use std::io; use std::io::Write; use std::path::Path; use std::u32; #[cfg(feature = "bmp")] use crate::bmp; #[cfg(feature = "gif")] use crate::gif; #[cfg(feature = "ico")] use crate::ico; #[cfg(feature = "jpeg")] use crate::jpeg; #[cfg(feature = "png")] use crate::png; #[cfg(feature = "pnm")] use crate::pnm; use crate::buffer::{ BgrImage, BgraImage, ConvertBuffer, GrayAlphaImage, GrayAlpha16Image, GrayImage, Gray16Image, ImageBuffer, Pixel, RgbImage, Rgb16Image, RgbaImage, Rgba16Image, }; use crate::color::{self, IntoColor}; use crate::error::{ImageError, ImageResult}; use crate::flat::FlatSamples; use crate::image; use crate::image::{GenericImage, GenericImageView, ImageDecoder, ImageFormat, ImageOutputFormat}; use crate::io::free_functions; use crate::imageops; /// A Dynamic Image #[derive(Clone)] pub enum DynamicImage { /// Each pixel in this image is 8-bit Luma ImageLuma8(GrayImage), /// Each pixel in this image is 8-bit Luma with alpha ImageLumaA8(GrayAlphaImage), /// Each pixel in this image is 8-bit Rgb ImageRgb8(RgbImage), /// Each pixel in this image is 8-bit Rgb with alpha ImageRgba8(RgbaImage), /// Each pixel in this image is 8-bit Bgr ImageBgr8(BgrImage), /// Each pixel in this image is 8-bit Bgr with alpha ImageBgra8(BgraImage), /// Each pixel in this image is 16-bit Luma ImageLuma16(Gray16Image), /// Each pixel in this image is 16-bit Luma with alpha ImageLumaA16(GrayAlpha16Image), /// Each pixel in this image is 16-bit Rgb ImageRgb16(Rgb16Image), /// Each pixel in this image is 16-bit Rgb with alpha ImageRgba16(Rgba16Image), } macro_rules! dynamic_map( ($dynimage: expr, ref $image: ident => $action: expr) => ( match $dynimage { DynamicImage::ImageLuma8(ref $image) => DynamicImage::ImageLuma8($action), DynamicImage::ImageLumaA8(ref $image) => DynamicImage::ImageLumaA8($action), DynamicImage::ImageRgb8(ref $image) => DynamicImage::ImageRgb8($action), DynamicImage::ImageRgba8(ref $image) => DynamicImage::ImageRgba8($action), DynamicImage::ImageBgr8(ref $image) => DynamicImage::ImageBgr8($action), DynamicImage::ImageBgra8(ref $image) => DynamicImage::ImageBgra8($action), DynamicImage::ImageLuma16(ref $image) => DynamicImage::ImageLuma16($action), DynamicImage::ImageLumaA16(ref $image) => DynamicImage::ImageLumaA16($action), DynamicImage::ImageRgb16(ref $image) => DynamicImage::ImageRgb16($action), DynamicImage::ImageRgba16(ref $image) => DynamicImage::ImageRgba16($action), } ); ($dynimage: expr, ref mut $image: ident => $action: expr) => ( match $dynimage { DynamicImage::ImageLuma8(ref mut $image) => DynamicImage::ImageLuma8($action), DynamicImage::ImageLumaA8(ref mut $image) => DynamicImage::ImageLumaA8($action), DynamicImage::ImageRgb8(ref mut $image) => DynamicImage::ImageRgb8($action), DynamicImage::ImageRgba8(ref mut $image) => DynamicImage::ImageRgba8($action), DynamicImage::ImageBgr8(ref mut $image) => DynamicImage::ImageBgr8($action), DynamicImage::ImageBgra8(ref mut $image) => DynamicImage::ImageBgra8($action), DynamicImage::ImageLuma16(ref mut $image) => DynamicImage::ImageLuma16($action), DynamicImage::ImageLumaA16(ref mut $image) => DynamicImage::ImageLumaA16($action), DynamicImage::ImageRgb16(ref mut $image) => DynamicImage::ImageRgb16($action), DynamicImage::ImageRgba16(ref mut $image) => DynamicImage::ImageRgba16($action), } ); ($dynimage: expr, ref $image: ident -> $action: expr) => ( match $dynimage { DynamicImage::ImageLuma8(ref $image) => $action, DynamicImage::ImageLumaA8(ref $image) => $action, DynamicImage::ImageRgb8(ref $image) => $action, DynamicImage::ImageRgba8(ref $image) => $action, DynamicImage::ImageBgr8(ref $image) => $action, DynamicImage::ImageBgra8(ref $image) => $action, DynamicImage::ImageLuma16(ref $image) => $action, DynamicImage::ImageLumaA16(ref $image) => $action, DynamicImage::ImageRgb16(ref $image) => $action, DynamicImage::ImageRgba16(ref $image) => $action, } ); ($dynimage: expr, ref mut $image: ident -> $action: expr) => ( match $dynimage { DynamicImage::ImageLuma8(ref mut $image) => $action, DynamicImage::ImageLumaA8(ref mut $image) => $action, DynamicImage::ImageRgb8(ref mut $image) => $action, DynamicImage::ImageRgba8(ref mut $image) => $action, DynamicImage::ImageBgr8(ref mut $image) => $action, DynamicImage::ImageBgra8(ref mut $image) => $action, DynamicImage::ImageLuma16(ref mut $image) => $action, DynamicImage::ImageLumaA16(ref mut $image) => $action, DynamicImage::ImageRgb16(ref mut $image) => $action, DynamicImage::ImageRgba16(ref mut $image) => $action, } ); ); impl DynamicImage { /// Creates a dynamic image backed by a buffer of grey pixels. pub fn new_luma8(w: u32, h: u32) -> DynamicImage { DynamicImage::ImageLuma8(ImageBuffer::new(w, h)) } /// Creates a dynamic image backed by a buffer of grey /// pixels with transparency. pub fn new_luma_a8(w: u32, h: u32) -> DynamicImage { DynamicImage::ImageLumaA8(ImageBuffer::new(w, h)) } /// Creates a dynamic image backed by a buffer of RGB pixels. pub fn new_rgb8(w: u32, h: u32) -> DynamicImage { DynamicImage::ImageRgb8(ImageBuffer::new(w, h)) } /// Creates a dynamic image backed by a buffer of RGBA pixels. pub fn new_rgba8(w: u32, h: u32) -> DynamicImage { DynamicImage::ImageRgba8(ImageBuffer::new(w, h)) } /// Creates a dynamic image backed by a buffer of BGRA pixels. pub fn new_bgra8(w: u32, h: u32) -> DynamicImage { DynamicImage::ImageBgra8(ImageBuffer::new(w, h)) } /// Creates a dynamic image backed by a buffer of BGR pixels. pub fn new_bgr8(w: u32, h: u32) -> DynamicImage { DynamicImage::ImageBgr8(ImageBuffer::new(w, h)) } /// Creates a dynamic image backed by a buffer of grey pixels. pub fn new_luma16(w: u32, h: u32) -> DynamicImage { DynamicImage::ImageLuma16(ImageBuffer::new(w, h)) } /// Creates a dynamic image backed by a buffer of grey /// pixels with transparency. pub fn new_luma_a16(w: u32, h: u32) -> DynamicImage { DynamicImage::ImageLumaA16(ImageBuffer::new(w, h)) } /// Creates a dynamic image backed by a buffer of RGB pixels. pub fn new_rgb16(w: u32, h: u32) -> DynamicImage { DynamicImage::ImageRgb16(ImageBuffer::new(w, h)) } /// Creates a dynamic image backed by a buffer of RGBA pixels. pub fn new_rgba16(w: u32, h: u32) -> DynamicImage { DynamicImage::ImageRgba16(ImageBuffer::new(w, h)) } /// Decodes an encoded image into a dynamic image. pub fn from_decoder<'a>(decoder: impl ImageDecoder<'a>) -> ImageResult { decoder_to_image(decoder) } /// Returns a copy of this image as an RGB image. pub fn to_rgb(&self) -> RgbImage { dynamic_map!(*self, ref p -> { p.convert() }) } /// Returns a copy of this image as an RGBA image. pub fn to_rgba(&self) -> RgbaImage { dynamic_map!(*self, ref p -> { p.convert() }) } /// Returns a copy of this image as an BGR image. pub fn to_bgr(&self) -> BgrImage { dynamic_map!(*self, ref p -> { p.convert() }) } /// Returns a copy of this image as an BGRA image. pub fn to_bgra(&self) -> BgraImage { dynamic_map!(*self, ref p -> { p.convert() }) } /// Returns a copy of this image as a Luma image. pub fn to_luma(&self) -> GrayImage { dynamic_map!(*self, ref p -> { p.convert() }) } /// Returns a copy of this image as a LumaA image. pub fn to_luma_alpha(&self) -> GrayAlphaImage { dynamic_map!(*self, ref p -> { p.convert() }) } /// Consume the image and returns a RGB image. /// /// If the image was already the correct format, it is returned as is. /// Otherwise, a copy is created. pub fn into_rgb(self) -> RgbImage { match self { DynamicImage::ImageRgb8(x) => x, x => x.to_rgb(), } } /// Consume the image and returns a RGBA image. /// /// If the image was already the correct format, it is returned as is. /// Otherwise, a copy is created. pub fn into_rgba(self) -> RgbaImage { match self { DynamicImage::ImageRgba8(x) => x, x => x.to_rgba(), } } /// Consume the image and returns a BGR image. /// /// If the image was already the correct format, it is returned as is. /// Otherwise, a copy is created. pub fn into_bgr(self) -> BgrImage { match self { DynamicImage::ImageBgr8(x) => x, x => x.to_bgr(), } } /// Consume the image and returns a BGRA image. /// /// If the image was already the correct format, it is returned as is. /// Otherwise, a copy is created. pub fn into_bgra(self) -> BgraImage { match self { DynamicImage::ImageBgra8(x) => x, x => x.to_bgra(), } } /// Consume the image and returns a Luma image. /// /// If the image was already the correct format, it is returned as is. /// Otherwise, a copy is created. pub fn into_luma(self) -> GrayImage { match self { DynamicImage::ImageLuma8(x) => x, x => x.to_luma(), } } /// Consume the image and returns a LumaA image. /// /// If the image was already the correct format, it is returned as is. /// Otherwise, a copy is created. pub fn into_luma_alpha(self) -> GrayAlphaImage { match self { DynamicImage::ImageLumaA8(x) => x, x => x.to_luma_alpha(), } } /// Return a cut out of this image delimited by the bounding rectangle. pub fn crop(&mut self, x: u32, y: u32, width: u32, height: u32) -> DynamicImage { dynamic_map!(*self, ref mut p => imageops::crop(p, x, y, width, height).to_image()) } /// Return a reference to an 8bit RGB image pub fn as_rgb8(&self) -> Option<&RgbImage> { match *self { DynamicImage::ImageRgb8(ref p) => Some(p), _ => None, } } /// Return a mutable reference to an 8bit RGB image pub fn as_mut_rgb8(&mut self) -> Option<&mut RgbImage> { match *self { DynamicImage::ImageRgb8(ref mut p) => Some(p), _ => None, } } /// Return a reference to an 8bit BGR image pub fn as_bgr8(&self) -> Option<&BgrImage> { match *self { DynamicImage::ImageBgr8(ref p) => Some(p), _ => None, } } /// Return a mutable reference to an 8bit BGR image pub fn as_mut_bgr8(&mut self) -> Option<&mut BgrImage> { match *self { DynamicImage::ImageBgr8(ref mut p) => Some(p), _ => None, } } /// Return a reference to an 8bit RGBA image pub fn as_rgba8(&self) -> Option<&RgbaImage> { match *self { DynamicImage::ImageRgba8(ref p) => Some(p), _ => None, } } /// Return a mutable reference to an 8bit RGBA image pub fn as_mut_rgba8(&mut self) -> Option<&mut RgbaImage> { match *self { DynamicImage::ImageRgba8(ref mut p) => Some(p), _ => None, } } /// Return a reference to an 8bit BGRA image pub fn as_bgra8(&self) -> Option<&BgraImage> { match *self { DynamicImage::ImageBgra8(ref p) => Some(p), _ => None, } } /// Return a mutable reference to an 8bit RGBA image pub fn as_mut_bgra8(&mut self) -> Option<&mut BgraImage> { match *self { DynamicImage::ImageBgra8(ref mut p) => Some(p), _ => None, } } /// Return a reference to an 8bit Grayscale image pub fn as_luma8(&self) -> Option<&GrayImage> { match *self { DynamicImage::ImageLuma8(ref p) => Some(p), _ => None, } } /// Return a mutable reference to an 8bit Grayscale image pub fn as_mut_luma8(&mut self) -> Option<&mut GrayImage> { match *self { DynamicImage::ImageLuma8(ref mut p) => Some(p), _ => None, } } /// Return a reference to an 8bit Grayscale image with an alpha channel pub fn as_luma_alpha8(&self) -> Option<&GrayAlphaImage> { match *self { DynamicImage::ImageLumaA8(ref p) => Some(p), _ => None, } } /// Return a mutable reference to an 8bit Grayscale image with an alpha channel pub fn as_mut_luma_alpha8(&mut self) -> Option<&mut GrayAlphaImage> { match *self { DynamicImage::ImageLumaA8(ref mut p) => Some(p), _ => None, } } /// Return a reference to an 16bit RGB image pub fn as_rgb16(&self) -> Option<&Rgb16Image> { match *self { DynamicImage::ImageRgb16(ref p) => Some(p), _ => None, } } /// Return a mutable reference to an 16bit RGB image pub fn as_mut_rgb16(&mut self) -> Option<&mut Rgb16Image> { match *self { DynamicImage::ImageRgb16(ref mut p) => Some(p), _ => None, } } /// Return a reference to an 16bit RGBA image pub fn as_rgba16(&self) -> Option<&Rgba16Image> { match *self { DynamicImage::ImageRgba16(ref p) => Some(p), _ => None, } } /// Return a mutable reference to an 16bit RGBA image pub fn as_mut_rgba16(&mut self) -> Option<&mut Rgba16Image> { match *self { DynamicImage::ImageRgba16(ref mut p) => Some(p), _ => None, } } /// Return a reference to an 16bit Grayscale image pub fn as_luma16(&self) -> Option<&Gray16Image> { match *self { DynamicImage::ImageLuma16(ref p) => Some(p), _ => None, } } /// Return a mutable reference to an 16bit Grayscale image pub fn as_mut_luma16(&mut self) -> Option<&mut Gray16Image> { match *self { DynamicImage::ImageLuma16(ref mut p) => Some(p), _ => None, } } /// Return a reference to an 16bit Grayscale image with an alpha channel pub fn as_luma_alpha16(&self) -> Option<&GrayAlpha16Image> { match *self { DynamicImage::ImageLumaA16(ref p) => Some(p), _ => None, } } /// Return a mutable reference to an 16bit Grayscale image with an alpha channel pub fn as_mut_luma_alpha16(&mut self) -> Option<&mut GrayAlpha16Image> { match *self { DynamicImage::ImageLumaA16(ref mut p) => Some(p), _ => None, } } /// Return a view on the raw sample buffer for 8 bit per channel images. pub fn as_flat_samples_u8(&self) -> Option> { match *self { DynamicImage::ImageLuma8(ref p) => Some(p.as_flat_samples()), DynamicImage::ImageLumaA8(ref p) => Some(p.as_flat_samples()), DynamicImage::ImageRgb8(ref p) => Some(p.as_flat_samples()), DynamicImage::ImageRgba8(ref p) => Some(p.as_flat_samples()), DynamicImage::ImageBgr8(ref p) => Some(p.as_flat_samples()), DynamicImage::ImageBgra8(ref p) => Some(p.as_flat_samples()), _ => None, } } /// Return a view on the raw sample buffer for 16 bit per channel images. pub fn as_flat_samples_u16(&self) -> Option> { match *self { DynamicImage::ImageLuma16(ref p) => Some(p.as_flat_samples()), DynamicImage::ImageLumaA16(ref p) => Some(p.as_flat_samples()), DynamicImage::ImageRgb16(ref p) => Some(p.as_flat_samples()), DynamicImage::ImageRgba16(ref p) => Some(p.as_flat_samples()), _ => None, } } /// Return this image's pixels as a byte vector. pub fn to_bytes(&self) -> Vec { image_to_bytes(self) } /// Return this image's color type. pub fn color(&self) -> color::ColorType { match *self { DynamicImage::ImageLuma8(_) => color::ColorType::L8, DynamicImage::ImageLumaA8(_) => color::ColorType::La8, DynamicImage::ImageRgb8(_) => color::ColorType::Rgb8, DynamicImage::ImageRgba8(_) => color::ColorType::Rgba8, DynamicImage::ImageBgra8(_) => color::ColorType::Bgra8, DynamicImage::ImageBgr8(_) => color::ColorType::Bgr8, DynamicImage::ImageLuma16(_) => color::ColorType::L16, DynamicImage::ImageLumaA16(_) => color::ColorType::La16, DynamicImage::ImageRgb16(_) => color::ColorType::Rgb16, DynamicImage::ImageRgba16(_) => color::ColorType::Rgba16, } } /// Return a grayscale version of this image. pub fn grayscale(&self) -> DynamicImage { match *self { DynamicImage::ImageLuma8(ref p) => DynamicImage::ImageLuma8(p.clone()), DynamicImage::ImageLumaA8(ref p) => DynamicImage::ImageLuma8(imageops::grayscale(p)), DynamicImage::ImageRgb8(ref p) => DynamicImage::ImageLuma8(imageops::grayscale(p)), DynamicImage::ImageRgba8(ref p) => DynamicImage::ImageLuma8(imageops::grayscale(p)), DynamicImage::ImageBgr8(ref p) => DynamicImage::ImageLuma8(imageops::grayscale(p)), DynamicImage::ImageBgra8(ref p) => DynamicImage::ImageLuma8(imageops::grayscale(p)), DynamicImage::ImageLuma16(ref p) => DynamicImage::ImageLuma16(p.clone()), DynamicImage::ImageLumaA16(ref p) => DynamicImage::ImageLuma16(imageops::grayscale(p)), DynamicImage::ImageRgb16(ref p) => DynamicImage::ImageLuma16(imageops::grayscale(p)), DynamicImage::ImageRgba16(ref p) => DynamicImage::ImageLuma16(imageops::grayscale(p)), } } /// Invert the colors of this image. /// This method operates inplace. pub fn invert(&mut self) { dynamic_map!(*self, ref mut p -> imageops::invert(p)) } /// Resize this image using the specified filter algorithm. /// Returns a new image. The image's aspect ratio is preserved. /// The image is scaled to the maximum possible size that fits /// within the bounds specified by ```nwidth``` and ```nheight```. pub fn resize(&self, nwidth: u32, nheight: u32, filter: imageops::FilterType) -> DynamicImage { let (width2, height2) = resize_dimensions(self.width(), self.height(), nwidth, nheight, false); self.resize_exact(width2, height2, filter) } /// Resize this image using the specified filter algorithm. /// Returns a new image. Does not preserve aspect ratio. /// ```nwidth``` and ```nheight``` are the new image's dimensions pub fn resize_exact( &self, nwidth: u32, nheight: u32, filter: imageops::FilterType, ) -> DynamicImage { dynamic_map!(*self, ref p => imageops::resize(p, nwidth, nheight, filter)) } /// Scale this image down to fit within a specific size. /// Returns a new image. The image's aspect ratio is preserved. /// The image is scaled to the maximum possible size that fits /// within the bounds specified by ```nwidth``` and ```nheight```. /// /// This method uses a fast integer algorithm where each source /// pixel contributes to exactly one target pixel. /// May give aliasing artifacts if new size is close to old size. pub fn thumbnail(&self, nwidth: u32, nheight: u32) -> DynamicImage { let (width2, height2) = resize_dimensions(self.width(), self.height(), nwidth, nheight, false); self.thumbnail_exact(width2, height2) } /// Scale this image down to a specific size. /// Returns a new image. Does not preserve aspect ratio. /// ```nwidth``` and ```nheight``` are the new image's dimensions. /// This method uses a fast integer algorithm where each source /// pixel contributes to exactly one target pixel. /// May give aliasing artifacts if new size is close to old size. pub fn thumbnail_exact(&self, nwidth: u32, nheight: u32) -> DynamicImage { dynamic_map!(*self, ref p => imageops::thumbnail(p, nwidth, nheight)) } /// Resize this image using the specified filter algorithm. /// Returns a new image. The image's aspect ratio is preserved. /// The image is scaled to the maximum possible size that fits /// within the larger (relative to aspect ratio) of the bounds /// specified by ```nwidth``` and ```nheight```, then cropped to /// fit within the other bound. pub fn resize_to_fill( &self, nwidth: u32, nheight: u32, filter: imageops::FilterType, ) -> DynamicImage { let (width2, height2) = resize_dimensions(self.width(), self.height(), nwidth, nheight, true); let mut intermediate = self.resize_exact(width2, height2, filter); let (iwidth, iheight) = intermediate.dimensions(); let ratio = u64::from(iwidth) * u64::from(nheight); let nratio = u64::from(nwidth) * u64::from(iheight); if nratio > ratio { intermediate.crop(0, (iheight - nheight) / 2, nwidth, nheight) } else { intermediate.crop((iwidth - nwidth) / 2, 0, nwidth, nheight) } } /// Performs a Gaussian blur on this image. /// ```sigma``` is a measure of how much to blur by. pub fn blur(&self, sigma: f32) -> DynamicImage { dynamic_map!(*self, ref p => imageops::blur(p, sigma)) } /// Performs an unsharpen mask on this image. /// ```sigma``` is the amount to blur the image by. /// ```threshold``` is a control of how much to sharpen. /// /// See pub fn unsharpen(&self, sigma: f32, threshold: i32) -> DynamicImage { dynamic_map!(*self, ref p => imageops::unsharpen(p, sigma, threshold)) } /// Filters this image with the specified 3x3 kernel. pub fn filter3x3(&self, kernel: &[f32]) -> DynamicImage { if kernel.len() != 9 { panic!("filter must be 3 x 3") } dynamic_map!(*self, ref p => imageops::filter3x3(p, kernel)) } /// Adjust the contrast of this image. /// ```contrast``` is the amount to adjust the contrast by. /// Negative values decrease the contrast and positive values increase the contrast. pub fn adjust_contrast(&self, c: f32) -> DynamicImage { dynamic_map!(*self, ref p => imageops::contrast(p, c)) } /// Brighten the pixels of this image. /// ```value``` is the amount to brighten each pixel by. /// Negative values decrease the brightness and positive values increase it. pub fn brighten(&self, value: i32) -> DynamicImage { dynamic_map!(*self, ref p => imageops::brighten(p, value)) } /// Hue rotate the supplied image. /// `value` is the degrees to rotate each pixel by. /// 0 and 360 do nothing, the rest rotates by the given degree value. /// just like the css webkit filter hue-rotate(180) pub fn huerotate(&self, value: i32) -> DynamicImage { dynamic_map!(*self, ref p => imageops::huerotate(p, value)) } /// Flip this image vertically pub fn flipv(&self) -> DynamicImage { dynamic_map!(*self, ref p => imageops::flip_vertical(p)) } /// Flip this image horizontally pub fn fliph(&self) -> DynamicImage { dynamic_map!(*self, ref p => imageops::flip_horizontal(p)) } /// Rotate this image 90 degrees clockwise. pub fn rotate90(&self) -> DynamicImage { dynamic_map!(*self, ref p => imageops::rotate90(p)) } /// Rotate this image 180 degrees clockwise. pub fn rotate180(&self) -> DynamicImage { dynamic_map!(*self, ref p => imageops::rotate180(p)) } /// Rotate this image 270 degrees clockwise. pub fn rotate270(&self) -> DynamicImage { dynamic_map!(*self, ref p => imageops::rotate270(p)) } /// Encode this image and write it to ```w``` pub fn write_to>( &self, w: &mut W, format: F, ) -> ImageResult<()> { let mut bytes = self.to_bytes(); let (width, height) = self.dimensions(); let mut color = self.color(); let format = format.into(); #[allow(deprecated)] match format { #[cfg(feature = "png")] image::ImageOutputFormat::Png => { let p = png::PNGEncoder::new(w); match *self { DynamicImage::ImageBgra8(_) => { bytes = self.to_rgba().iter().cloned().collect(); color = color::ColorType::Rgba8; } DynamicImage::ImageBgr8(_) => { bytes = self.to_rgb().iter().cloned().collect(); color = color::ColorType::Rgb8; } _ => {} } p.encode(&bytes, width, height, color)?; Ok(()) } #[cfg(feature = "pnm")] image::ImageOutputFormat::Pnm(subtype) => { let mut p = pnm::PNMEncoder::new(w).with_subtype(subtype); match *self { DynamicImage::ImageBgra8(_) => { bytes = self.to_rgba().iter().cloned().collect(); color = color::ColorType::Rgba8; } DynamicImage::ImageBgr8(_) => { bytes = self.to_rgb().iter().cloned().collect(); color = color::ColorType::Rgb8; } _ => {} } p.encode(&bytes[..], width, height, color)?; Ok(()) } #[cfg(feature = "jpeg")] image::ImageOutputFormat::Jpeg(quality) => { let mut j = jpeg::JPEGEncoder::new_with_quality(w, quality); j.encode(&bytes, width, height, color)?; Ok(()) } #[cfg(feature = "gif")] image::ImageOutputFormat::Gif => { let mut g = gif::Encoder::new(w); g.encode_frame(crate::animation::Frame::new(self.to_rgba()))?; Ok(()) } #[cfg(feature = "ico")] image::ImageOutputFormat::Ico => { let i = ico::ICOEncoder::new(w); i.encode(&bytes, width, height, color)?; Ok(()) } #[cfg(feature = "bmp")] image::ImageOutputFormat::Bmp => { let mut b = bmp::BMPEncoder::new(w); b.encode(&bytes, width, height, color)?; Ok(()) } image::ImageOutputFormat::Unsupported(msg) => { Err(ImageError::UnsupportedError(msg)) }, image::ImageOutputFormat::__NonExhaustive(marker) => match marker._private {}, } } /// Saves the buffer to a file at the path specified. /// /// The image format is derived from the file extension. pub fn save(&self, path: Q) -> ImageResult<()> where Q: AsRef, { dynamic_map!(*self, ref p -> { p.save(path) }) } /// Saves the buffer to a file at the specified path in /// the specified format. /// /// See [`save_buffer_with_format`](fn.save_buffer_with_format.html) for /// supported types. pub fn save_with_format(&self, path: Q, format: ImageFormat) -> ImageResult<()> where Q: AsRef, { dynamic_map!(*self, ref p -> { p.save_with_format(path, format) }) } } #[allow(deprecated)] impl GenericImageView for DynamicImage { type Pixel = color::Rgba; type InnerImageView = Self; fn dimensions(&self) -> (u32, u32) { dynamic_map!(*self, ref p -> p.dimensions()) } fn bounds(&self) -> (u32, u32, u32, u32) { dynamic_map!(*self, ref p -> p.bounds()) } fn get_pixel(&self, x: u32, y: u32) -> color::Rgba { dynamic_map!(*self, ref p -> p.get_pixel(x, y).to_rgba().into_color()) } fn inner(&self) -> &Self::InnerImageView { self } } #[allow(deprecated)] impl GenericImage for DynamicImage { type InnerImage = DynamicImage; fn put_pixel(&mut self, x: u32, y: u32, pixel: color::Rgba) { match *self { DynamicImage::ImageLuma8(ref mut p) => p.put_pixel(x, y, pixel.to_luma()), DynamicImage::ImageLumaA8(ref mut p) => p.put_pixel(x, y, pixel.to_luma_alpha()), DynamicImage::ImageRgb8(ref mut p) => p.put_pixel(x, y, pixel.to_rgb()), DynamicImage::ImageRgba8(ref mut p) => p.put_pixel(x, y, pixel), DynamicImage::ImageBgr8(ref mut p) => p.put_pixel(x, y, pixel.to_bgr()), DynamicImage::ImageBgra8(ref mut p) => p.put_pixel(x, y, pixel.to_bgra()), DynamicImage::ImageLuma16(ref mut p) => p.put_pixel(x, y, pixel.to_luma().into_color()), DynamicImage::ImageLumaA16(ref mut p) => p.put_pixel(x, y, pixel.to_luma_alpha().into_color()), DynamicImage::ImageRgb16(ref mut p) => p.put_pixel(x, y, pixel.to_rgb().into_color()), DynamicImage::ImageRgba16(ref mut p) => p.put_pixel(x, y, pixel.into_color()), } } /// DEPRECATED: Use iterator `pixels_mut` to blend the pixels directly. fn blend_pixel(&mut self, x: u32, y: u32, pixel: color::Rgba) { match *self { DynamicImage::ImageLuma8(ref mut p) => p.blend_pixel(x, y, pixel.to_luma()), DynamicImage::ImageLumaA8(ref mut p) => p.blend_pixel(x, y, pixel.to_luma_alpha()), DynamicImage::ImageRgb8(ref mut p) => p.blend_pixel(x, y, pixel.to_rgb()), DynamicImage::ImageRgba8(ref mut p) => p.blend_pixel(x, y, pixel), DynamicImage::ImageBgr8(ref mut p) => p.blend_pixel(x, y, pixel.to_bgr()), DynamicImage::ImageBgra8(ref mut p) => p.blend_pixel(x, y, pixel.to_bgra()), DynamicImage::ImageLuma16(ref mut p) => p.blend_pixel(x, y, pixel.to_luma().into_color()), DynamicImage::ImageLumaA16(ref mut p) => p.blend_pixel(x, y, pixel.to_luma_alpha().into_color()), DynamicImage::ImageRgb16(ref mut p) => p.blend_pixel(x, y, pixel.to_rgb().into_color()), DynamicImage::ImageRgba16(ref mut p) => p.blend_pixel(x, y, pixel.into_color()), } } /// DEPRECATED: Do not use is function: It is unimplemented! fn get_pixel_mut(&mut self, _: u32, _: u32) -> &mut color::Rgba { unimplemented!() } fn inner_mut(&mut self) -> &mut Self::InnerImage { self } } /// Decodes an image and stores it into a dynamic image fn decoder_to_image<'a, I: ImageDecoder<'a>>(decoder: I) -> ImageResult { let (w, h) = decoder.dimensions(); let color_type = decoder.color_type(); let image = match color_type { color::ColorType::Rgb8 => { let buf = image::decoder_to_vec(decoder)?; ImageBuffer::from_raw(w, h, buf).map(DynamicImage::ImageRgb8) } color::ColorType::Rgba8 => { let buf = image::decoder_to_vec(decoder)?; ImageBuffer::from_raw(w, h, buf).map(DynamicImage::ImageRgba8) } color::ColorType::Bgr8 => { let buf = image::decoder_to_vec(decoder)?; ImageBuffer::from_raw(w, h, buf).map(DynamicImage::ImageBgr8) } color::ColorType::Bgra8 => { let buf = image::decoder_to_vec(decoder)?; ImageBuffer::from_raw(w, h, buf).map(DynamicImage::ImageBgra8) } color::ColorType::L8 => { let buf = image::decoder_to_vec(decoder)?; ImageBuffer::from_raw(w, h, buf).map(DynamicImage::ImageLuma8) } color::ColorType::La8 => { let buf = image::decoder_to_vec(decoder)?; ImageBuffer::from_raw(w, h, buf).map(DynamicImage::ImageLumaA8) } color::ColorType::Rgb16 => { let buf = image::decoder_to_vec(decoder)?; ImageBuffer::from_raw(w, h, buf).map(DynamicImage::ImageRgb16) } color::ColorType::Rgba16 => { let buf = image::decoder_to_vec(decoder)?; ImageBuffer::from_raw(w, h, buf).map(DynamicImage::ImageRgba16) } color::ColorType::L16 => { let buf = image::decoder_to_vec(decoder)?; ImageBuffer::from_raw(w, h, buf).map(DynamicImage::ImageLuma16) } color::ColorType::La16 => { let buf = image::decoder_to_vec(decoder)?; ImageBuffer::from_raw(w, h, buf).map(DynamicImage::ImageLumaA16) } _ => return Err(ImageError::UnsupportedColor(color_type.into())), }; match image { Some(image) => Ok(image), None => Err(ImageError::DimensionError), } } #[allow(deprecated)] fn image_to_bytes(image: &DynamicImage) -> Vec { use crate::traits::EncodableLayout; match *image { // TODO: consider transmuting DynamicImage::ImageLuma8(ref a) => a.iter().cloned().collect(), DynamicImage::ImageLumaA8(ref a) => a.iter().cloned().collect(), DynamicImage::ImageRgb8(ref a) => a.iter().cloned().collect(), DynamicImage::ImageRgba8(ref a) => a.iter().cloned().collect(), DynamicImage::ImageBgr8(ref a) => a.iter().cloned().collect(), DynamicImage::ImageBgra8(ref a) => a.iter().cloned().collect(), DynamicImage::ImageLuma16(ref a) => a.as_bytes().to_vec(), DynamicImage::ImageLumaA16(ref a) => a.as_bytes().to_vec(), DynamicImage::ImageRgb16(ref a) => a.as_bytes().to_vec(), DynamicImage::ImageRgba16(ref a) => a.as_bytes().to_vec(), } } /// Open the image located at the path specified. /// The image's format is determined from the path's file extension. /// /// Try [`io::Reader`] for more advanced uses, including guessing the format based on the file's /// content before its path. /// /// [`io::Reader`]: io/struct.Reader.html pub fn open

(path: P) -> ImageResult where P: AsRef, { // thin wrapper function to strip generics before calling open_impl free_functions::open_impl(path.as_ref()) } /// Read the dimensions of the image located at the specified path. /// This is faster than fully loading the image and then getting its dimensions. /// /// Try [`io::Reader`] for more advanced uses, including guessing the format based on the file's /// content before its path or manually supplying the format. /// /// [`io::Reader`]: io/struct.Reader.html pub fn image_dimensions

(path: P) -> ImageResult<(u32, u32)> where P: AsRef, { // thin wrapper function to strip generics before calling open_impl free_functions::image_dimensions_impl(path.as_ref()) } /// Saves the supplied buffer to a file at the path specified. /// /// The image format is derived from the file extension. The buffer is assumed to have /// the correct format according to the specified color type. /// This will lead to corrupted files if the buffer contains malformed data. Currently only /// jpeg, png, ico, pnm, bmp and tiff files are supported. pub fn save_buffer

( path: P, buf: &[u8], width: u32, height: u32, color: color::ColorType, ) -> ImageResult<()> where P: AsRef, { // thin wrapper function to strip generics before calling save_buffer_impl free_functions::save_buffer_impl(path.as_ref(), buf, width, height, color) } /// Saves the supplied buffer to a file at the path specified /// in the specified format. /// /// The buffer is assumed to have the correct format according /// to the specified color type. /// This will lead to corrupted files if the buffer contains /// malformed data. Currently only jpeg, png, ico, bmp and /// tiff files are supported. pub fn save_buffer_with_format

( path: P, buf: &[u8], width: u32, height: u32, color: color::ColorType, format: ImageFormat, ) -> ImageResult<()> where P: AsRef, { // thin wrapper function to strip generics free_functions::save_buffer_with_format_impl(path.as_ref(), buf, width, height, color, format) } /// Create a new image from a byte slice /// /// Makes an educated guess about the image format. /// TGA is not supported by this function. /// /// Try [`io::Reader`] for more advanced uses. /// /// [`io::Reader`]: io/struct.Reader.html pub fn load_from_memory(buffer: &[u8]) -> ImageResult { let format = free_functions::guess_format(buffer)?; load_from_memory_with_format(buffer, format) } /// Create a new image from a byte slice /// /// This is just a simple wrapper that constructs an `std::io::Cursor` around the buffer and then /// calls `load` with that reader. /// /// Try [`io::Reader`] for more advanced uses. /// /// [`load`]: fn.load.html /// [`io::Reader`]: io/struct.Reader.html #[inline(always)] pub fn load_from_memory_with_format(buf: &[u8], format: ImageFormat) -> ImageResult { let b = io::Cursor::new(buf); free_functions::load(b, format) } /// Calculates the width and height an image should be resized to. /// This preserves aspect ratio, and based on the `fill` parameter /// will either fill the dimensions to fit inside the smaller constraint /// (will overflow the specified bounds on one axis to preserve /// aspect ratio), or will shrink so that both dimensions are /// completely contained with in the given `width` and `height`, /// with empty space on one axis. fn resize_dimensions(width: u32, height: u32, nwidth: u32, nheight: u32, fill: bool) -> (u32, u32) { let ratio = u64::from(width) * u64::from(nheight); let nratio = u64::from(nwidth) * u64::from(height); let use_width = if fill { nratio > ratio } else { nratio <= ratio }; let intermediate = if use_width { u64::from(height) * u64::from(nwidth) / u64::from(width) } else { u64::from(width) * u64::from(nheight) / u64::from(height) }; if use_width { if intermediate <= u64::from(::std::u32::MAX) { (nwidth, intermediate as u32) } else { ( (u64::from(nwidth) * u64::from(::std::u32::MAX) / intermediate) as u32, ::std::u32::MAX, ) } } else if intermediate <= u64::from(::std::u32::MAX) { (intermediate as u32, nheight) } else { ( ::std::u32::MAX, (u64::from(nheight) * u64::from(::std::u32::MAX) / intermediate) as u32, ) } } #[cfg(test)] mod bench { #[cfg(feature = "benchmarks")] use test; #[bench] #[cfg(feature = "benchmarks")] fn bench_conversion(b: &mut test::Bencher) { let a = super::DynamicImage::ImageRgb8(crate::ImageBuffer::new(1000, 1000)); b.iter(|| a.to_luma()); b.bytes = 1000 * 1000 * 3 } } #[cfg(test)] mod test { #[test] fn test_empty_file() { assert!(super::load_from_memory(b"").is_err()); } quickcheck! { fn resize_bounds_correctly_width(old_w: u32, new_w: u32) -> bool { if old_w == 0 || new_w == 0 { return true; } let result = super::resize_dimensions(old_w, 400, new_w, ::std::u32::MAX, false); result.0 == new_w && result.1 == (400 as f64 * new_w as f64 / old_w as f64) as u32 } } quickcheck! { fn resize_bounds_correctly_height(old_h: u32, new_h: u32) -> bool { if old_h == 0 || new_h == 0 { return true; } let result = super::resize_dimensions(400, old_h, ::std::u32::MAX, new_h, false); result.1 == new_h && result.0 == (400 as f64 * new_h as f64 / old_h as f64) as u32 } } #[test] fn resize_handles_fill() { let result = super::resize_dimensions(100, 200, 200, 500, true); assert!(result.0 == 250); assert!(result.1 == 500); let result = super::resize_dimensions(200, 100, 500, 200, true); assert!(result.0 == 500); assert!(result.1 == 250); } #[test] fn resize_handles_overflow() { let result = super::resize_dimensions(100, ::std::u32::MAX, 200, ::std::u32::MAX, true); assert!(result.0 == 100); assert!(result.1 == ::std::u32::MAX); let result = super::resize_dimensions(::std::u32::MAX, 100, ::std::u32::MAX, 200, true); assert!(result.0 == ::std::u32::MAX); assert!(result.1 == 100); } #[cfg(feature = "jpeg")] #[test] fn image_dimensions() { let im_path = "./tests/images/jpg/progressive/cat.jpg"; let dims = super::image_dimensions(im_path).unwrap(); assert_eq!(dims, (320, 240)); } #[cfg(feature = "png")] #[test] fn open_16bpc_png() { let im_path = "./tests/images/png/16bpc/basn6a16.png"; let image = super::open(im_path).unwrap(); assert_eq!(image.color(), super::color::ColorType::Rgba16); } }