// /// ``` /// use either::*; /// /// let left: Either<_, u32> = Left(123); /// assert_eq!(left.map_right(|x| x * 2), Left(123)); /// /// let right: Either = Right(123); /// assert_eq!(right.map_right(|x| x * 2), Right(246)); /// ``` pub fn map_right(self, f: F) -> Either where F: FnOnce(R) -> S { match self { Left(l) => Left(l), Right(r) => Right(f(r)), } } /// Apply one of two functions depending on contents, unifying their result. If the value is /// `Left(L)` then the first function `f` is applied; if it is `Right(R)` then the second /// function `g` is applied. /// /// ``` /// use either::*; /// /// fn square(n: u32) -> i32 { (n * n) as i32 } /// fn negate(n: i32) -> i32 { -n } /// /// let left: Either = Left(4); /// assert_eq!(left.either(square, negate), 16); /// /// let right: Either = Right(-4); /// assert_eq!(right.either(square, negate), 4); /// ``` pub fn either(self, f: F, g: G) -> T where F: FnOnce(L) -> T, G: FnOnce(R) -> T { match self { Left(l) => f(l), Right(r) => g(r), } } /// Apply the function `f` on the value in the `Left` variant if it is present. /// /// ``` /// use either::*; /// /// let left: Either<_, u32> = Left(123); /// assert_eq!(left.left_and_then::<_,()>(|x| Right(x * 2)), Right(246)); /// /// let right: Either = Right(123); /// assert_eq!(right.left_and_then(|x| Right::<(), _>(x * 2)), Right(123)); /// ``` pub fn left_and_then(self, f: F) -> Either where F: FnOnce(L) -> Either { match self { Left(l) => f(l), Right(r) => Right(r), } } /// Apply the function `f` on the value in the `Right` variant if it is present. /// /// ``` /// use either::*; /// /// let left: Either<_, u32> = Left(123); /// assert_eq!(left.right_and_then(|x| Right(x * 2)), Left(123)); /// /// let right: Either = Right(123); /// assert_eq!(right.right_and_then(|x| Right(x * 2)), Right(246)); /// ``` pub fn right_and_then(self, f: F) -> Either where F: FnOnce(R) -> Either { match self { Left(l) => Left(l), Right(r) => f(r), } } } /// Convert from `Result` to `Either` with `Ok => Right` and `Err => Left`. impl From> for Either { fn from(r: Result) -> Self { match r { Err(e) => Left(e), Ok(o) => Right(o), } } } /// Convert from `Either` to `Result` with `Right => Ok` and `Left => Err`. impl Into> for Either { fn into(self) -> Result { match self { Left(l) => Err(l), Right(r) => Ok(r), } } } impl Extend for Either where L: Extend, R: Extend { fn extend(&mut self, iter: T) where T: IntoIterator { either!(*self, ref mut inner => inner.extend(iter)) } } /// `Either` is an iterator if both `L` and `R` are iterators. impl Iterator for Either where L: Iterator, R: Iterator { type Item = L::Item; fn next(&mut self) -> Option { either!(*self, ref mut inner => inner.next()) } fn size_hint(&self) -> (usize, Option) { either!(*self, ref inner => inner.size_hint()) } fn fold(self, init: Acc, f: G) -> Acc where G: FnMut(Acc, Self::Item) -> Acc, { either!(self, inner => inner.fold(init, f)) } fn count(self) -> usize { either!(self, inner => inner.count()) } fn last(self) -> Option { either!(self, inner => inner.last()) } fn nth(&mut self, n: usize) -> Option { either!(*self, ref mut inner => inner.nth(n)) } fn collect(self) -> B where B: iter::FromIterator { either!(self, inner => inner.collect()) } fn all(&mut self, f: F) -> bool where F: FnMut(Self::Item) -> bool { either!(*self, ref mut inner => inner.all(f)) } } impl DoubleEndedIterator for Either where L: DoubleEndedIterator, R: DoubleEndedIterator { fn next_back(&mut self) -> Option { either!(*self, ref mut inner => inner.next_back()) } } impl ExactSizeIterator for Either where L: ExactSizeIterator, R: ExactSizeIterator { } #[cfg(any(test, feature = "use_std"))] /// `Either` implements `Read` if both `L` and `R` do. /// /// Requires crate feature `"use_std"` impl Read for Either where L: Read, R: Read { fn read(&mut self, buf: &mut [u8]) -> io::Result { either!(*self, ref mut inner => inner.read(buf)) } fn read_to_end(&mut self, buf: &mut Vec) -> io::Result { either!(*self, ref mut inner => inner.read_to_end(buf)) } } #[cfg(any(test, feature = "use_std"))] /// Requires crate feature `"use_std"` impl BufRead for Either where L: BufRead, R: BufRead { fn fill_buf(&mut self) -> io::Result<&[u8]> { either!(*self, ref mut inner => inner.fill_buf()) } fn consume(&mut self, amt: usize) { either!(*self, ref mut inner => inner.consume(amt)) } } #[cfg(any(test, feature = "use_std"))] /// `Either` implements `Write` if both `L` and `R` do. /// /// Requires crate feature `"use_std"` impl Write for Either where L: Write, R: Write { fn write(&mut self, buf: &[u8]) -> io::Result { either!(*self, ref mut inner => inner.write(buf)) } fn flush(&mut self) -> io::Result<()> { either!(*self, ref mut inner => inner.flush()) } } impl AsRef for Either where L: AsRef, R: AsRef { fn as_ref(&self) -> &Target { either!(*self, ref inner => inner.as_ref()) } } impl AsMut for Either where L: AsMut, R: AsMut { fn as_mut(&mut self) -> &mut Target { either!(*self, ref mut inner => inner.as_mut()) } } impl Deref for Either where L: Deref, R: Deref { type Target = L::Target; fn deref(&self) -> &Self::Target { either!(*self, ref inner => &*inner) } } impl DerefMut for Either where L: DerefMut, R: DerefMut { fn deref_mut(&mut self) -> &mut Self::Target { either!(*self, ref mut inner => &mut *inner) } } #[cfg(any(test, feature = "use_std"))] /// `Either` implements `Error` if *both* `L` and `R` implement it. impl Error for Either where L: Error, R: Error { fn description(&self) -> &str { either!(*self, ref inner => inner.description()) } fn cause(&self) -> Option<&Error> { either!(*self, ref inner => inner.cause()) } } impl fmt::Display for Either where L: fmt::Display, R: fmt::Display { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { either!(*self, ref inner => inner.fmt(f)) } } #[test] fn basic() { let mut e = Left(2); let r = Right(2); assert_eq!(e, Left(2)); e = r; assert_eq!(e, Right(2)); assert_eq!(e.left(), None); assert_eq!(e.right(), Some(2)); assert_eq!(e.as_ref().right(), Some(&2)); assert_eq!(e.as_mut().right(), Some(&mut 2)); } #[test] fn macros() { fn a() -> Either { let x: u32 = try_left!(Right(1337u32)); Left(x * 2) } assert_eq!(a(), Right(1337)); fn b() -> Either { Right(try_right!(Left("foo bar"))) } assert_eq!(b(), Left(String::from("foo bar"))); } #[test] fn deref() { fn is_str(_: &str) {} let value: Either = Left(String::from("test")); is_str(&*value); } #[test] fn iter() { let x = 3; let mut iter = match x { 1...3 => Left(0..10), _ => Right(17..), }; assert_eq!(iter.next(), Some(0)); assert_eq!(iter.count(), 9); } #[test] fn read_write() { use std::io; let use_stdio = false; let mockdata = [0xff; 256]; let mut reader = if use_stdio { Left(io::stdin()) } else { Right(&mockdata[..]) }; let mut buf = [0u8; 16]; assert_eq!(reader.read(&mut buf).unwrap(), buf.len()); assert_eq!(&buf, &mockdata[..buf.len()]); let mut mockbuf = [0u8; 256]; let mut writer = if use_stdio { Left(io::stdout()) } else { Right(&mut mockbuf[..]) }; let buf = [1u8; 16]; assert_eq!(writer.write(&buf).unwrap(), buf.len()); } #[test] fn error() { let invalid_utf8 = b"\xff"; let res = || -> Result<_, Either<_, _>> { try!(::std::str::from_utf8(invalid_utf8).map_err(Left)); try!("x".parse::().map_err(Right)); Ok(()) }(); assert!(res.is_err()); res.unwrap_err().description(); // make sure this can be called }