// Copyright 2013 The Servo Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use super::UnknownUnit; use crate::approxeq::ApproxEq; use crate::approxord::{max, min}; use crate::length::Length; use crate::num::*; use crate::point::{point2, point3, Point2D, Point3D}; use crate::scale::Scale; use crate::size::{size2, size3, Size2D, Size3D}; use crate::transform2d::Transform2D; use crate::transform3d::Transform3D; use crate::trig::Trig; use crate::Angle; use core::cmp::{Eq, PartialEq}; use core::fmt; use core::hash::Hash; use core::marker::PhantomData; use core::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Sub, SubAssign}; #[cfg(feature = "mint")] use mint; use num_traits::{Float, NumCast, Signed}; #[cfg(feature = "serde")] use serde; /// A 2d Vector tagged with a unit. #[repr(C)] pub struct Vector2D { /// The `x` (traditionally, horizontal) coordinate. pub x: T, /// The `y` (traditionally, vertical) coordinate. pub y: T, #[doc(hidden)] pub _unit: PhantomData, } mint_vec!(Vector2D[x, y] = Vector2); impl Copy for Vector2D {} impl Clone for Vector2D { fn clone(&self) -> Self { Vector2D { x: self.x.clone(), y: self.y.clone(), _unit: PhantomData, } } } #[cfg(feature = "serde")] impl<'de, T, U> serde::Deserialize<'de> for Vector2D where T: serde::Deserialize<'de>, { fn deserialize(deserializer: D) -> Result where D: serde::Deserializer<'de>, { let (x, y) = serde::Deserialize::deserialize(deserializer)?; Ok(Vector2D { x, y, _unit: PhantomData, }) } } #[cfg(feature = "serde")] impl serde::Serialize for Vector2D where T: serde::Serialize, { fn serialize(&self, serializer: S) -> Result where S: serde::Serializer, { (&self.x, &self.y).serialize(serializer) } } impl Eq for Vector2D {} impl PartialEq for Vector2D { fn eq(&self, other: &Self) -> bool { self.x == other.x && self.y == other.y } } impl Hash for Vector2D { fn hash(&self, h: &mut H) { self.x.hash(h); self.y.hash(h); } } impl Zero for Vector2D { /// Constructor, setting all components to zero. #[inline] fn zero() -> Self { Vector2D::new(Zero::zero(), Zero::zero()) } } impl fmt::Debug for Vector2D { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { f.debug_tuple("").field(&self.x).field(&self.y).finish() } } impl Default for Vector2D { fn default() -> Self { Vector2D::new(Default::default(), Default::default()) } } impl Vector2D { /// Constructor, setting all components to zero. #[inline] pub fn zero() -> Self where T: Zero, { Vector2D::new(Zero::zero(), Zero::zero()) } /// Constructor taking scalar values directly. #[inline] pub const fn new(x: T, y: T) -> Self { Vector2D { x, y, _unit: PhantomData, } } /// Constructor taking angle and length pub fn from_angle_and_length(angle: Angle, length: T) -> Self where T: Trig + Mul + Copy, { vec2(length * angle.radians.cos(), length * angle.radians.sin()) } /// Constructor taking properly Lengths instead of scalar values. #[inline] pub fn from_lengths(x: Length, y: Length) -> Self { vec2(x.0, y.0) } /// Tag a unit-less value with units. #[inline] pub fn from_untyped(p: Vector2D) -> Self { vec2(p.x, p.y) } /// Computes the vector with absolute values of each component. /// /// # Example /// /// ```rust /// # use std::{i32, f32}; /// # use euclid::vec2; /// enum U {} /// /// assert_eq!(vec2::<_, U>(-1, 2).abs(), vec2(1, 2)); /// /// let vec = vec2::<_, U>(f32::NAN, -f32::MAX).abs(); /// assert!(vec.x.is_nan()); /// assert_eq!(vec.y, f32::MAX); /// ``` /// /// # Panics /// /// The behavior for each component follows the scalar type's implementation of /// `num_traits::Signed::abs`. pub fn abs(self) -> Self where T: Signed, { vec2(self.x.abs(), self.y.abs()) } /// Dot product. #[inline] pub fn dot(self, other: Self) -> T where T: Add + Mul, { self.x * other.x + self.y * other.y } /// Returns the norm of the cross product [self.x, self.y, 0] x [other.x, other.y, 0]. #[inline] pub fn cross(self, other: Self) -> T where T: Sub + Mul, { self.x * other.y - self.y * other.x } } impl Vector2D { /// Create a 3d vector from this one, using the specified z value. #[inline] pub fn extend(self, z: T) -> Vector3D { vec3(self.x, self.y, z) } /// Cast this vector into a point. /// /// Equivalent to adding this vector to the origin. #[inline] pub fn to_point(self) -> Point2D { Point2D { x: self.x, y: self.y, _unit: PhantomData, } } /// Swap x and y. #[inline] pub fn yx(self) -> Self { vec2(self.y, self.x) } /// Cast this vector into a size. #[inline] pub fn to_size(self) -> Size2D { size2(self.x, self.y) } /// Drop the units, preserving only the numeric value. #[inline] pub fn to_untyped(self) -> Vector2D { vec2(self.x, self.y) } /// Cast the unit. #[inline] pub fn cast_unit(self) -> Vector2D { vec2(self.x, self.y) } /// Cast into an array with x and y. #[inline] pub fn to_array(self) -> [T; 2] { [self.x, self.y] } /// Cast into a tuple with x and y. #[inline] pub fn to_tuple(self) -> (T, T) { (self.x, self.y) } /// Convert into a 3d vector with `z` coordinate equals to `T::zero()`. #[inline] pub fn to_3d(self) -> Vector3D where T: Zero, { vec3(self.x, self.y, Zero::zero()) } /// Rounds each component to the nearest integer value. /// /// This behavior is preserved for negative values (unlike the basic cast). /// /// ```rust /// # use euclid::vec2; /// enum Mm {} /// /// assert_eq!(vec2::<_, Mm>(-0.1, -0.8).round(), vec2::<_, Mm>(0.0, -1.0)) /// ``` #[inline] #[must_use] pub fn round(self) -> Self where T: Round, { vec2(self.x.round(), self.y.round()) } /// Rounds each component to the smallest integer equal or greater than the original value. /// /// This behavior is preserved for negative values (unlike the basic cast). /// /// ```rust /// # use euclid::vec2; /// enum Mm {} /// /// assert_eq!(vec2::<_, Mm>(-0.1, -0.8).ceil(), vec2::<_, Mm>(0.0, 0.0)) /// ``` #[inline] #[must_use] pub fn ceil(self) -> Self where T: Ceil, { vec2(self.x.ceil(), self.y.ceil()) } /// Rounds each component to the biggest integer equal or lower than the original value. /// /// This behavior is preserved for negative values (unlike the basic cast). /// /// ```rust /// # use euclid::vec2; /// enum Mm {} /// /// assert_eq!(vec2::<_, Mm>(-0.1, -0.8).floor(), vec2::<_, Mm>(-1.0, -1.0)) /// ``` #[inline] #[must_use] pub fn floor(self) -> Self where T: Floor, { vec2(self.x.floor(), self.y.floor()) } /// Returns the signed angle between this vector and the x axis. /// Positive values counted counterclockwise, where 0 is `+x` axis, `PI/2` /// is `+y` axis. /// /// The returned angle is between -PI and PI. pub fn angle_from_x_axis(self) -> Angle where T: Trig, { Angle::radians(Trig::fast_atan2(self.y, self.x)) } /// Creates translation by this vector in vector units. #[inline] pub fn to_transform(self) -> Transform2D where T: Zero + One, { Transform2D::translation(self.x, self.y) } } impl Vector2D where T: Copy + Mul + Add, { /// Returns the vector's length squared. #[inline] pub fn square_length(self) -> T { self.x * self.x + self.y * self.y } /// Returns this vector projected onto another one. /// /// Projecting onto a nil vector will cause a division by zero. #[inline] pub fn project_onto_vector(self, onto: Self) -> Self where T: Sub + Div, { onto * (self.dot(onto) / onto.square_length()) } /// Returns the signed angle between this vector and another vector. /// /// The returned angle is between -PI and PI. pub fn angle_to(self, other: Self) -> Angle where T: Sub + Trig, { Angle::radians(Trig::fast_atan2(self.cross(other), self.dot(other))) } } impl Vector2D { /// Returns the vector length. #[inline] pub fn length(self) -> T { self.square_length().sqrt() } /// Returns the vector with length of one unit. #[inline] #[must_use] pub fn normalize(self) -> Self { self / self.length() } /// Returns the vector with length of one unit. /// /// Unlike [`Vector2D::normalize`](#method.normalize), this returns None in the case that the /// length of the vector is zero. #[inline] #[must_use] pub fn try_normalize(self) -> Option { let len = self.length(); if len == T::zero() { None } else { Some(self / len) } } /// Return the normalized vector even if the length is larger than the max value of Float. #[inline] #[must_use] pub fn robust_normalize(self) -> Self { let length = self.length(); if length.is_infinite() { let scaled = self / T::max_value(); scaled / scaled.length() } else { self / length } } /// Return this vector capped to a maximum length. #[inline] pub fn with_max_length(self, max_length: T) -> Self { let square_length = self.square_length(); if square_length > max_length * max_length { return self * (max_length / square_length.sqrt()); } self } /// Return this vector with a minimum length applied. #[inline] pub fn with_min_length(self, min_length: T) -> Self { let square_length = self.square_length(); if square_length < min_length * min_length { return self * (min_length / square_length.sqrt()); } self } /// Return this vector with minimum and maximum lengths applied. #[inline] pub fn clamp_length(self, min: T, max: T) -> Self { debug_assert!(min <= max); self.with_min_length(min).with_max_length(max) } } impl Vector2D where T: Copy + One + Add + Sub + Mul, { /// Linearly interpolate each component between this vector and another vector. /// /// # Example /// /// ```rust /// use euclid::vec2; /// use euclid::default::Vector2D; /// /// let from: Vector2D<_> = vec2(0.0, 10.0); /// let to: Vector2D<_> = vec2(8.0, -4.0); /// /// assert_eq!(from.lerp(to, -1.0), vec2(-8.0, 24.0)); /// assert_eq!(from.lerp(to, 0.0), vec2( 0.0, 10.0)); /// assert_eq!(from.lerp(to, 0.5), vec2( 4.0, 3.0)); /// assert_eq!(from.lerp(to, 1.0), vec2( 8.0, -4.0)); /// assert_eq!(from.lerp(to, 2.0), vec2(16.0, -18.0)); /// ``` #[inline] pub fn lerp(self, other: Self, t: T) -> Self { let one_t = T::one() - t; self * one_t + other * t } /// Returns a reflection vector using an incident ray and a surface normal. #[inline] pub fn reflect(self, normal: Self) -> Self { let two = T::one() + T::one(); self - normal * two * self.dot(normal) } } impl Vector2D { /// Returns the vector each component of which are minimum of this vector and another. #[inline] pub fn min(self, other: Self) -> Self { vec2(min(self.x, other.x), min(self.y, other.y)) } /// Returns the vector each component of which are maximum of this vector and another. #[inline] pub fn max(self, other: Self) -> Self { vec2(max(self.x, other.x), max(self.y, other.y)) } /// Returns the vector each component of which is clamped by corresponding /// components of `start` and `end`. /// /// Shortcut for `self.max(start).min(end)`. #[inline] pub fn clamp(self, start: Self, end: Self) -> Self where T: Copy, { self.max(start).min(end) } /// Returns vector with results of "greater than" operation on each component. #[inline] pub fn greater_than(self, other: Self) -> BoolVector2D { BoolVector2D { x: self.x > other.x, y: self.y > other.y, } } /// Returns vector with results of "lower than" operation on each component. #[inline] pub fn lower_than(self, other: Self) -> BoolVector2D { BoolVector2D { x: self.x < other.x, y: self.y < other.y, } } } impl Vector2D { /// Returns vector with results of "equal" operation on each component. #[inline] pub fn equal(self, other: Self) -> BoolVector2D { BoolVector2D { x: self.x == other.x, y: self.y == other.y, } } /// Returns vector with results of "not equal" operation on each component. #[inline] pub fn not_equal(self, other: Self) -> BoolVector2D { BoolVector2D { x: self.x != other.x, y: self.y != other.y, } } } impl Vector2D { /// Cast from one numeric representation to another, preserving the units. /// /// When casting from floating vector to integer coordinates, the decimals are truncated /// as one would expect from a simple cast, but this behavior does not always make sense /// geometrically. Consider using `round()`, `ceil()` or `floor()` before casting. #[inline] pub fn cast(self) -> Vector2D { self.try_cast().unwrap() } /// Fallible cast from one numeric representation to another, preserving the units. /// /// When casting from floating vector to integer coordinates, the decimals are truncated /// as one would expect from a simple cast, but this behavior does not always make sense /// geometrically. Consider using `round()`, `ceil()` or `floor()` before casting. pub fn try_cast(self) -> Option> { match (NumCast::from(self.x), NumCast::from(self.y)) { (Some(x), Some(y)) => Some(Vector2D::new(x, y)), _ => None, } } // Convenience functions for common casts. /// Cast into an `f32` vector. #[inline] pub fn to_f32(self) -> Vector2D { self.cast() } /// Cast into an `f64` vector. #[inline] pub fn to_f64(self) -> Vector2D { self.cast() } /// Cast into an `usize` vector, truncating decimals if any. /// /// When casting from floating vector vectors, it is worth considering whether /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain /// the desired conversion behavior. #[inline] pub fn to_usize(self) -> Vector2D { self.cast() } /// Cast into an `u32` vector, truncating decimals if any. /// /// When casting from floating vector vectors, it is worth considering whether /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain /// the desired conversion behavior. #[inline] pub fn to_u32(self) -> Vector2D { self.cast() } /// Cast into an i32 vector, truncating decimals if any. /// /// When casting from floating vector vectors, it is worth considering whether /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain /// the desired conversion behavior. #[inline] pub fn to_i32(self) -> Vector2D { self.cast() } /// Cast into an i64 vector, truncating decimals if any. /// /// When casting from floating vector vectors, it is worth considering whether /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain /// the desired conversion behavior. #[inline] pub fn to_i64(self) -> Vector2D { self.cast() } } impl Neg for Vector2D { type Output = Vector2D; #[inline] fn neg(self) -> Self::Output { vec2(-self.x, -self.y) } } impl Add for Vector2D { type Output = Vector2D; #[inline] fn add(self, other: Self) -> Self::Output { Vector2D::new(self.x + other.x, self.y + other.y) } } impl, U> AddAssign for Vector2D { #[inline] fn add_assign(&mut self, other: Self) { *self = *self + other } } impl Sub for Vector2D { type Output = Vector2D; #[inline] fn sub(self, other: Self) -> Self::Output { vec2(self.x - other.x, self.y - other.y) } } impl, U> SubAssign> for Vector2D { #[inline] fn sub_assign(&mut self, other: Self) { *self = *self - other } } impl Mul for Vector2D { type Output = Vector2D; #[inline] fn mul(self, scale: T) -> Self::Output { vec2(self.x * scale, self.y * scale) } } impl, U> MulAssign for Vector2D { #[inline] fn mul_assign(&mut self, scale: T) { *self = *self * scale } } impl Mul> for Vector2D { type Output = Vector2D; #[inline] fn mul(self, scale: Scale) -> Self::Output { vec2(self.x * scale.0, self.y * scale.0) } } impl MulAssign> for Vector2D { #[inline] fn mul_assign(&mut self, scale: Scale) { self.x *= scale.0; self.y *= scale.0; } } impl Div for Vector2D { type Output = Vector2D; #[inline] fn div(self, scale: T) -> Self::Output { vec2(self.x / scale, self.y / scale) } } impl, U> DivAssign for Vector2D { #[inline] fn div_assign(&mut self, scale: T) { *self = *self / scale } } impl Div> for Vector2D { type Output = Vector2D; #[inline] fn div(self, scale: Scale) -> Self::Output { vec2(self.x / scale.0, self.y / scale.0) } } impl DivAssign> for Vector2D { #[inline] fn div_assign(&mut self, scale: Scale) { self.x /= scale.0; self.y /= scale.0; } } impl Round for Vector2D { /// See [`Vector2D::round()`](#method.round) #[inline] fn round(self) -> Self { self.round() } } impl Ceil for Vector2D { /// See [`Vector2D::ceil()`](#method.ceil) #[inline] fn ceil(self) -> Self { self.ceil() } } impl Floor for Vector2D { /// See [`Vector2D::floor()`](#method.floor) #[inline] fn floor(self) -> Self { self.floor() } } impl, U> ApproxEq> for Vector2D { #[inline] fn approx_epsilon() -> Self { vec2(T::approx_epsilon(), T::approx_epsilon()) } #[inline] fn approx_eq_eps(&self, other: &Self, eps: &Self) -> bool { self.x.approx_eq_eps(&other.x, &eps.x) && self.y.approx_eq_eps(&other.y, &eps.y) } } impl Into<[T; 2]> for Vector2D { fn into(self) -> [T; 2] { [self.x, self.y] } } impl From<[T; 2]> for Vector2D { fn from([x, y]: [T; 2]) -> Self { vec2(x, y) } } impl Into<(T, T)> for Vector2D { fn into(self) -> (T, T) { (self.x, self.y) } } impl From<(T, T)> for Vector2D { fn from(tuple: (T, T)) -> Self { vec2(tuple.0, tuple.1) } } impl From> for Vector2D { fn from(size: Size2D) -> Self { vec2(size.width, size.height) } } /// A 3d Vector tagged with a unit. #[repr(C)] pub struct Vector3D { /// The `x` (traditionally, horizontal) coordinate. pub x: T, /// The `y` (traditionally, vertical) coordinate. pub y: T, /// The `z` (traditionally, depth) coordinate. pub z: T, #[doc(hidden)] pub _unit: PhantomData, } mint_vec!(Vector3D[x, y, z] = Vector3); impl Copy for Vector3D {} impl Clone for Vector3D { fn clone(&self) -> Self { Vector3D { x: self.x.clone(), y: self.y.clone(), z: self.z.clone(), _unit: PhantomData, } } } #[cfg(feature = "serde")] impl<'de, T, U> serde::Deserialize<'de> for Vector3D where T: serde::Deserialize<'de>, { fn deserialize(deserializer: D) -> Result where D: serde::Deserializer<'de>, { let (x, y, z) = serde::Deserialize::deserialize(deserializer)?; Ok(Vector3D { x, y, z, _unit: PhantomData, }) } } #[cfg(feature = "serde")] impl serde::Serialize for Vector3D where T: serde::Serialize, { fn serialize(&self, serializer: S) -> Result where S: serde::Serializer, { (&self.x, &self.y, &self.z).serialize(serializer) } } impl Eq for Vector3D {} impl PartialEq for Vector3D { fn eq(&self, other: &Self) -> bool { self.x == other.x && self.y == other.y && self.z == other.z } } impl Hash for Vector3D { fn hash(&self, h: &mut H) { self.x.hash(h); self.y.hash(h); self.z.hash(h); } } impl Zero for Vector3D { /// Constructor, setting all components to zero. #[inline] fn zero() -> Self { vec3(Zero::zero(), Zero::zero(), Zero::zero()) } } impl fmt::Debug for Vector3D { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { f.debug_tuple("") .field(&self.x) .field(&self.y) .field(&self.z) .finish() } } impl Default for Vector3D { fn default() -> Self { Vector3D::new(Default::default(), Default::default(), Default::default()) } } impl Vector3D { /// Constructor, setting all components to zero. #[inline] pub fn zero() -> Self where T: Zero, { vec3(Zero::zero(), Zero::zero(), Zero::zero()) } /// Constructor taking scalar values directly. #[inline] pub const fn new(x: T, y: T, z: T) -> Self { Vector3D { x, y, z, _unit: PhantomData, } } /// Constructor taking properly Lengths instead of scalar values. #[inline] pub fn from_lengths(x: Length, y: Length, z: Length) -> Vector3D { vec3(x.0, y.0, z.0) } /// Tag a unitless value with units. #[inline] pub fn from_untyped(p: Vector3D) -> Self { vec3(p.x, p.y, p.z) } /// Computes the vector with absolute values of each component. /// /// # Example /// /// ```rust /// # use std::{i32, f32}; /// # use euclid::vec3; /// enum U {} /// /// assert_eq!(vec3::<_, U>(-1, 0, 2).abs(), vec3(1, 0, 2)); /// /// let vec = vec3::<_, U>(f32::NAN, 0.0, -f32::MAX).abs(); /// assert!(vec.x.is_nan()); /// assert_eq!(vec.y, 0.0); /// assert_eq!(vec.z, f32::MAX); /// ``` /// /// # Panics /// /// The behavior for each component follows the scalar type's implementation of /// `num_traits::Signed::abs`. pub fn abs(self) -> Self where T: Signed, { vec3(self.x.abs(), self.y.abs(), self.z.abs()) } /// Dot product. #[inline] pub fn dot(self, other: Self) -> T where T: Add + Mul, { self.x * other.x + self.y * other.y + self.z * other.z } } impl Vector3D { /// Cross product. #[inline] pub fn cross(self, other: Self) -> Self where T: Sub + Mul, { vec3( self.y * other.z - self.z * other.y, self.z * other.x - self.x * other.z, self.x * other.y - self.y * other.x, ) } /// Cast this vector into a point. /// /// Equivalent to adding this vector to the origin. #[inline] pub fn to_point(self) -> Point3D { point3(self.x, self.y, self.z) } /// Returns a 2d vector using this vector's x and y coordinates #[inline] pub fn xy(self) -> Vector2D { vec2(self.x, self.y) } /// Returns a 2d vector using this vector's x and z coordinates #[inline] pub fn xz(self) -> Vector2D { vec2(self.x, self.z) } /// Returns a 2d vector using this vector's x and z coordinates #[inline] pub fn yz(self) -> Vector2D { vec2(self.y, self.z) } /// Cast into an array with x, y and z. #[inline] pub fn to_array(self) -> [T; 3] { [self.x, self.y, self.z] } /// Cast into an array with x, y, z and 0. #[inline] pub fn to_array_4d(self) -> [T; 4] where T: Zero, { [self.x, self.y, self.z, Zero::zero()] } /// Cast into a tuple with x, y and z. #[inline] pub fn to_tuple(self) -> (T, T, T) { (self.x, self.y, self.z) } /// Cast into a tuple with x, y, z and 0. #[inline] pub fn to_tuple_4d(self) -> (T, T, T, T) where T: Zero, { (self.x, self.y, self.z, Zero::zero()) } /// Drop the units, preserving only the numeric value. #[inline] pub fn to_untyped(self) -> Vector3D { vec3(self.x, self.y, self.z) } /// Cast the unit. #[inline] pub fn cast_unit(self) -> Vector3D { vec3(self.x, self.y, self.z) } /// Convert into a 2d vector. #[inline] pub fn to_2d(self) -> Vector2D { self.xy() } /// Rounds each component to the nearest integer value. /// /// This behavior is preserved for negative values (unlike the basic cast). /// /// ```rust /// # use euclid::vec3; /// enum Mm {} /// /// assert_eq!(vec3::<_, Mm>(-0.1, -0.8, 0.4).round(), vec3::<_, Mm>(0.0, -1.0, 0.0)) /// ``` #[inline] #[must_use] pub fn round(self) -> Self where T: Round, { vec3(self.x.round(), self.y.round(), self.z.round()) } /// Rounds each component to the smallest integer equal or greater than the original value. /// /// This behavior is preserved for negative values (unlike the basic cast). /// /// ```rust /// # use euclid::vec3; /// enum Mm {} /// /// assert_eq!(vec3::<_, Mm>(-0.1, -0.8, 0.4).ceil(), vec3::<_, Mm>(0.0, 0.0, 1.0)) /// ``` #[inline] #[must_use] pub fn ceil(self) -> Self where T: Ceil, { vec3(self.x.ceil(), self.y.ceil(), self.z.ceil()) } /// Rounds each component to the biggest integer equal or lower than the original value. /// /// This behavior is preserved for negative values (unlike the basic cast). /// /// ```rust /// # use euclid::vec3; /// enum Mm {} /// /// assert_eq!(vec3::<_, Mm>(-0.1, -0.8, 0.4).floor(), vec3::<_, Mm>(-1.0, -1.0, 0.0)) /// ``` #[inline] #[must_use] pub fn floor(self) -> Self where T: Floor, { vec3(self.x.floor(), self.y.floor(), self.z.floor()) } /// Creates translation by this vector in vector units #[inline] pub fn to_transform(self) -> Transform3D where T: Zero + One, { Transform3D::translation(self.x, self.y, self.z) } } impl Vector3D where T: Copy + Mul + Add, { /// Returns the vector's length squared. #[inline] pub fn square_length(self) -> T { self.x * self.x + self.y * self.y + self.z * self.z } /// Returns this vector projected onto another one. /// /// Projecting onto a nil vector will cause a division by zero. #[inline] pub fn project_onto_vector(self, onto: Self) -> Self where T: Sub + Div, { onto * (self.dot(onto) / onto.square_length()) } } impl Vector3D { /// Returns the positive angle between this vector and another vector. /// /// The returned angle is between 0 and PI. pub fn angle_to(self, other: Self) -> Angle where T: Trig, { Angle::radians(Trig::fast_atan2( self.cross(other).length(), self.dot(other), )) } /// Returns the vector length. #[inline] pub fn length(self) -> T { self.square_length().sqrt() } /// Returns the vector with length of one unit #[inline] #[must_use] pub fn normalize(self) -> Self { self / self.length() } /// Returns the vector with length of one unit. /// /// Unlike [`Vector2D::normalize`](#method.normalize), this returns None in the case that the /// length of the vector is zero. #[inline] #[must_use] pub fn try_normalize(self) -> Option { let len = self.length(); if len == T::zero() { None } else { Some(self / len) } } /// Return the normalized vector even if the length is larger than the max value of Float. #[inline] #[must_use] pub fn robust_normalize(self) -> Self { let length = self.length(); if length.is_infinite() { let scaled = self / T::max_value(); scaled / scaled.length() } else { self / length } } /// Return this vector capped to a maximum length. #[inline] pub fn with_max_length(self, max_length: T) -> Self { let square_length = self.square_length(); if square_length > max_length * max_length { return self * (max_length / square_length.sqrt()); } self } /// Return this vector with a minimum length applied. #[inline] pub fn with_min_length(self, min_length: T) -> Self { let square_length = self.square_length(); if square_length < min_length * min_length { return self * (min_length / square_length.sqrt()); } self } /// Return this vector with minimum and maximum lengths applied. #[inline] pub fn clamp_length(self, min: T, max: T) -> Self { debug_assert!(min <= max); self.with_min_length(min).with_max_length(max) } } impl Vector3D where T: Copy + One + Add + Sub + Mul, { /// Linearly interpolate each component between this vector and another vector. /// /// # Example /// /// ```rust /// use euclid::vec3; /// use euclid::default::Vector3D; /// /// let from: Vector3D<_> = vec3(0.0, 10.0, -1.0); /// let to: Vector3D<_> = vec3(8.0, -4.0, 0.0); /// /// assert_eq!(from.lerp(to, -1.0), vec3(-8.0, 24.0, -2.0)); /// assert_eq!(from.lerp(to, 0.0), vec3( 0.0, 10.0, -1.0)); /// assert_eq!(from.lerp(to, 0.5), vec3( 4.0, 3.0, -0.5)); /// assert_eq!(from.lerp(to, 1.0), vec3( 8.0, -4.0, 0.0)); /// assert_eq!(from.lerp(to, 2.0), vec3(16.0, -18.0, 1.0)); /// ``` #[inline] pub fn lerp(self, other: Self, t: T) -> Self { let one_t = T::one() - t; self * one_t + other * t } /// Returns a reflection vector using an incident ray and a surface normal. #[inline] pub fn reflect(self, normal: Self) -> Self { let two = T::one() + T::one(); self - normal * two * self.dot(normal) } } impl Vector3D { /// Returns the vector each component of which are minimum of this vector and another. #[inline] pub fn min(self, other: Self) -> Self { vec3( min(self.x, other.x), min(self.y, other.y), min(self.z, other.z), ) } /// Returns the vector each component of which are maximum of this vector and another. #[inline] pub fn max(self, other: Self) -> Self { vec3( max(self.x, other.x), max(self.y, other.y), max(self.z, other.z), ) } /// Returns the vector each component of which is clamped by corresponding /// components of `start` and `end`. /// /// Shortcut for `self.max(start).min(end)`. #[inline] pub fn clamp(self, start: Self, end: Self) -> Self where T: Copy, { self.max(start).min(end) } /// Returns vector with results of "greater than" operation on each component. #[inline] pub fn greater_than(self, other: Self) -> BoolVector3D { BoolVector3D { x: self.x > other.x, y: self.y > other.y, z: self.z > other.z, } } /// Returns vector with results of "lower than" operation on each component. #[inline] pub fn lower_than(self, other: Self) -> BoolVector3D { BoolVector3D { x: self.x < other.x, y: self.y < other.y, z: self.z < other.z, } } } impl Vector3D { /// Returns vector with results of "equal" operation on each component. #[inline] pub fn equal(self, other: Self) -> BoolVector3D { BoolVector3D { x: self.x == other.x, y: self.y == other.y, z: self.z == other.z, } } /// Returns vector with results of "not equal" operation on each component. #[inline] pub fn not_equal(self, other: Self) -> BoolVector3D { BoolVector3D { x: self.x != other.x, y: self.y != other.y, z: self.z != other.z, } } } impl Vector3D { /// Cast from one numeric representation to another, preserving the units. /// /// When casting from floating vector to integer coordinates, the decimals are truncated /// as one would expect from a simple cast, but this behavior does not always make sense /// geometrically. Consider using `round()`, `ceil()` or `floor()` before casting. #[inline] pub fn cast(self) -> Vector3D { self.try_cast().unwrap() } /// Fallible cast from one numeric representation to another, preserving the units. /// /// When casting from floating vector to integer coordinates, the decimals are truncated /// as one would expect from a simple cast, but this behavior does not always make sense /// geometrically. Consider using `round()`, `ceil()` or `floor()` before casting. pub fn try_cast(self) -> Option> { match ( NumCast::from(self.x), NumCast::from(self.y), NumCast::from(self.z), ) { (Some(x), Some(y), Some(z)) => Some(vec3(x, y, z)), _ => None, } } // Convenience functions for common casts. /// Cast into an `f32` vector. #[inline] pub fn to_f32(self) -> Vector3D { self.cast() } /// Cast into an `f64` vector. #[inline] pub fn to_f64(self) -> Vector3D { self.cast() } /// Cast into an `usize` vector, truncating decimals if any. /// /// When casting from floating vector vectors, it is worth considering whether /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain /// the desired conversion behavior. #[inline] pub fn to_usize(self) -> Vector3D { self.cast() } /// Cast into an `u32` vector, truncating decimals if any. /// /// When casting from floating vector vectors, it is worth considering whether /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain /// the desired conversion behavior. #[inline] pub fn to_u32(self) -> Vector3D { self.cast() } /// Cast into an `i32` vector, truncating decimals if any. /// /// When casting from floating vector vectors, it is worth considering whether /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain /// the desired conversion behavior. #[inline] pub fn to_i32(self) -> Vector3D { self.cast() } /// Cast into an `i64` vector, truncating decimals if any. /// /// When casting from floating vector vectors, it is worth considering whether /// to `round()`, `ceil()` or `floor()` before the cast in order to obtain /// the desired conversion behavior. #[inline] pub fn to_i64(self) -> Vector3D { self.cast() } } impl Neg for Vector3D { type Output = Vector3D; #[inline] fn neg(self) -> Self::Output { vec3(-self.x, -self.y, -self.z) } } impl Add for Vector3D { type Output = Vector3D; #[inline] fn add(self, other: Self) -> Self::Output { vec3(self.x + other.x, self.y + other.y, self.z + other.z) } } impl, U> AddAssign for Vector3D { #[inline] fn add_assign(&mut self, other: Self) { *self = *self + other } } impl Sub for Vector3D { type Output = Vector3D; #[inline] fn sub(self, other: Self) -> Self::Output { vec3(self.x - other.x, self.y - other.y, self.z - other.z) } } impl, U> SubAssign> for Vector3D { #[inline] fn sub_assign(&mut self, other: Self) { *self = *self - other } } impl Mul for Vector3D { type Output = Vector3D; #[inline] fn mul(self, scale: T) -> Self::Output { vec3( self.x * scale, self.y * scale, self.z * scale, ) } } impl, U> MulAssign for Vector3D { #[inline] fn mul_assign(&mut self, scale: T) { *self = *self * scale } } impl Mul> for Vector3D { type Output = Vector3D; #[inline] fn mul(self, scale: Scale) -> Self::Output { vec3( self.x * scale.0, self.y * scale.0, self.z * scale.0, ) } } impl MulAssign> for Vector3D { #[inline] fn mul_assign(&mut self, scale: Scale) { self.x *= scale.0; self.y *= scale.0; self.z *= scale.0; } } impl Div for Vector3D { type Output = Vector3D; #[inline] fn div(self, scale: T) -> Self::Output { vec3( self.x / scale, self.y / scale, self.z / scale, ) } } impl, U> DivAssign for Vector3D { #[inline] fn div_assign(&mut self, scale: T) { *self = *self / scale } } impl Div> for Vector3D { type Output = Vector3D; #[inline] fn div(self, scale: Scale) -> Self::Output { vec3( self.x / scale.0, self.y / scale.0, self.z / scale.0, ) } } impl DivAssign> for Vector3D { #[inline] fn div_assign(&mut self, scale: Scale) { self.x /= scale.0; self.y /= scale.0; self.z /= scale.0; } } impl Round for Vector3D { /// See [`Vector3D::round()`](#method.round) #[inline] fn round(self) -> Self { self.round() } } impl Ceil for Vector3D { /// See [`Vector3D::ceil()`](#method.ceil) #[inline] fn ceil(self) -> Self { self.ceil() } } impl Floor for Vector3D { /// See [`Vector3D::floor()`](#method.floor) #[inline] fn floor(self) -> Self { self.floor() } } impl, U> ApproxEq> for Vector3D { #[inline] fn approx_epsilon() -> Self { vec3( T::approx_epsilon(), T::approx_epsilon(), T::approx_epsilon(), ) } #[inline] fn approx_eq_eps(&self, other: &Self, eps: &Self) -> bool { self.x.approx_eq_eps(&other.x, &eps.x) && self.y.approx_eq_eps(&other.y, &eps.y) && self.z.approx_eq_eps(&other.z, &eps.z) } } impl Into<[T; 3]> for Vector3D { fn into(self) -> [T; 3] { [self.x, self.y, self.z] } } impl From<[T; 3]> for Vector3D { fn from([x, y, z]: [T; 3]) -> Self { vec3(x, y, z) } } impl Into<(T, T, T)> for Vector3D { fn into(self) -> (T, T, T) { (self.x, self.y, self.z) } } impl From<(T, T, T)> for Vector3D { fn from(tuple: (T, T, T)) -> Self { vec3(tuple.0, tuple.1, tuple.2) } } /// A 2d vector of booleans, useful for component-wise logic operations. #[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)] pub struct BoolVector2D { pub x: bool, pub y: bool, } /// A 3d vector of booleans, useful for component-wise logic operations. #[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)] pub struct BoolVector3D { pub x: bool, pub y: bool, pub z: bool, } impl BoolVector2D { /// Returns `true` if all components are `true` and `false` otherwise. #[inline] pub fn all(self) -> bool { self.x && self.y } /// Returns `true` if any component are `true` and `false` otherwise. #[inline] pub fn any(self) -> bool { self.x || self.y } /// Returns `true` if all components are `false` and `false` otherwise. Negation of `any()`. #[inline] pub fn none(self) -> bool { !self.any() } /// Returns new vector with by-component AND operation applied. #[inline] pub fn and(self, other: Self) -> Self { BoolVector2D { x: self.x && other.x, y: self.y && other.y, } } /// Returns new vector with by-component OR operation applied. #[inline] pub fn or(self, other: Self) -> Self { BoolVector2D { x: self.x || other.x, y: self.y || other.y, } } /// Returns new vector with results of negation operation on each component. #[inline] pub fn not(self) -> Self { BoolVector2D { x: !self.x, y: !self.y, } } /// Returns point, each component of which or from `a`, or from `b` depending on truly value /// of corresponding vector component. `true` selects value from `a` and `false` from `b`. #[inline] pub fn select_point(self, a: Point2D, b: Point2D) -> Point2D { point2( if self.x { a.x } else { b.x }, if self.y { a.y } else { b.y }, ) } /// Returns vector, each component of which or from `a`, or from `b` depending on truly value /// of corresponding vector component. `true` selects value from `a` and `false` from `b`. #[inline] pub fn select_vector(self, a: Vector2D, b: Vector2D) -> Vector2D { vec2( if self.x { a.x } else { b.x }, if self.y { a.y } else { b.y }, ) } /// Returns size, each component of which or from `a`, or from `b` depending on truly value /// of corresponding vector component. `true` selects value from `a` and `false` from `b`. #[inline] pub fn select_size(self, a: Size2D, b: Size2D) -> Size2D { size2( if self.x { a.width } else { b.width }, if self.y { a.height } else { b.height }, ) } } impl BoolVector3D { /// Returns `true` if all components are `true` and `false` otherwise. #[inline] pub fn all(self) -> bool { self.x && self.y && self.z } /// Returns `true` if any component are `true` and `false` otherwise. #[inline] pub fn any(self) -> bool { self.x || self.y || self.z } /// Returns `true` if all components are `false` and `false` otherwise. Negation of `any()`. #[inline] pub fn none(self) -> bool { !self.any() } /// Returns new vector with by-component AND operation applied. #[inline] pub fn and(self, other: Self) -> Self { BoolVector3D { x: self.x && other.x, y: self.y && other.y, z: self.z && other.z, } } /// Returns new vector with by-component OR operation applied. #[inline] pub fn or(self, other: Self) -> Self { BoolVector3D { x: self.x || other.x, y: self.y || other.y, z: self.z || other.z, } } /// Returns new vector with results of negation operation on each component. #[inline] pub fn not(self) -> Self { BoolVector3D { x: !self.x, y: !self.y, z: !self.z, } } /// Returns point, each component of which or from `a`, or from `b` depending on truly value /// of corresponding vector component. `true` selects value from `a` and `false` from `b`. #[inline] pub fn select_point(self, a: Point3D, b: Point3D) -> Point3D { point3( if self.x { a.x } else { b.x }, if self.y { a.y } else { b.y }, if self.z { a.z } else { b.z }, ) } /// Returns vector, each component of which or from `a`, or from `b` depending on truly value /// of corresponding vector component. `true` selects value from `a` and `false` from `b`. #[inline] pub fn select_vector(self, a: Vector3D, b: Vector3D) -> Vector3D { vec3( if self.x { a.x } else { b.x }, if self.y { a.y } else { b.y }, if self.z { a.z } else { b.z }, ) } /// Returns size, each component of which or from `a`, or from `b` depending on truly value /// of corresponding vector component. `true` selects value from `a` and `false` from `b`. #[inline] #[must_use] pub fn select_size(self, a: Size3D, b: Size3D) -> Size3D { size3( if self.x { a.width } else { b.width }, if self.y { a.height } else { b.height }, if self.z { a.depth } else { b.depth }, ) } /// Returns a 2d vector using this vector's x and y coordinates. #[inline] pub fn xy(self) -> BoolVector2D { BoolVector2D { x: self.x, y: self.y, } } /// Returns a 2d vector using this vector's x and z coordinates. #[inline] pub fn xz(self) -> BoolVector2D { BoolVector2D { x: self.x, y: self.z, } } /// Returns a 2d vector using this vector's y and z coordinates. #[inline] pub fn yz(self) -> BoolVector2D { BoolVector2D { x: self.y, y: self.z, } } } /// Convenience constructor. #[inline] pub fn vec2(x: T, y: T) -> Vector2D { Vector2D { x, y, _unit: PhantomData, } } /// Convenience constructor. #[inline] pub fn vec3(x: T, y: T, z: T) -> Vector3D { Vector3D { x, y, z, _unit: PhantomData, } } /// Shorthand for `BoolVector2D { x, y }`. #[inline] pub fn bvec2(x: bool, y: bool) -> BoolVector2D { BoolVector2D { x, y } } /// Shorthand for `BoolVector3D { x, y, z }`. #[inline] pub fn bvec3(x: bool, y: bool, z: bool) -> BoolVector3D { BoolVector3D { x, y, z } } #[cfg(test)] mod vector2d { use crate::scale::Scale; use crate::{default, vec2}; #[cfg(feature = "mint")] use mint; type Vec2 = default::Vector2D; #[test] pub fn test_scalar_mul() { let p1: Vec2 = vec2(3.0, 5.0); let result = p1 * 5.0; assert_eq!(result, Vec2::new(15.0, 25.0)); } #[test] pub fn test_dot() { let p1: Vec2 = vec2(2.0, 7.0); let p2: Vec2 = vec2(13.0, 11.0); assert_eq!(p1.dot(p2), 103.0); } #[test] pub fn test_cross() { let p1: Vec2 = vec2(4.0, 7.0); let p2: Vec2 = vec2(13.0, 8.0); let r = p1.cross(p2); assert_eq!(r, -59.0); } #[test] pub fn test_normalize() { use std::f32; let p0: Vec2 = Vec2::zero(); let p1: Vec2 = vec2(4.0, 0.0); let p2: Vec2 = vec2(3.0, -4.0); assert!(p0.normalize().x.is_nan() && p0.normalize().y.is_nan()); assert_eq!(p1.normalize(), vec2(1.0, 0.0)); assert_eq!(p2.normalize(), vec2(0.6, -0.8)); let p3: Vec2 = vec2(::std::f32::MAX, ::std::f32::MAX); assert_ne!( p3.normalize(), vec2(1.0 / 2.0f32.sqrt(), 1.0 / 2.0f32.sqrt()) ); assert_eq!( p3.robust_normalize(), vec2(1.0 / 2.0f32.sqrt(), 1.0 / 2.0f32.sqrt()) ); let p4: Vec2 = Vec2::zero(); assert!(p4.try_normalize().is_none()); let p5: Vec2 = Vec2::new(f32::MIN_POSITIVE, f32::MIN_POSITIVE); assert!(p5.try_normalize().is_none()); let p6: Vec2 = vec2(4.0, 0.0); let p7: Vec2 = vec2(3.0, -4.0); assert_eq!(p6.try_normalize().unwrap(), vec2(1.0, 0.0)); assert_eq!(p7.try_normalize().unwrap(), vec2(0.6, -0.8)); } #[test] pub fn test_min() { let p1: Vec2 = vec2(1.0, 3.0); let p2: Vec2 = vec2(2.0, 2.0); let result = p1.min(p2); assert_eq!(result, vec2(1.0, 2.0)); } #[test] pub fn test_max() { let p1: Vec2 = vec2(1.0, 3.0); let p2: Vec2 = vec2(2.0, 2.0); let result = p1.max(p2); assert_eq!(result, vec2(2.0, 3.0)); } #[test] pub fn test_angle_from_x_axis() { use crate::approxeq::ApproxEq; use core::f32::consts::FRAC_PI_2; let right: Vec2 = vec2(10.0, 0.0); let down: Vec2 = vec2(0.0, 4.0); let up: Vec2 = vec2(0.0, -1.0); assert!(right.angle_from_x_axis().get().approx_eq(&0.0)); assert!(down.angle_from_x_axis().get().approx_eq(&FRAC_PI_2)); assert!(up.angle_from_x_axis().get().approx_eq(&-FRAC_PI_2)); } #[test] pub fn test_angle_to() { use crate::approxeq::ApproxEq; use core::f32::consts::FRAC_PI_2; let right: Vec2 = vec2(10.0, 0.0); let right2: Vec2 = vec2(1.0, 0.0); let up: Vec2 = vec2(0.0, -1.0); let up_left: Vec2 = vec2(-1.0, -1.0); assert!(right.angle_to(right2).get().approx_eq(&0.0)); assert!(right.angle_to(up).get().approx_eq(&-FRAC_PI_2)); assert!(up.angle_to(right).get().approx_eq(&FRAC_PI_2)); assert!(up_left .angle_to(up) .get() .approx_eq_eps(&(0.5 * FRAC_PI_2), &0.0005)); } #[test] pub fn test_with_max_length() { use crate::approxeq::ApproxEq; let v1: Vec2 = vec2(0.5, 0.5); let v2: Vec2 = vec2(1.0, 0.0); let v3: Vec2 = vec2(0.1, 0.2); let v4: Vec2 = vec2(2.0, -2.0); let v5: Vec2 = vec2(1.0, 2.0); let v6: Vec2 = vec2(-1.0, 3.0); assert_eq!(v1.with_max_length(1.0), v1); assert_eq!(v2.with_max_length(1.0), v2); assert_eq!(v3.with_max_length(1.0), v3); assert_eq!(v4.with_max_length(10.0), v4); assert_eq!(v5.with_max_length(10.0), v5); assert_eq!(v6.with_max_length(10.0), v6); let v4_clamped = v4.with_max_length(1.0); assert!(v4_clamped.length().approx_eq(&1.0)); assert!(v4_clamped.normalize().approx_eq(&v4.normalize())); let v5_clamped = v5.with_max_length(1.5); assert!(v5_clamped.length().approx_eq(&1.5)); assert!(v5_clamped.normalize().approx_eq(&v5.normalize())); let v6_clamped = v6.with_max_length(2.5); assert!(v6_clamped.length().approx_eq(&2.5)); assert!(v6_clamped.normalize().approx_eq(&v6.normalize())); } #[test] pub fn test_project_onto_vector() { use crate::approxeq::ApproxEq; let v1: Vec2 = vec2(1.0, 2.0); let x: Vec2 = vec2(1.0, 0.0); let y: Vec2 = vec2(0.0, 1.0); assert!(v1.project_onto_vector(x).approx_eq(&vec2(1.0, 0.0))); assert!(v1.project_onto_vector(y).approx_eq(&vec2(0.0, 2.0))); assert!(v1.project_onto_vector(-x).approx_eq(&vec2(1.0, 0.0))); assert!(v1.project_onto_vector(x * 10.0).approx_eq(&vec2(1.0, 0.0))); assert!(v1.project_onto_vector(v1 * 2.0).approx_eq(&v1)); assert!(v1.project_onto_vector(-v1).approx_eq(&v1)); } #[cfg(feature = "mint")] #[test] pub fn test_mint() { let v1 = Vec2::new(1.0, 3.0); let vm: mint::Vector2<_> = v1.into(); let v2 = Vec2::from(vm); assert_eq!(v1, v2); } pub enum Mm {} pub enum Cm {} pub type Vector2DMm = super::Vector2D; pub type Vector2DCm = super::Vector2D; #[test] pub fn test_add() { let p1 = Vector2DMm::new(1.0, 2.0); let p2 = Vector2DMm::new(3.0, 4.0); let result = p1 + p2; assert_eq!(result, vec2(4.0, 6.0)); } #[test] pub fn test_add_assign() { let mut p1 = Vector2DMm::new(1.0, 2.0); p1 += vec2(3.0, 4.0); assert_eq!(p1, vec2(4.0, 6.0)); } #[test] pub fn test_tpyed_scalar_mul() { let p1 = Vector2DMm::new(1.0, 2.0); let cm_per_mm = Scale::::new(0.1); let result: Vector2DCm = p1 * cm_per_mm; assert_eq!(result, vec2(0.1, 0.2)); } #[test] pub fn test_swizzling() { let p: default::Vector2D = vec2(1, 2); assert_eq!(p.yx(), vec2(2, 1)); } #[test] pub fn test_reflect() { use crate::approxeq::ApproxEq; let a: Vec2 = vec2(1.0, 3.0); let n1: Vec2 = vec2(0.0, -1.0); let n2: Vec2 = vec2(1.0, -1.0).normalize(); assert!(a.reflect(n1).approx_eq(&vec2(1.0, -3.0))); assert!(a.reflect(n2).approx_eq(&vec2(3.0, 1.0))); } } #[cfg(test)] mod vector3d { use crate::scale::Scale; use crate::{default, vec2, vec3}; #[cfg(feature = "mint")] use mint; type Vec3 = default::Vector3D; #[test] pub fn test_dot() { let p1: Vec3 = vec3(7.0, 21.0, 32.0); let p2: Vec3 = vec3(43.0, 5.0, 16.0); assert_eq!(p1.dot(p2), 918.0); } #[test] pub fn test_cross() { let p1: Vec3 = vec3(4.0, 7.0, 9.0); let p2: Vec3 = vec3(13.0, 8.0, 3.0); let p3 = p1.cross(p2); assert_eq!(p3, vec3(-51.0, 105.0, -59.0)); } #[test] pub fn test_normalize() { use std::f32; let p0: Vec3 = Vec3::zero(); let p1: Vec3 = vec3(0.0, -6.0, 0.0); let p2: Vec3 = vec3(1.0, 2.0, -2.0); assert!( p0.normalize().x.is_nan() && p0.normalize().y.is_nan() && p0.normalize().z.is_nan() ); assert_eq!(p1.normalize(), vec3(0.0, -1.0, 0.0)); assert_eq!(p2.normalize(), vec3(1.0 / 3.0, 2.0 / 3.0, -2.0 / 3.0)); let p3: Vec3 = vec3(::std::f32::MAX, ::std::f32::MAX, 0.0); assert_ne!( p3.normalize(), vec3(1.0 / 2.0f32.sqrt(), 1.0 / 2.0f32.sqrt(), 0.0) ); assert_eq!( p3.robust_normalize(), vec3(1.0 / 2.0f32.sqrt(), 1.0 / 2.0f32.sqrt(), 0.0) ); let p4: Vec3 = Vec3::zero(); assert!(p4.try_normalize().is_none()); let p5: Vec3 = Vec3::new(f32::MIN_POSITIVE, f32::MIN_POSITIVE, f32::MIN_POSITIVE); assert!(p5.try_normalize().is_none()); let p6: Vec3 = vec3(4.0, 0.0, 3.0); let p7: Vec3 = vec3(3.0, -4.0, 0.0); assert_eq!(p6.try_normalize().unwrap(), vec3(0.8, 0.0, 0.6)); assert_eq!(p7.try_normalize().unwrap(), vec3(0.6, -0.8, 0.0)); } #[test] pub fn test_min() { let p1: Vec3 = vec3(1.0, 3.0, 5.0); let p2: Vec3 = vec3(2.0, 2.0, -1.0); let result = p1.min(p2); assert_eq!(result, vec3(1.0, 2.0, -1.0)); } #[test] pub fn test_max() { let p1: Vec3 = vec3(1.0, 3.0, 5.0); let p2: Vec3 = vec3(2.0, 2.0, -1.0); let result = p1.max(p2); assert_eq!(result, vec3(2.0, 3.0, 5.0)); } #[test] pub fn test_clamp() { let p1: Vec3 = vec3(1.0, -1.0, 5.0); let p2: Vec3 = vec3(2.0, 5.0, 10.0); let p3: Vec3 = vec3(-1.0, 2.0, 20.0); let result = p3.clamp(p1, p2); assert_eq!(result, vec3(1.0, 2.0, 10.0)); } #[test] pub fn test_typed_scalar_mul() { enum Mm {} enum Cm {} let p1 = super::Vector3D::::new(1.0, 2.0, 3.0); let cm_per_mm = Scale::::new(0.1); let result: super::Vector3D = p1 * cm_per_mm; assert_eq!(result, vec3(0.1, 0.2, 0.3)); } #[test] pub fn test_swizzling() { let p: Vec3 = vec3(1.0, 2.0, 3.0); assert_eq!(p.xy(), vec2(1.0, 2.0)); assert_eq!(p.xz(), vec2(1.0, 3.0)); assert_eq!(p.yz(), vec2(2.0, 3.0)); } #[cfg(feature = "mint")] #[test] pub fn test_mint() { let v1 = Vec3::new(1.0, 3.0, 5.0); let vm: mint::Vector3<_> = v1.into(); let v2 = Vec3::from(vm); assert_eq!(v1, v2); } #[test] pub fn test_reflect() { use crate::approxeq::ApproxEq; let a: Vec3 = vec3(1.0, 3.0, 2.0); let n1: Vec3 = vec3(0.0, -1.0, 0.0); let n2: Vec3 = vec3(0.0, 1.0, 1.0).normalize(); assert!(a.reflect(n1).approx_eq(&vec3(1.0, -3.0, 2.0))); assert!(a.reflect(n2).approx_eq(&vec3(1.0, -2.0, -3.0))); } #[test] pub fn test_angle_to() { use crate::approxeq::ApproxEq; use core::f32::consts::FRAC_PI_2; let right: Vec3 = vec3(10.0, 0.0, 0.0); let right2: Vec3 = vec3(1.0, 0.0, 0.0); let up: Vec3 = vec3(0.0, -1.0, 0.0); let up_left: Vec3 = vec3(-1.0, -1.0, 0.0); assert!(right.angle_to(right2).get().approx_eq(&0.0)); assert!(right.angle_to(up).get().approx_eq(&FRAC_PI_2)); assert!(up.angle_to(right).get().approx_eq(&FRAC_PI_2)); assert!(up_left .angle_to(up) .get() .approx_eq_eps(&(0.5 * FRAC_PI_2), &0.0005)); } #[test] pub fn test_with_max_length() { use crate::approxeq::ApproxEq; let v1: Vec3 = vec3(0.5, 0.5, 0.0); let v2: Vec3 = vec3(1.0, 0.0, 0.0); let v3: Vec3 = vec3(0.1, 0.2, 0.3); let v4: Vec3 = vec3(2.0, -2.0, 2.0); let v5: Vec3 = vec3(1.0, 2.0, -3.0); let v6: Vec3 = vec3(-1.0, 3.0, 2.0); assert_eq!(v1.with_max_length(1.0), v1); assert_eq!(v2.with_max_length(1.0), v2); assert_eq!(v3.with_max_length(1.0), v3); assert_eq!(v4.with_max_length(10.0), v4); assert_eq!(v5.with_max_length(10.0), v5); assert_eq!(v6.with_max_length(10.0), v6); let v4_clamped = v4.with_max_length(1.0); assert!(v4_clamped.length().approx_eq(&1.0)); assert!(v4_clamped.normalize().approx_eq(&v4.normalize())); let v5_clamped = v5.with_max_length(1.5); assert!(v5_clamped.length().approx_eq(&1.5)); assert!(v5_clamped.normalize().approx_eq(&v5.normalize())); let v6_clamped = v6.with_max_length(2.5); assert!(v6_clamped.length().approx_eq(&2.5)); assert!(v6_clamped.normalize().approx_eq(&v6.normalize())); } #[test] pub fn test_project_onto_vector() { use crate::approxeq::ApproxEq; let v1: Vec3 = vec3(1.0, 2.0, 3.0); let x: Vec3 = vec3(1.0, 0.0, 0.0); let y: Vec3 = vec3(0.0, 1.0, 0.0); let z: Vec3 = vec3(0.0, 0.0, 1.0); assert!(v1.project_onto_vector(x).approx_eq(&vec3(1.0, 0.0, 0.0))); assert!(v1.project_onto_vector(y).approx_eq(&vec3(0.0, 2.0, 0.0))); assert!(v1.project_onto_vector(z).approx_eq(&vec3(0.0, 0.0, 3.0))); assert!(v1.project_onto_vector(-x).approx_eq(&vec3(1.0, 0.0, 0.0))); assert!(v1 .project_onto_vector(x * 10.0) .approx_eq(&vec3(1.0, 0.0, 0.0))); assert!(v1.project_onto_vector(v1 * 2.0).approx_eq(&v1)); assert!(v1.project_onto_vector(-v1).approx_eq(&v1)); } } #[cfg(test)] mod bool_vector { use super::*; use crate::default; type Vec2 = default::Vector2D; type Vec3 = default::Vector3D; #[test] fn test_bvec2() { assert_eq!( Vec2::new(1.0, 2.0).greater_than(Vec2::new(2.0, 1.0)), bvec2(false, true), ); assert_eq!( Vec2::new(1.0, 2.0).lower_than(Vec2::new(2.0, 1.0)), bvec2(true, false), ); assert_eq!( Vec2::new(1.0, 2.0).equal(Vec2::new(1.0, 3.0)), bvec2(true, false), ); assert_eq!( Vec2::new(1.0, 2.0).not_equal(Vec2::new(1.0, 3.0)), bvec2(false, true), ); assert!(bvec2(true, true).any()); assert!(bvec2(false, true).any()); assert!(bvec2(true, false).any()); assert!(!bvec2(false, false).any()); assert!(bvec2(false, false).none()); assert!(bvec2(true, true).all()); assert!(!bvec2(false, true).all()); assert!(!bvec2(true, false).all()); assert!(!bvec2(false, false).all()); assert_eq!(bvec2(true, false).not(), bvec2(false, true)); assert_eq!( bvec2(true, false).and(bvec2(true, true)), bvec2(true, false) ); assert_eq!(bvec2(true, false).or(bvec2(true, true)), bvec2(true, true)); assert_eq!( bvec2(true, false).select_vector(Vec2::new(1.0, 2.0), Vec2::new(3.0, 4.0)), Vec2::new(1.0, 4.0), ); } #[test] fn test_bvec3() { assert_eq!( Vec3::new(1.0, 2.0, 3.0).greater_than(Vec3::new(3.0, 2.0, 1.0)), bvec3(false, false, true), ); assert_eq!( Vec3::new(1.0, 2.0, 3.0).lower_than(Vec3::new(3.0, 2.0, 1.0)), bvec3(true, false, false), ); assert_eq!( Vec3::new(1.0, 2.0, 3.0).equal(Vec3::new(3.0, 2.0, 1.0)), bvec3(false, true, false), ); assert_eq!( Vec3::new(1.0, 2.0, 3.0).not_equal(Vec3::new(3.0, 2.0, 1.0)), bvec3(true, false, true), ); assert!(bvec3(true, true, false).any()); assert!(bvec3(false, true, false).any()); assert!(bvec3(true, false, false).any()); assert!(!bvec3(false, false, false).any()); assert!(bvec3(false, false, false).none()); assert!(bvec3(true, true, true).all()); assert!(!bvec3(false, true, false).all()); assert!(!bvec3(true, false, false).all()); assert!(!bvec3(false, false, false).all()); assert_eq!(bvec3(true, false, true).not(), bvec3(false, true, false)); assert_eq!( bvec3(true, false, true).and(bvec3(true, true, false)), bvec3(true, false, false) ); assert_eq!( bvec3(true, false, false).or(bvec3(true, true, false)), bvec3(true, true, false) ); assert_eq!( bvec3(true, false, true) .select_vector(Vec3::new(1.0, 2.0, 3.0), Vec3::new(4.0, 5.0, 6.0)), Vec3::new(1.0, 5.0, 3.0), ); } }