use num_traits::Zero; use std::marker::PhantomData; use std::ops::{Deref, DerefMut, Index, IndexMut, Range}; use std::path::Path; use std::slice::{Chunks, ChunksMut}; use crate::color::{ColorType, FromColor, Luma, LumaA, Rgb, Rgba, Bgr, Bgra}; use crate::flat::{FlatSamples, SampleLayout}; use crate::dynimage::{save_buffer, save_buffer_with_format}; use crate::error::ImageResult; use crate::image::{GenericImage, GenericImageView, ImageFormat}; use crate::math::Rect; use crate::traits::{EncodableLayout, Primitive}; use crate::utils::expand_packed; /// A generalized pixel. /// /// A pixel object is usually not used standalone but as a view into an image buffer. pub trait Pixel: Copy + Clone { /// The underlying subpixel type. type Subpixel: Primitive; /// The number of channels of this pixel type. const CHANNEL_COUNT: u8; /// Returns the number of channels of this pixel type. #[deprecated(note="please use CHANNEL_COUNT associated constant")] fn channel_count() -> u8 { Self::CHANNEL_COUNT } /// Returns the components as a slice. fn channels(&self) -> &[Self::Subpixel]; /// Returns the components as a mutable slice fn channels_mut(&mut self) -> &mut [Self::Subpixel]; /// A string that can help to interpret the meaning each channel /// See [gimp babl](http://gegl.org/babl/). const COLOR_MODEL: &'static str; /// Returns a string that can help to interpret the meaning each channel /// See [gimp babl](http://gegl.org/babl/). #[deprecated(note="please use COLOR_MODEL associated constant")] fn color_model() -> &'static str { Self::COLOR_MODEL } /// ColorType for this pixel format const COLOR_TYPE: ColorType; /// Returns the ColorType for this pixel format #[deprecated(note="please use COLOR_TYPE associated constant")] fn color_type() -> ColorType { Self::COLOR_TYPE } /// Returns the channels of this pixel as a 4 tuple. If the pixel /// has less than 4 channels the remainder is filled with the maximum value /// /// TODO deprecate fn channels4( &self, ) -> ( Self::Subpixel, Self::Subpixel, Self::Subpixel, Self::Subpixel, ); /// Construct a pixel from the 4 channels a, b, c and d. /// If the pixel does not contain 4 channels the extra are ignored. /// /// TODO deprecate fn from_channels( a: Self::Subpixel, b: Self::Subpixel, c: Self::Subpixel, d: Self::Subpixel, ) -> Self; /// Returns a view into a slice. /// /// Note: The slice length is not checked on creation. Thus the caller has to ensure /// that the slice is long enough to present panics if the pixel is used later on. fn from_slice(slice: &[Self::Subpixel]) -> &Self; /// Returns mutable view into a mutable slice. /// /// Note: The slice length is not checked on creation. Thus the caller has to ensure /// that the slice is long enough to present panics if the pixel is used later on. fn from_slice_mut(slice: &mut [Self::Subpixel]) -> &mut Self; /// Convert this pixel to RGB fn to_rgb(&self) -> Rgb; /// Convert this pixel to RGB with an alpha channel fn to_rgba(&self) -> Rgba; /// Convert this pixel to luma fn to_luma(&self) -> Luma; /// Convert this pixel to luma with an alpha channel fn to_luma_alpha(&self) -> LumaA; /// Convert this pixel to BGR fn to_bgr(&self) -> Bgr; /// Convert this pixel to BGR with an alpha channel fn to_bgra(&self) -> Bgra; /// Apply the function ```f``` to each channel of this pixel. fn map(&self, f: F) -> Self where F: FnMut(Self::Subpixel) -> Self::Subpixel; /// Apply the function ```f``` to each channel of this pixel. fn apply(&mut self, f: F) where F: FnMut(Self::Subpixel) -> Self::Subpixel; /// Apply the function ```f``` to each channel except the alpha channel. /// Apply the function ```g``` to the alpha channel. fn map_with_alpha(&self, f: F, g: G) -> Self where F: FnMut(Self::Subpixel) -> Self::Subpixel, G: FnMut(Self::Subpixel) -> Self::Subpixel; /// Apply the function ```f``` to each channel except the alpha channel. /// Apply the function ```g``` to the alpha channel. Works in-place. fn apply_with_alpha(&mut self, f: F, g: G) where F: FnMut(Self::Subpixel) -> Self::Subpixel, G: FnMut(Self::Subpixel) -> Self::Subpixel; /// Apply the function ```f``` to each channel except the alpha channel. fn map_without_alpha(&self, f: F) -> Self where F: FnMut(Self::Subpixel) -> Self::Subpixel, { let mut this = *self; this.apply_with_alpha(f, |x| x); this } /// Apply the function ```f``` to each channel except the alpha channel. /// Works in place. fn apply_without_alpha(&mut self, f: F) where F: FnMut(Self::Subpixel) -> Self::Subpixel, { self.apply_with_alpha(f, |x| x); } /// Apply the function ```f``` to each channel of this pixel and /// ```other``` pairwise. fn map2(&self, other: &Self, f: F) -> Self where F: FnMut(Self::Subpixel, Self::Subpixel) -> Self::Subpixel; /// Apply the function ```f``` to each channel of this pixel and /// ```other``` pairwise. Works in-place. fn apply2(&mut self, other: &Self, f: F) where F: FnMut(Self::Subpixel, Self::Subpixel) -> Self::Subpixel; /// Invert this pixel fn invert(&mut self); /// Blend the color of a given pixel into ourself, taking into account alpha channels fn blend(&mut self, other: &Self); } /// Iterate over pixel refs. pub struct Pixels<'a, P: Pixel + 'a> where P::Subpixel: 'a, { chunks: Chunks<'a, P::Subpixel>, } impl<'a, P: Pixel + 'a> Iterator for Pixels<'a, P> where P::Subpixel: 'a, { type Item = &'a P; #[inline(always)] fn next(&mut self) -> Option<&'a P> { self.chunks.next().map(|v|

::from_slice(v)) } } impl<'a, P: Pixel + 'a> ExactSizeIterator for Pixels<'a, P> where P::Subpixel: 'a, { fn len(&self) -> usize { self.chunks.len() } } impl<'a, P: Pixel + 'a> DoubleEndedIterator for Pixels<'a, P> where P::Subpixel: 'a, { #[inline(always)] fn next_back(&mut self) -> Option<&'a P> { self.chunks.next_back().map(|v|

::from_slice(v)) } } /// Iterate over mutable pixel refs. pub struct PixelsMut<'a, P: Pixel + 'a> where P::Subpixel: 'a, { chunks: ChunksMut<'a, P::Subpixel>, } impl<'a, P: Pixel + 'a> Iterator for PixelsMut<'a, P> where P::Subpixel: 'a, { type Item = &'a mut P; #[inline(always)] fn next(&mut self) -> Option<&'a mut P> { self.chunks.next().map(|v|

::from_slice_mut(v)) } } impl<'a, P: Pixel + 'a> ExactSizeIterator for PixelsMut<'a, P> where P::Subpixel: 'a, { fn len(&self) -> usize { self.chunks.len() } } impl<'a, P: Pixel + 'a> DoubleEndedIterator for PixelsMut<'a, P> where P::Subpixel: 'a, { #[inline(always)] fn next_back(&mut self) -> Option<&'a mut P> { self.chunks .next_back() .map(|v|

::from_slice_mut(v)) } } /// Iterate over rows of an image pub struct Rows<'a, P: Pixel + 'a> where

::Subpixel: 'a, { chunks: Chunks<'a, P::Subpixel>, } impl<'a, P: Pixel + 'a> Iterator for Rows<'a, P> where P::Subpixel: 'a, { type Item = Pixels<'a, P>; #[inline(always)] fn next(&mut self) -> Option> { self.chunks.next().map(|row| Pixels { chunks: row.chunks(

::CHANNEL_COUNT as usize), }) } } impl<'a, P: Pixel + 'a> ExactSizeIterator for Rows<'a, P> where P::Subpixel: 'a, { fn len(&self) -> usize { self.chunks.len() } } impl<'a, P: Pixel + 'a> DoubleEndedIterator for Rows<'a, P> where P::Subpixel: 'a, { #[inline(always)] fn next_back(&mut self) -> Option> { self.chunks.next_back().map(|row| Pixels { chunks: row.chunks(

::CHANNEL_COUNT as usize), }) } } /// Iterate over mutable rows of an image pub struct RowsMut<'a, P: Pixel + 'a> where

::Subpixel: 'a, { chunks: ChunksMut<'a, P::Subpixel>, } impl<'a, P: Pixel + 'a> Iterator for RowsMut<'a, P> where P::Subpixel: 'a, { type Item = PixelsMut<'a, P>; #[inline(always)] fn next(&mut self) -> Option> { self.chunks.next().map(|row| PixelsMut { chunks: row.chunks_mut(

::CHANNEL_COUNT as usize), }) } } impl<'a, P: Pixel + 'a> ExactSizeIterator for RowsMut<'a, P> where P::Subpixel: 'a, { fn len(&self) -> usize { self.chunks.len() } } impl<'a, P: Pixel + 'a> DoubleEndedIterator for RowsMut<'a, P> where P::Subpixel: 'a, { #[inline(always)] fn next_back(&mut self) -> Option> { self.chunks.next_back().map(|row| PixelsMut { chunks: row.chunks_mut(

::CHANNEL_COUNT as usize), }) } } /// Enumerate the pixels of an image. pub struct EnumeratePixels<'a, P: Pixel + 'a> where

::Subpixel: 'a, { pixels: Pixels<'a, P>, x: u32, y: u32, width: u32, } impl<'a, P: Pixel + 'a> Iterator for EnumeratePixels<'a, P> where P::Subpixel: 'a, { type Item = (u32, u32, &'a P); #[inline(always)] fn next(&mut self) -> Option<(u32, u32, &'a P)> { if self.x >= self.width { self.x = 0; self.y += 1; } let (x, y) = (self.x, self.y); self.x += 1; self.pixels.next().map(|p| (x, y, p)) } } impl<'a, P: Pixel + 'a> ExactSizeIterator for EnumeratePixels<'a, P> where P::Subpixel: 'a, { fn len(&self) -> usize { self.pixels.len() } } /// Enumerate the rows of an image. pub struct EnumerateRows<'a, P: Pixel + 'a> where

::Subpixel: 'a, { rows: Rows<'a, P>, y: u32, width: u32, } impl<'a, P: Pixel + 'a> Iterator for EnumerateRows<'a, P> where P::Subpixel: 'a, { type Item = (u32, EnumeratePixels<'a, P>); #[inline(always)] fn next(&mut self) -> Option<(u32, EnumeratePixels<'a, P>)> { let y = self.y; self.y += 1; self.rows.next().map(|r| { ( y, EnumeratePixels { x: 0, y, width: self.width, pixels: r, }, ) }) } } impl<'a, P: Pixel + 'a> ExactSizeIterator for EnumerateRows<'a, P> where P::Subpixel: 'a, { fn len(&self) -> usize { self.rows.len() } } /// Enumerate the pixels of an image. pub struct EnumeratePixelsMut<'a, P: Pixel + 'a> where

::Subpixel: 'a, { pixels: PixelsMut<'a, P>, x: u32, y: u32, width: u32, } impl<'a, P: Pixel + 'a> Iterator for EnumeratePixelsMut<'a, P> where P::Subpixel: 'a, { type Item = (u32, u32, &'a mut P); #[inline(always)] fn next(&mut self) -> Option<(u32, u32, &'a mut P)> { if self.x >= self.width { self.x = 0; self.y += 1; } let (x, y) = (self.x, self.y); self.x += 1; self.pixels.next().map(|p| (x, y, p)) } } impl<'a, P: Pixel + 'a> ExactSizeIterator for EnumeratePixelsMut<'a, P> where P::Subpixel: 'a, { fn len(&self) -> usize { self.pixels.len() } } /// Enumerate the rows of an image. pub struct EnumerateRowsMut<'a, P: Pixel + 'a> where

::Subpixel: 'a, { rows: RowsMut<'a, P>, y: u32, width: u32, } impl<'a, P: Pixel + 'a> Iterator for EnumerateRowsMut<'a, P> where P::Subpixel: 'a, { type Item = (u32, EnumeratePixelsMut<'a, P>); #[inline(always)] fn next(&mut self) -> Option<(u32, EnumeratePixelsMut<'a, P>)> { let y = self.y; self.y += 1; self.rows.next().map(|r| { ( y, EnumeratePixelsMut { x: 0, y, width: self.width, pixels: r, }, ) }) } } impl<'a, P: Pixel + 'a> ExactSizeIterator for EnumerateRowsMut<'a, P> where P::Subpixel: 'a, { fn len(&self) -> usize { self.rows.len() } } /// Generic image buffer #[derive(Debug)] pub struct ImageBuffer { width: u32, height: u32, _phantom: PhantomData

, data: Container, } // generic implementation, shared along all image buffers // // TODO: Is the 'static bound on `I::Pixel` really required? Can we avoid it? Remember to remove // the bounds on `imageops` in case this changes! impl ImageBuffer where P: Pixel + 'static, P::Subpixel: 'static, Container: Deref, { /// Contructs a buffer from a generic container /// (for example a `Vec` or a slice) /// /// Returns `None` if the container is not big enough (including when the image dimensions /// necessitate an allocation of more bytes than supported by the container). pub fn from_raw(width: u32, height: u32, buf: Container) -> Option> { if Self::check_image_fits(width, height, buf.len()) { Some(ImageBuffer { data: buf, width, height, _phantom: PhantomData, }) } else { None } } /// Returns the underlying raw buffer pub fn into_raw(self) -> Container { self.data } /// The width and height of this image. pub fn dimensions(&self) -> (u32, u32) { (self.width, self.height) } /// The width of this image. pub fn width(&self) -> u32 { self.width } /// The height of this image. pub fn height(&self) -> u32 { self.height } /// Returns an iterator over the pixels of this image. pub fn pixels(&self) -> Pixels

{ Pixels { chunks: self.data.chunks(

::CHANNEL_COUNT as usize), } } /// Returns an iterator over the rows of this image. pub fn rows(&self) -> Rows

{ Rows { chunks: self .data .chunks(

::CHANNEL_COUNT as usize * self.width as usize), } } /// Enumerates over the pixels of the image. /// The iterator yields the coordinates of each pixel /// along with a reference to them. pub fn enumerate_pixels(&self) -> EnumeratePixels

{ EnumeratePixels { pixels: self.pixels(), x: 0, y: 0, width: self.width, } } /// Enumerates over the rows of the image. /// The iterator yields the y-coordinate of each row /// along with a reference to them. pub fn enumerate_rows(&self) -> EnumerateRows

{ EnumerateRows { rows: self.rows(), y: 0, width: self.width, } } /// Gets a reference to the pixel at location `(x, y)` /// /// # Panics /// /// Panics if `(x, y)` is out of the bounds `(width, height)`. pub fn get_pixel(&self, x: u32, y: u32) -> &P { match self.pixel_indices(x, y) { None => panic!("Image index {:?} out of bounds {:?}", (x, y), (self.width, self.height)), Some(pixel_indices) =>

::from_slice(&self.data[pixel_indices]), } } /// Test that the image fits inside the buffer. /// /// Verifies that the maximum image of pixels inside the bounds is smaller than the provided /// length. Note that as a corrolary we also have that the index calculation of pixels inside /// the bounds will not overflow. fn check_image_fits(width: u32, height: u32, len: usize) -> bool { let checked_len = Self::image_buffer_len(width, height); checked_len.map(|min_len| min_len <= len).unwrap_or(false) } fn image_buffer_len(width: u32, height: u32) -> Option { Some(

::CHANNEL_COUNT as usize) .and_then(|size| size.checked_mul(width as usize)) .and_then(|size| size.checked_mul(height as usize)) } #[inline(always)] fn pixel_indices(&self, x: u32, y: u32) -> Option> { if x >= self.width || y >= self.height { return None } Some(self.pixel_indices_unchecked(x, y)) } #[inline(always)] fn pixel_indices_unchecked(&self, x: u32, y: u32) -> Range { let no_channels =

::CHANNEL_COUNT as usize; // If in bounds, this can't overflow as we have tested that at construction! let min_index = (y as usize*self.width as usize + x as usize)*no_channels; min_index..min_index+no_channels } /// Get the format of the buffer when viewed as a matrix of samples. pub fn sample_layout(&self) -> SampleLayout { // None of these can overflow, as all our memory is addressable. SampleLayout::row_major_packed(

::CHANNEL_COUNT, self.width, self.height) } /// Return the raw sample buffer with its stride an dimension information. /// /// The returned buffer is guaranteed to be well formed in all cases. It is layed out by /// colors, width then height, meaning `channel_stride <= width_stride <= height_stride`. All /// strides are in numbers of elements but those are mostly `u8` in which case the strides are /// also byte strides. pub fn into_flat_samples(self) -> FlatSamples where Container: AsRef<[P::Subpixel]> { // None of these can overflow, as all our memory is addressable. let layout = self.sample_layout(); FlatSamples { samples: self.data, layout, color_hint: Some(P::COLOR_TYPE), } } /// Return a view on the raw sample buffer. /// /// See `flattened` for more details. pub fn as_flat_samples(&self) -> FlatSamples<&[P::Subpixel]> where Container: AsRef<[P::Subpixel]> { let layout = self.sample_layout(); FlatSamples { samples: self.data.as_ref(), layout, color_hint: Some(P::COLOR_TYPE), } } } impl ImageBuffer where P: Pixel + 'static, P::Subpixel: 'static, Container: Deref + DerefMut, { /// Returns an iterator over the mutable pixels of this image. pub fn pixels_mut(&mut self) -> PixelsMut

{ PixelsMut { chunks: self.data.chunks_mut(

::CHANNEL_COUNT as usize), } } /// Returns an iterator over the mutable rows of this image. pub fn rows_mut(&mut self) -> RowsMut

{ RowsMut { chunks: self .data .chunks_mut(

::CHANNEL_COUNT as usize * self.width as usize), } } /// Enumerates over the pixels of the image. /// The iterator yields the coordinates of each pixel /// along with a mutable reference to them. pub fn enumerate_pixels_mut(&mut self) -> EnumeratePixelsMut

{ let width = self.width; EnumeratePixelsMut { pixels: self.pixels_mut(), x: 0, y: 0, width, } } /// Enumerates over the rows of the image. /// The iterator yields the y-coordinate of each row /// along with a mutable reference to them. pub fn enumerate_rows_mut(&mut self) -> EnumerateRowsMut

{ let width = self.width; EnumerateRowsMut { rows: self.rows_mut(), y: 0, width, } } /// Gets a reference to the mutable pixel at location `(x, y)` /// /// # Panics /// /// Panics if `(x, y)` is out of the bounds `(width, height)`. pub fn get_pixel_mut(&mut self, x: u32, y: u32) -> &mut P { match self.pixel_indices(x, y) { None => panic!("Image index {:?} out of bounds {:?}", (x, y), (self.width, self.height)), Some(pixel_indices) =>

::from_slice_mut(&mut self.data[pixel_indices]), } } /// Puts a pixel at location `(x, y)` /// /// # Panics /// /// Panics if `(x, y)` is out of the bounds `(width, height)`. pub fn put_pixel(&mut self, x: u32, y: u32, pixel: P) { *self.get_pixel_mut(x, y) = pixel } } impl ImageBuffer where P: Pixel + 'static, [P::Subpixel]: EncodableLayout, Container: Deref, { /// Saves the buffer to a file at the path specified. /// /// The image format is derived from the file extension. /// Currently only jpeg and png files are supported. pub fn save(&self, path: Q) -> ImageResult<()> where Q: AsRef, { // This is valid as the subpixel is u8. save_buffer( path, self.as_bytes(), self.width(), self.height(),

::COLOR_TYPE, ) } } impl ImageBuffer where P: Pixel + 'static, [P::Subpixel]: EncodableLayout, Container: Deref, { /// Saves the buffer to a file at the specified path in /// the specified format. /// /// See [`save_buffer_with_format`](fn.save_buffer_with_format.html) for /// supported types. pub fn save_with_format(&self, path: Q, format: ImageFormat) -> ImageResult<()> where Q: AsRef, { // This is valid as the subpixel is u8. save_buffer_with_format( path, self.as_bytes(), self.width(), self.height(),

::COLOR_TYPE, format, ) } } impl Deref for ImageBuffer where P: Pixel + 'static, P::Subpixel: 'static, Container: Deref, { type Target = [P::Subpixel]; fn deref(&self) -> &::Target { &*self.data } } impl DerefMut for ImageBuffer where P: Pixel + 'static, P::Subpixel: 'static, Container: Deref + DerefMut, { fn deref_mut(&mut self) -> &mut ::Target { &mut *self.data } } impl Index<(u32, u32)> for ImageBuffer where P: Pixel + 'static, P::Subpixel: 'static, Container: Deref, { type Output = P; fn index(&self, (x, y): (u32, u32)) -> &P { self.get_pixel(x, y) } } impl IndexMut<(u32, u32)> for ImageBuffer where P: Pixel + 'static, P::Subpixel: 'static, Container: Deref + DerefMut, { fn index_mut(&mut self, (x, y): (u32, u32)) -> &mut P { self.get_pixel_mut(x, y) } } impl Clone for ImageBuffer where P: Pixel, Container: Deref + Clone, { fn clone(&self) -> ImageBuffer { ImageBuffer { data: self.data.clone(), width: self.width, height: self.height, _phantom: PhantomData, } } } impl GenericImageView for ImageBuffer where P: Pixel + 'static, Container: Deref + Deref, P::Subpixel: 'static, { type Pixel = P; type InnerImageView = Self; fn dimensions(&self) -> (u32, u32) { self.dimensions() } fn bounds(&self) -> (u32, u32, u32, u32) { (0, 0, self.width, self.height) } fn get_pixel(&self, x: u32, y: u32) -> P { *self.get_pixel(x, y) } /// Returns the pixel located at (x, y), ignoring bounds checking. #[inline(always)] unsafe fn unsafe_get_pixel(&self, x: u32, y: u32) -> P { let indices = self.pixel_indices_unchecked(x, y); *

::from_slice(self.data.get_unchecked(indices)) } fn inner(&self) -> &Self::InnerImageView { self } } impl GenericImage for ImageBuffer where P: Pixel + 'static, Container: Deref + DerefMut, P::Subpixel: 'static, { type InnerImage = Self; fn get_pixel_mut(&mut self, x: u32, y: u32) -> &mut P { self.get_pixel_mut(x, y) } fn put_pixel(&mut self, x: u32, y: u32, pixel: P) { *self.get_pixel_mut(x, y) = pixel } /// Puts a pixel at location (x, y), ignoring bounds checking. #[inline(always)] unsafe fn unsafe_put_pixel(&mut self, x: u32, y: u32, pixel: P) { let indices = self.pixel_indices_unchecked(x, y); let p =

::from_slice_mut(self.data.get_unchecked_mut(indices)); *p = pixel } /// Put a pixel at location (x, y), taking into account alpha channels /// /// DEPRECATED: This method will be removed. Blend the pixel directly instead. fn blend_pixel(&mut self, x: u32, y: u32, p: P) { self.get_pixel_mut(x, y).blend(&p) } fn copy_within(&mut self, source: Rect, x: u32, y: u32) -> bool { let Rect { x: sx, y: sy, width, height } = source; let dx = x; let dy = y; assert!(sx < self.width() && dx < self.width()); assert!(sy < self.height() && dy < self.height()); if self.width() - dx.max(sx) < width || self.height() - dy.max(sy) < height { return false; } if sy < dy { for y in (0..height).rev() { let sy = sy + y; let dy = dy + y; let Range { start, .. } = self.pixel_indices_unchecked(sx, sy); let Range { end, .. } = self.pixel_indices_unchecked(sx + width - 1, sy); let dst = self.pixel_indices_unchecked(dx, dy).start; slice_copy_within(self, start..end, dst); } } else { for y in 0..height { let sy = sy + y; let dy = dy + y; let Range { start, .. } = self.pixel_indices_unchecked(sx, sy); let Range { end, .. } = self.pixel_indices_unchecked(sx + width - 1, sy); let dst = self.pixel_indices_unchecked(dx, dy).start; slice_copy_within(self, start..end, dst); } } true } fn inner_mut(&mut self) -> &mut Self::InnerImage { self } } // FIXME non-generic `core::slice::copy_within` implementation used by `ImageBuffer::copy_within`. The implementation is rewritten // here due to minimum rust version support(MSRV). Image has a MSRV of 1.34 as of writing this while `core::slice::copy_within` // has been stabilized in 1.37. #[inline(always)] fn slice_copy_within(slice: &mut [T], Range { start: src_start, end: src_end }: Range, dest: usize) { assert!(src_start <= src_end, "src end is before src start"); assert!(src_end <= slice.len(), "src is out of bounds"); let count = src_end - src_start; assert!(dest <= slice.len() - count, "dest is out of bounds"); unsafe { std::ptr::copy( slice.as_ptr().add(src_start), slice.as_mut_ptr().add(dest), count, ); } } // concrete implementation for `Vec`-backed buffers // TODO: I think that rustc does not "see" this impl any more: the impl with // Container meets the same requirements. At least, I got compile errors that // there is no such function as `into_vec`, whereas `into_raw` did work, and // `into_vec` is redundant anyway, because `into_raw` will give you the vector, // and it is more generic. impl ImageBuffer> where P::Subpixel: 'static, { /// Creates a new image buffer based on a `Vec`. /// /// # Panics /// /// Panics when the resulting image is larger the the maximum size of a vector. pub fn new(width: u32, height: u32) -> ImageBuffer> { let size = Self::image_buffer_len(width, height) .expect("Buffer length in `ImageBuffer::new` overflows usize"); ImageBuffer { data: vec![Zero::zero(); size], width, height, _phantom: PhantomData, } } /// Constructs a new ImageBuffer by copying a pixel /// /// # Panics /// /// Panics when the resulting image is larger the the maximum size of a vector. pub fn from_pixel(width: u32, height: u32, pixel: P) -> ImageBuffer> { let mut buf = ImageBuffer::new(width, height); for p in buf.pixels_mut() { *p = pixel } buf } /// Constructs a new ImageBuffer by repeated application of the supplied function. /// /// The arguments to the function are the pixel's x and y coordinates. /// /// # Panics /// /// Panics when the resulting image is larger the the maximum size of a vector. pub fn from_fn(width: u32, height: u32, mut f: F) -> ImageBuffer> where F: FnMut(u32, u32) -> P, { let mut buf = ImageBuffer::new(width, height); for (x, y, p) in buf.enumerate_pixels_mut() { *p = f(x, y) } buf } /// Creates an image buffer out of an existing buffer. /// Returns None if the buffer is not big enough. pub fn from_vec( width: u32, height: u32, buf: Vec, ) -> Option>> { ImageBuffer::from_raw(width, height, buf) } /// Consumes the image buffer and returns the underlying data /// as an owned buffer pub fn into_vec(self) -> Vec { self.into_raw() } } /// Provides color conversions for whole image buffers. pub trait ConvertBuffer { /// Converts `self` to a buffer of type T /// /// A generic implementation is provided to convert any image buffer to a image buffer /// based on a `Vec`. fn convert(&self) -> T; } // concrete implementation Luma -> Rgba impl GrayImage { /// Expands a color palette by re-using the existing buffer. /// Assumes 8 bit per pixel. Uses an optionally transparent index to /// adjust it's alpha value accordingly. pub fn expand_palette( self, palette: &[(u8, u8, u8)], transparent_idx: Option, ) -> RgbaImage { let (width, height) = self.dimensions(); let mut data = self.into_raw(); let entries = data.len(); data.resize(entries.checked_mul(4).unwrap(), 0); let mut buffer = ImageBuffer::from_vec(width, height, data).unwrap(); expand_packed(&mut buffer, 4, 8, |idx, pixel| { let (r, g, b) = palette[idx as usize]; let a = if let Some(t_idx) = transparent_idx { if t_idx == idx { 0 } else { 255 } } else { 255 }; pixel[0] = r; pixel[1] = g; pixel[2] = b; pixel[3] = a; }); buffer } } // TODO: Equality constraints are not yet supported in where clauses, when they // are, the T parameter should be removed in favor of ToType::Subpixel, which // will then be FromType::Subpixel. impl<'a, 'b, Container, FromType: Pixel + 'static, ToType: Pixel + 'static> ConvertBuffer>> for ImageBuffer where Container: Deref, ToType: FromColor, FromType::Subpixel: 'static, ToType::Subpixel: 'static, { fn convert(&self) -> ImageBuffer> { let mut buffer: ImageBuffer> = ImageBuffer::new(self.width, self.height); for (to, from) in buffer.pixels_mut().zip(self.pixels()) { to.from_color(from) } buffer } } /// Sendable Rgb image buffer pub type RgbImage = ImageBuffer, Vec>; /// Sendable Rgb + alpha channel image buffer pub type RgbaImage = ImageBuffer, Vec>; /// Sendable grayscale image buffer pub type GrayImage = ImageBuffer, Vec>; /// Sendable grayscale + alpha channel image buffer pub type GrayAlphaImage = ImageBuffer, Vec>; /// Sendable Bgr image buffer pub(crate) type BgrImage = ImageBuffer, Vec>; /// Sendable Bgr + alpha channel image buffer pub(crate) type BgraImage = ImageBuffer, Vec>; /// Sendable 16-bit Rgb image buffer pub(crate) type Rgb16Image = ImageBuffer, Vec>; /// Sendable 16-bit Rgb + alpha channel image buffer pub(crate) type Rgba16Image = ImageBuffer, Vec>; /// Sendable 16-bit grayscale image buffer pub(crate) type Gray16Image = ImageBuffer, Vec>; /// Sendable 16-bit grayscale + alpha channel image buffer pub(crate) type GrayAlpha16Image = ImageBuffer, Vec>; #[cfg(test)] mod test { use super::{GrayImage, ImageBuffer, RgbImage}; use crate::image::GenericImage; use crate::color; use crate::math::Rect; #[cfg(feature = "benchmarks")] use test; #[test] /// Tests if image buffers from slices work fn slice_buffer() { let data = [0; 9]; let buf: ImageBuffer, _> = ImageBuffer::from_raw(3, 3, &data[..]).unwrap(); assert_eq!(&*buf, &data[..]) } #[test] fn test_get_pixel() { let mut a: RgbImage = ImageBuffer::new(10, 10); { let b = a.get_mut(3 * 10).unwrap(); *b = 255; } assert_eq!(a.get_pixel(0, 1)[0], 255) } #[test] fn test_mut_iter() { let mut a: RgbImage = ImageBuffer::new(10, 10); { let val = a.pixels_mut().next().unwrap(); *val = color::Rgb([42, 0, 0]); } assert_eq!(a.data[0], 42) } #[bench] #[cfg(feature = "benchmarks")] fn bench_conversion(b: &mut test::Bencher) { use crate::buffer::{ConvertBuffer, GrayImage, Pixel}; let mut a: RgbImage = ImageBuffer::new(1000, 1000); for p in a.pixels_mut() { let rgb = p.channels_mut(); rgb[0] = 255; rgb[1] = 23; rgb[2] = 42; } assert!(a.data[0] != 0); b.iter(|| { let b: GrayImage = a.convert(); assert!(0 != b.data[0]); assert!(a.data[0] != b.data[0]); test::black_box(b); }); b.bytes = 1000 * 1000 * 3 } #[bench] #[cfg(feature = "benchmarks")] fn bench_image_access_row_by_row(b: &mut test::Bencher) { use crate::buffer::{ImageBuffer, Pixel}; let mut a: RgbImage = ImageBuffer::new(1000, 1000); for p in a.pixels_mut() { let rgb = p.channels_mut(); rgb[0] = 255; rgb[1] = 23; rgb[2] = 42; } b.iter(move || { let image: &RgbImage = test::black_box(&a); let mut sum: usize = 0; for y in 0..1000 { for x in 0..1000 { let pixel = image.get_pixel(x, y); sum = sum.wrapping_add(pixel[0] as usize); sum = sum.wrapping_add(pixel[1] as usize); sum = sum.wrapping_add(pixel[2] as usize); } } test::black_box(sum) }); b.bytes = 1000 * 1000 * 3; } #[bench] #[cfg(feature = "benchmarks")] fn bench_image_access_col_by_col(b: &mut test::Bencher) { use crate::buffer::{ImageBuffer, Pixel}; let mut a: RgbImage = ImageBuffer::new(1000, 1000); for p in a.pixels_mut() { let rgb = p.channels_mut(); rgb[0] = 255; rgb[1] = 23; rgb[2] = 42; } b.iter(move || { let image: &RgbImage = test::black_box(&a); let mut sum: usize = 0; for x in 0..1000 { for y in 0..1000 { let pixel = image.get_pixel(x, y); sum = sum.wrapping_add(pixel[0] as usize); sum = sum.wrapping_add(pixel[1] as usize); sum = sum.wrapping_add(pixel[2] as usize); } } test::black_box(sum) }); b.bytes = 1000 * 1000 * 3; } #[test] fn test_image_buffer_copy_within_oob() { let mut image: GrayImage = ImageBuffer::from_raw(4, 4, vec![0u8; 16]).unwrap(); assert!(!image.copy_within(Rect { x: 0, y: 0, width: 5, height: 4 }, 0, 0)); assert!(!image.copy_within(Rect { x: 0, y: 0, width: 4, height: 5 }, 0, 0)); assert!(!image.copy_within(Rect { x: 1, y: 0, width: 4, height: 4 }, 0, 0)); assert!(!image.copy_within(Rect { x: 0, y: 0, width: 4, height: 4 }, 1, 0)); assert!(!image.copy_within(Rect { x: 0, y: 1, width: 4, height: 4 }, 0, 0)); assert!(!image.copy_within(Rect { x: 0, y: 0, width: 4, height: 4 }, 0, 1)); assert!(!image.copy_within(Rect { x: 1, y: 1, width: 4, height: 4 }, 0, 0)); } #[test] fn test_image_buffer_copy_within_tl() { let data = &[ 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, 13, 14, 15 ]; let expected = [ 00, 01, 02, 03, 04, 00, 01, 02, 08, 04, 05, 06, 12, 08, 09, 10, ]; let mut image: GrayImage = ImageBuffer::from_raw(4, 4, Vec::from(&data[..])).unwrap(); assert!(image.copy_within(Rect { x: 0, y: 0, width: 3, height: 3 }, 1, 1)); assert_eq!(&image.into_raw(), &expected); } #[test] fn test_image_buffer_copy_within_tr() { let data = &[ 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, 13, 14, 15 ]; let expected = [ 00, 01, 02, 03, 01, 02, 03, 07, 05, 06, 07, 11, 09, 10, 11, 15 ]; let mut image: GrayImage = ImageBuffer::from_raw(4, 4, Vec::from(&data[..])).unwrap(); assert!(image.copy_within(Rect { x: 1, y: 0, width: 3, height: 3 }, 0, 1)); assert_eq!(&image.into_raw(), &expected); } #[test] fn test_image_buffer_copy_within_bl() { let data = &[ 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, 13, 14, 15 ]; let expected = [ 00, 04, 05, 06, 04, 08, 09, 10, 08, 12, 13, 14, 12, 13, 14, 15 ]; let mut image: GrayImage = ImageBuffer::from_raw(4, 4, Vec::from(&data[..])).unwrap(); assert!(image.copy_within(Rect { x: 0, y: 1, width: 3, height: 3 }, 1, 0)); assert_eq!(&image.into_raw(), &expected); } #[test] fn test_image_buffer_copy_within_br() { let data = &[ 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, 13, 14, 15 ]; let expected = [ 05, 06, 07, 03, 09, 10, 11, 07, 13, 14, 15, 11, 12, 13, 14, 15 ]; let mut image: GrayImage = ImageBuffer::from_raw(4, 4, Vec::from(&data[..])).unwrap(); assert!(image.copy_within(Rect { x: 1, y: 1, width: 3, height: 3 }, 0, 0)); assert_eq!(&image.into_raw(), &expected); } }