// Copyright 2013 The Servo Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. #![cfg_attr(feature = "cargo-clippy", allow(just_underscores_and_digits))] use super::{UnknownUnit, Angle}; #[cfg(feature = "mint")] use mint; use crate::num::{One, Zero}; use crate::point::{Point2D, point2}; use crate::vector::{Vector2D, vec2}; use crate::rect::Rect; use crate::box2d::Box2D; use crate::transform3d::Transform3D; use core::ops::{Add, Mul, Div, Sub}; use core::marker::PhantomData; use core::cmp::{Eq, PartialEq}; use core::hash::{Hash}; use crate::approxeq::ApproxEq; use crate::trig::Trig; use core::fmt; use num_traits::NumCast; #[cfg(feature = "serde")] use serde::{Deserialize, Serialize}; /// A 2d transform represented by a column-major 3 by 3 matrix, compressed down to 3 by 2. /// /// Transforms can be parametrized over the source and destination units, to describe a /// transformation from a space to another. /// For example, `Transform2D::transform_point4d` /// takes a `Point2D` and returns a `Point2D`. /// /// Transforms expose a set of convenience methods for pre- and post-transformations. /// Pre-transformations (`pre_*` methods) correspond to adding an operation that is /// applied before the rest of the transformation, while post-transformations (`then_*` /// methods) add an operation that is applied after. /// /// The matrix representation is conceptually equivalent to a 3 by 3 matrix transformation /// compressed to 3 by 2 with the components that aren't needed to describe the set of 2d /// transformations we are interested in implicitly defined: /// /// ```text /// | m11 m12 0 | |x| |x'| /// | m21 m22 0 | x |y| = |y'| /// | m31 m32 1 | |1| |w | /// ``` /// /// When translating Transform2D into general matrix representations, consider that the /// representation follows the column-major notation with column vectors. /// /// The translation terms are m31 and m32. #[repr(C)] #[cfg_attr(feature = "serde", derive(Serialize, Deserialize))] #[cfg_attr( feature = "serde", serde(bound(serialize = "T: Serialize", deserialize = "T: Deserialize<'de>")) )] pub struct Transform2D { pub m11: T, pub m12: T, pub m21: T, pub m22: T, pub m31: T, pub m32: T, #[doc(hidden)] pub _unit: PhantomData<(Src, Dst)>, } impl Copy for Transform2D {} impl Clone for Transform2D { fn clone(&self) -> Self { Transform2D { m11: self.m11.clone(), m12: self.m12.clone(), m21: self.m21.clone(), m22: self.m22.clone(), m31: self.m31.clone(), m32: self.m32.clone(), _unit: PhantomData, } } } impl Eq for Transform2D where T: Eq {} impl PartialEq for Transform2D where T: PartialEq { fn eq(&self, other: &Self) -> bool { self.m11 == other.m11 && self.m12 == other.m12 && self.m21 == other.m21 && self.m22 == other.m22 && self.m31 == other.m31 && self.m32 == other.m32 } } impl Hash for Transform2D where T: Hash { fn hash(&self, h: &mut H) { self.m11.hash(h); self.m12.hash(h); self.m21.hash(h); self.m22.hash(h); self.m31.hash(h); self.m32.hash(h); } } impl Transform2D { /// Create a transform specifying its components in using the column-major-column-vector /// matrix notation. /// /// For example, the translation terms m31 and m32 are the last two parameters parameters. /// /// ``` /// use euclid::default::Transform2D; /// let tx = 1.0; /// let ty = 2.0; /// let translation = Transform2D::new( /// 1.0, 0.0, /// 0.0, 1.0, /// tx, ty, /// ); /// ``` pub const fn new(m11: T, m12: T, m21: T, m22: T, m31: T, m32: T) -> Self { Transform2D { m11, m12, m21, m22, m31, m32, _unit: PhantomData, } } /// Returns true is this transform is approximately equal to the other one, using /// T's default epsilon value. /// /// The same as [`ApproxEq::approx_eq()`] but available without importing trait. /// /// [`ApproxEq::approx_eq()`]: ./approxeq/trait.ApproxEq.html#method.approx_eq #[inline] pub fn approx_eq(&self, other: &Self) -> bool where T : ApproxEq { >::approx_eq(&self, &other) } /// Returns true is this transform is approximately equal to the other one, using /// a provided epsilon value. /// /// The same as [`ApproxEq::approx_eq_eps()`] but available without importing trait. /// /// [`ApproxEq::approx_eq_eps()`]: ./approxeq/trait.ApproxEq.html#method.approx_eq_eps #[inline] pub fn approx_eq_eps(&self, other: &Self, eps: &T) -> bool where T : ApproxEq { >::approx_eq_eps(&self, &other, &eps) } } impl Transform2D { /// Returns an array containing this transform's terms. /// /// The terms are laid out in the same order as they are /// specified in `Transform2D::new`, that is following the /// column-major-column-vector matrix notation. /// /// For example the translation terms are found in the /// last two slots of the array. #[inline] pub fn to_array(&self) -> [T; 6] { [ self.m11, self.m12, self.m21, self.m22, self.m31, self.m32 ] } /// Returns an array containing this transform's terms transposed. /// /// The terms are laid out in transposed order from the same order of /// `Transform3D::new` and `Transform3D::to_array`, that is following /// the row-major-column-vector matrix notation. /// /// For example the translation terms are found at indices 2 and 5 /// in the array. #[inline] pub fn to_array_transposed(&self) -> [T; 6] { [ self.m11, self.m21, self.m31, self.m12, self.m22, self.m32 ] } /// Equivalent to `to_array` with elements packed two at a time /// in an array of arrays. #[inline] pub fn to_arrays(&self) -> [[T; 2]; 3] { [ [self.m11, self.m12], [self.m21, self.m22], [self.m31, self.m32], ] } /// Create a transform providing its components via an array /// of 6 elements instead of as individual parameters. /// /// The order of the components corresponds to the /// column-major-column-vector matrix notation (the same order /// as `Transform2D::new`). #[inline] pub fn from_array(array: [T; 6]) -> Self { Self::new( array[0], array[1], array[2], array[3], array[4], array[5], ) } /// Equivalent to `from_array` with elements packed two at a time /// in an array of arrays. /// /// The order of the components corresponds to the /// column-major-column-vector matrix notation (the same order /// as `Transform3D::new`). #[inline] pub fn from_arrays(array: [[T; 2]; 3]) -> Self { Self::new( array[0][0], array[0][1], array[1][0], array[1][1], array[2][0], array[2][1], ) } /// Drop the units, preserving only the numeric value. #[inline] pub fn to_untyped(&self) -> Transform2D { Transform2D::new( self.m11, self.m12, self.m21, self.m22, self.m31, self.m32 ) } /// Tag a unitless value with units. #[inline] pub fn from_untyped(p: &Transform2D) -> Self { Transform2D::new( p.m11, p.m12, p.m21, p.m22, p.m31, p.m32 ) } /// Returns the same transform with a different source unit. #[inline] pub fn with_source(&self) -> Transform2D { Transform2D::new( self.m11, self.m12, self.m21, self.m22, self.m31, self.m32, ) } /// Returns the same transform with a different destination unit. #[inline] pub fn with_destination(&self) -> Transform2D { Transform2D::new( self.m11, self.m12, self.m21, self.m22, self.m31, self.m32, ) } /// Create a 3D transform from the current transform pub fn to_3d(&self) -> Transform3D where T: Zero + One, { Transform3D::new_2d(self.m11, self.m12, self.m21, self.m22, self.m31, self.m32) } } impl Transform2D { /// Cast from one numeric representation to another, preserving the units. #[inline] pub fn cast(&self) -> Transform2D { self.try_cast().unwrap() } /// Fallible cast from one numeric representation to another, preserving the units. pub fn try_cast(&self) -> Option> { match (NumCast::from(self.m11), NumCast::from(self.m12), NumCast::from(self.m21), NumCast::from(self.m22), NumCast::from(self.m31), NumCast::from(self.m32)) { (Some(m11), Some(m12), Some(m21), Some(m22), Some(m31), Some(m32)) => { Some(Transform2D::new( m11, m12, m21, m22, m31, m32 )) }, _ => None } } } impl Transform2D where T: Zero + One, { /// Create an identity matrix: /// /// ```text /// 1 0 /// 0 1 /// 0 0 /// ``` #[inline] pub fn identity() -> Self { Self::translation(T::zero(), T::zero()) } /// Intentional not public, because it checks for exact equivalence /// while most consumers will probably want some sort of approximate /// equivalence to deal with floating-point errors. fn is_identity(&self) -> bool where T: PartialEq, { *self == Self::identity() } } /// Methods for combining generic transformations impl Transform2D where T: Copy + Add + Mul, { /// Returns the multiplication of the two matrices such that mat's transformation /// applies after self's transformation. #[must_use] pub fn then(&self, mat: &Transform2D) -> Transform2D { Transform2D::new( self.m11 * mat.m11 + self.m12 * mat.m21, self.m11 * mat.m12 + self.m12 * mat.m22, self.m21 * mat.m11 + self.m22 * mat.m21, self.m21 * mat.m12 + self.m22 * mat.m22, self.m31 * mat.m11 + self.m32 * mat.m21 + mat.m31, self.m31 * mat.m12 + self.m32 * mat.m22 + mat.m32, ) } } /// Methods for creating and combining translation transformations impl Transform2D where T: Zero + One, { /// Create a 2d translation transform: /// /// ```text /// 1 0 /// 0 1 /// x y /// ``` #[inline] pub fn translation(x: T, y: T) -> Self { let _0 = || T::zero(); let _1 = || T::one(); Self::new( _1(), _0(), _0(), _1(), x, y, ) } /// Applies a translation after self's transformation and returns the resulting transform. #[inline] #[must_use] pub fn then_translate(&self, v: Vector2D) -> Self where T: Copy + Add + Mul, { self.then(&Transform2D::translation(v.x, v.y)) } /// Applies a translation before self's transformation and returns the resulting transform. #[inline] #[must_use] pub fn pre_translate(&self, v: Vector2D) -> Self where T: Copy + Add + Mul, { Transform2D::translation(v.x, v.y).then(self) } } /// Methods for creating and combining rotation transformations impl Transform2D where T: Copy + Add + Sub + Mul + Zero + Trig, { /// Returns a rotation transform. #[inline] pub fn rotation(theta: Angle) -> Self { let _0 = Zero::zero(); let cos = theta.get().cos(); let sin = theta.get().sin(); Transform2D::new( cos, sin, _0 - sin, cos, _0, _0 ) } /// Applies a rotation after self's transformation and returns the resulting transform. #[inline] #[must_use] pub fn then_rotate(&self, theta: Angle) -> Self { self.then(&Transform2D::rotation(theta)) } /// Applies a rotation before self's transformation and returns the resulting transform. #[inline] #[must_use] pub fn pre_rotate(&self, theta: Angle) -> Self { Transform2D::rotation(theta).then(self) } } /// Methods for creating and combining scale transformations impl Transform2D { /// Create a 2d scale transform: /// /// ```text /// x 0 /// 0 y /// 0 0 /// ``` #[inline] pub fn scale(x: T, y: T) -> Self where T: Zero, { let _0 = || Zero::zero(); Self::new( x, _0(), _0(), y, _0(), _0(), ) } /// Applies a scale after self's transformation and returns the resulting transform. #[inline] #[must_use] pub fn then_scale(&self, x: T, y: T) -> Self where T: Copy + Add + Mul + Zero, { self.then(&Transform2D::scale(x, y)) } /// Applies a scale before self's transformation and returns the resulting transform. #[inline] #[must_use] pub fn pre_scale(&self, x: T, y: T) -> Self where T: Copy + Mul, { Transform2D::new( self.m11 * x, self.m12 * x, self.m21 * y, self.m22 * y, self.m31, self.m32 ) } } /// Methods for apply transformations to objects impl Transform2D where T: Copy + Add + Mul, { /// Returns the given point transformed by this transform. #[inline] #[must_use] pub fn transform_point(&self, point: Point2D) -> Point2D { Point2D::new( point.x * self.m11 + point.y * self.m21 + self.m31, point.x * self.m12 + point.y * self.m22 + self.m32 ) } /// Returns the given vector transformed by this matrix. #[inline] #[must_use] pub fn transform_vector(&self, vec: Vector2D) -> Vector2D { vec2(vec.x * self.m11 + vec.y * self.m21, vec.x * self.m12 + vec.y * self.m22) } /// Returns a rectangle that encompasses the result of transforming the given rectangle by this /// transform. #[inline] #[must_use] pub fn outer_transformed_rect(&self, rect: &Rect) -> Rect where T: Sub + Zero + PartialOrd, { let min = rect.min(); let max = rect.max(); Rect::from_points(&[ self.transform_point(min), self.transform_point(max), self.transform_point(point2(max.x, min.y)), self.transform_point(point2(min.x, max.y)), ]) } /// Returns a box that encompasses the result of transforming the given box by this /// transform. #[inline] #[must_use] pub fn outer_transformed_box(&self, b: &Box2D) -> Box2D where T: Sub + Zero + PartialOrd, { Box2D::from_points(&[ self.transform_point(b.min), self.transform_point(b.max), self.transform_point(point2(b.max.x, b.min.y)), self.transform_point(point2(b.min.x, b.max.y)), ]) } } impl Transform2D where T: Copy + Sub + Mul + Div + PartialEq + Zero + One, { /// Computes and returns the determinant of this transform. pub fn determinant(&self) -> T { self.m11 * self.m22 - self.m12 * self.m21 } /// Returns whether it is possible to compute the inverse transform. #[inline] pub fn is_invertible(&self) -> bool { self.determinant() != Zero::zero() } /// Returns the inverse transform if possible. #[must_use] pub fn inverse(&self) -> Option> { let det = self.determinant(); let _0: T = Zero::zero(); let _1: T = One::one(); if det == _0 { return None; } let inv_det = _1 / det; Some(Transform2D::new( inv_det * self.m22, inv_det * (_0 - self.m12), inv_det * (_0 - self.m21), inv_det * self.m11, inv_det * (self.m21 * self.m32 - self.m22 * self.m31), inv_det * (self.m31 * self.m12 - self.m11 * self.m32), )) } } impl Default for Transform2D where T: Zero + One { /// Returns the [identity transform](#method.identity). fn default() -> Self { Self::identity() } } impl, Src, Dst> ApproxEq for Transform2D { #[inline] fn approx_epsilon() -> T { T::approx_epsilon() } /// Returns true is this transform is approximately equal to the other one, using /// a provided epsilon value. fn approx_eq_eps(&self, other: &Self, eps: &T) -> bool { self.m11.approx_eq_eps(&other.m11, eps) && self.m12.approx_eq_eps(&other.m12, eps) && self.m21.approx_eq_eps(&other.m21, eps) && self.m22.approx_eq_eps(&other.m22, eps) && self.m31.approx_eq_eps(&other.m31, eps) && self.m32.approx_eq_eps(&other.m32, eps) } } impl fmt::Debug for Transform2D where T: Copy + fmt::Debug + PartialEq + One + Zero { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { if self.is_identity() { write!(f, "[I]") } else { self.to_array().fmt(f) } } } #[cfg(feature = "mint")] impl From> for Transform2D { fn from(m: mint::RowMatrix3x2) -> Self { Transform2D { m11: m.x.x, m12: m.x.y, m21: m.y.x, m22: m.y.y, m31: m.z.x, m32: m.z.y, _unit: PhantomData, } } } #[cfg(feature = "mint")] impl Into> for Transform2D { fn into(self) -> mint::RowMatrix3x2 { mint::RowMatrix3x2 { x: mint::Vector2 { x: self.m11, y: self.m12 }, y: mint::Vector2 { x: self.m21, y: self.m22 }, z: mint::Vector2 { x: self.m31, y: self.m32 }, } } } #[cfg(test)] mod test { use super::*; use crate::default; use crate::approxeq::ApproxEq; #[cfg(feature = "mint")] use mint; use core::f32::consts::FRAC_PI_2; type Mat = default::Transform2D; fn rad(v: f32) -> Angle { Angle::radians(v) } #[test] pub fn test_translation() { let t1 = Mat::translation(1.0, 2.0); let t2 = Mat::identity().pre_translate(vec2(1.0, 2.0)); let t3 = Mat::identity().then_translate(vec2(1.0, 2.0)); assert_eq!(t1, t2); assert_eq!(t1, t3); assert_eq!(t1.transform_point(Point2D::new(1.0, 1.0)), Point2D::new(2.0, 3.0)); assert_eq!(t1.then(&t1), Mat::translation(2.0, 4.0)); } #[test] pub fn test_rotation() { let r1 = Mat::rotation(rad(FRAC_PI_2)); let r2 = Mat::identity().pre_rotate(rad(FRAC_PI_2)); let r3 = Mat::identity().then_rotate(rad(FRAC_PI_2)); assert_eq!(r1, r2); assert_eq!(r1, r3); assert!(r1.transform_point(Point2D::new(1.0, 2.0)).approx_eq(&Point2D::new(-2.0, 1.0))); assert!(r1.then(&r1).approx_eq(&Mat::rotation(rad(FRAC_PI_2*2.0)))); } #[test] pub fn test_scale() { let s1 = Mat::scale(2.0, 3.0); let s2 = Mat::identity().pre_scale(2.0, 3.0); let s3 = Mat::identity().then_scale(2.0, 3.0); assert_eq!(s1, s2); assert_eq!(s1, s3); assert!(s1.transform_point(Point2D::new(2.0, 2.0)).approx_eq(&Point2D::new(4.0, 6.0))); } #[test] pub fn test_pre_then_scale() { let m = Mat::rotation(rad(FRAC_PI_2)).then_translate(vec2(6.0, 7.0)); let s = Mat::scale(2.0, 3.0); assert_eq!(m.then(&s), m.then_scale(2.0, 3.0)); } #[test] pub fn test_inverse_simple() { let m1 = Mat::identity(); let m2 = m1.inverse().unwrap(); assert!(m1.approx_eq(&m2)); } #[test] pub fn test_inverse_scale() { let m1 = Mat::scale(1.5, 0.3); let m2 = m1.inverse().unwrap(); assert!(m1.then(&m2).approx_eq(&Mat::identity())); assert!(m2.then(&m1).approx_eq(&Mat::identity())); } #[test] pub fn test_inverse_translate() { let m1 = Mat::translation(-132.0, 0.3); let m2 = m1.inverse().unwrap(); assert!(m1.then(&m2).approx_eq(&Mat::identity())); assert!(m2.then(&m1).approx_eq(&Mat::identity())); } #[test] fn test_inverse_none() { assert!(Mat::scale(2.0, 0.0).inverse().is_none()); assert!(Mat::scale(2.0, 2.0).inverse().is_some()); } #[test] pub fn test_pre_post() { let m1 = default::Transform2D::identity().then_scale(1.0, 2.0).then_translate(vec2(1.0, 2.0)); let m2 = default::Transform2D::identity().pre_translate(vec2(1.0, 2.0)).pre_scale(1.0, 2.0); assert!(m1.approx_eq(&m2)); let r = Mat::rotation(rad(FRAC_PI_2)); let t = Mat::translation(2.0, 3.0); let a = Point2D::new(1.0, 1.0); assert!(r.then(&t).transform_point(a).approx_eq(&Point2D::new(1.0, 4.0))); assert!(t.then(&r).transform_point(a).approx_eq(&Point2D::new(-4.0, 3.0))); assert!(t.then(&r).transform_point(a).approx_eq(&r.transform_point(t.transform_point(a)))); } #[test] fn test_size_of() { use core::mem::size_of; assert_eq!(size_of::>(), 6*size_of::()); assert_eq!(size_of::>(), 6*size_of::()); } #[test] pub fn test_is_identity() { let m1 = default::Transform2D::identity(); assert!(m1.is_identity()); let m2 = m1.then_translate(vec2(0.1, 0.0)); assert!(!m2.is_identity()); } #[test] pub fn test_transform_vector() { // Translation does not apply to vectors. let m1 = Mat::translation(1.0, 1.0); let v1 = vec2(10.0, -10.0); assert_eq!(v1, m1.transform_vector(v1)); } #[cfg(feature = "mint")] #[test] pub fn test_mint() { let m1 = Mat::rotation(rad(FRAC_PI_2)); let mm: mint::RowMatrix3x2<_> = m1.into(); let m2 = Mat::from(mm); assert_eq!(m1, m2); } }