#![allow(clippy::too_many_arguments)]
use std::convert::TryFrom;
use std::io;
use std::io::Read;
use std::ops::{Deref, DerefMut};
use std::path::Path;
use crate::buffer::{ImageBuffer, Pixel};
use crate::color::{ColorType, ExtendedColorType};
use crate::error::{ImageError, ImageResult};
use crate::math::Rect;
use crate::animation::Frames;
#[cfg(feature = "pnm")]
use crate::pnm::PNMSubtype;
/// An enumeration of supported image formats.
/// Not all formats support both encoding and decoding.
#[derive(Clone, Copy, PartialEq, Eq, Debug, Hash)]
pub enum ImageFormat {
/// An Image in PNG Format
Png,
/// An Image in JPEG Format
Jpeg,
/// An Image in GIF Format
Gif,
/// An Image in WEBP Format
WebP,
/// An Image in general PNM Format
Pnm,
/// An Image in TIFF Format
Tiff,
/// An Image in TGA Format
Tga,
/// An Image in DDS Format
Dds,
/// An Image in BMP Format
Bmp,
/// An Image in ICO Format
Ico,
/// An Image in Radiance HDR Format
Hdr,
#[doc(hidden)]
__NonExhaustive(crate::utils::NonExhaustiveMarker),
}
impl ImageFormat {
/// Return the image format specified by the path's file extension.
pub fn from_path
(path: P) -> ImageResult where P : AsRef {
// thin wrapper function to strip generics before calling from_path_impl
crate::io::free_functions::guess_format_from_path_impl(path.as_ref())
.map_err(Into::into)
}
}
/// An enumeration of supported image formats for encoding.
#[derive(Clone, PartialEq, Eq, Debug)]
pub enum ImageOutputFormat {
#[cfg(feature = "png")]
/// An Image in PNG Format
Png,
#[cfg(feature = "jpeg")]
/// An Image in JPEG Format with specified quality
Jpeg(u8),
#[cfg(feature = "pnm")]
/// An Image in one of the PNM Formats
Pnm(PNMSubtype),
#[cfg(feature = "gif")]
/// An Image in GIF Format
Gif,
#[cfg(feature = "ico")]
/// An Image in ICO Format
Ico,
#[cfg(feature = "bmp")]
/// An Image in BMP Format
Bmp,
/// A value for signalling an error: An unsupported format was requested
// Note: When TryFrom is stabilized, this value should not be needed, and
// a TryInto should be used instead of an Into.
Unsupported(String),
#[doc(hidden)]
__NonExhaustive(crate::utils::NonExhaustiveMarker),
}
impl From for ImageOutputFormat {
fn from(fmt: ImageFormat) -> Self {
match fmt {
#[cfg(feature = "png")]
ImageFormat::Png => ImageOutputFormat::Png,
#[cfg(feature = "jpeg")]
ImageFormat::Jpeg => ImageOutputFormat::Jpeg(75),
#[cfg(feature = "pnm")]
ImageFormat::Pnm => ImageOutputFormat::Pnm(PNMSubtype::ArbitraryMap),
#[cfg(feature = "gif")]
ImageFormat::Gif => ImageOutputFormat::Gif,
#[cfg(feature = "ico")]
ImageFormat::Ico => ImageOutputFormat::Ico,
#[cfg(feature = "bmp")]
ImageFormat::Bmp => ImageOutputFormat::Bmp,
f => ImageOutputFormat::Unsupported(format!(
"Image format {:?} not supported for encoding.",
f
)),
}
}
}
// This struct manages buffering associated with implementing `Read` and `Seek` on decoders that can
// must decode ranges of bytes at a time.
pub(crate) struct ImageReadBuffer {
scanline_bytes: usize,
buffer: Vec,
consumed: usize,
total_bytes: u64,
offset: u64,
}
impl ImageReadBuffer {
/// Create a new ImageReadBuffer.
///
/// Panics if scanline_bytes doesn't fit into a usize, because that would mean reading anything
/// from the image would take more RAM than the entire virtual address space. In other words,
/// actually using this struct would instantly OOM so just get it out of the way now.
pub(crate) fn new(scanline_bytes: u64, total_bytes: u64) -> Self {
Self {
scanline_bytes: usize::try_from(scanline_bytes).unwrap(),
buffer: Vec::new(),
consumed: 0,
total_bytes,
offset: 0,
}
}
pub(crate) fn read(&mut self, buf: &mut [u8], mut read_scanline: F) -> io::Result
where
F: FnMut(&mut [u8]) -> io::Result,
{
if self.buffer.len() == self.consumed {
if self.offset == self.total_bytes {
return Ok(0);
} else if buf.len() >= self.scanline_bytes {
// If there is nothing buffered and the user requested a full scanline worth of
// data, skip buffering.
let bytes_read = read_scanline(&mut buf[..self.scanline_bytes])?;
self.offset += u64::try_from(bytes_read).unwrap();
return Ok(bytes_read);
} else {
// Lazily allocate buffer the first time that read is called with a buffer smaller
// than the scanline size.
if self.buffer.is_empty() {
self.buffer.resize(self.scanline_bytes, 0);
}
self.consumed = 0;
let bytes_read = read_scanline(&mut self.buffer[..])?;
self.buffer.resize(bytes_read, 0);
self.offset += u64::try_from(bytes_read).unwrap();
assert!(bytes_read == self.scanline_bytes || self.offset == self.total_bytes);
}
}
// Finally, copy bytes into output buffer.
let bytes_buffered = self.buffer.len() - self.consumed;
if bytes_buffered > buf.len() {
crate::copy_memory(&self.buffer[self.consumed..][..buf.len()], &mut buf[..]);
self.consumed += buf.len();
Ok(buf.len())
} else {
crate::copy_memory(&self.buffer[self.consumed..], &mut buf[..bytes_buffered]);
self.consumed = self.buffer.len();
Ok(bytes_buffered)
}
}
}
/// Decodes a specific region of the image, represented by the rectangle
/// starting from ```x``` and ```y``` and having ```length``` and ```width```
pub(crate) fn load_rect<'a, D, F, F1, F2, E>(x: u32, y: u32, width: u32, height: u32, buf: &mut [u8],
progress_callback: F,
decoder: &mut D,
mut seek_scanline: F1,
mut read_scanline: F2) -> ImageResult<()>
where D: ImageDecoder<'a>,
F: Fn(Progress),
F1: FnMut(&mut D, u64) -> io::Result<()>,
F2: FnMut(&mut D, &mut [u8]) -> Result,
ImageError: From,
{
let (x, y, width, height) = (u64::from(x), u64::from(y), u64::from(width), u64::from(height));
let dimensions = decoder.dimensions();
let bytes_per_pixel = u64::from(decoder.color_type().bytes_per_pixel());
let row_bytes = bytes_per_pixel * u64::from(dimensions.0);
let scanline_bytes = decoder.scanline_bytes();
let total_bytes = width * height * bytes_per_pixel;
let mut bytes_read = 0u64;
let mut current_scanline = 0;
let mut tmp = Vec::new();
{
// Read a range of the image starting from byte number `start` and continuing until byte
// number `end`. Updates `current_scanline` and `bytes_read` appropiately.
let mut read_image_range = |start: u64, end: u64| -> ImageResult<()> {
let target_scanline = start / scanline_bytes;
if target_scanline != current_scanline {
seek_scanline(decoder, target_scanline)?;
current_scanline = target_scanline;
}
let mut position = current_scanline * scanline_bytes;
while position < end {
if position >= start && end - position >= scanline_bytes {
read_scanline(decoder, &mut buf[(bytes_read as usize)..]
[..(scanline_bytes as usize)])?;
bytes_read += scanline_bytes;
} else {
tmp.resize(scanline_bytes as usize, 0u8);
read_scanline(decoder, &mut tmp)?;
let offset = start.saturating_sub(position);
let len = (end - start)
.min(scanline_bytes - offset)
.min(end - position);
buf[(bytes_read as usize)..][..len as usize]
.copy_from_slice(&tmp[offset as usize..][..len as usize]);
bytes_read += len;
}
current_scanline += 1;
position += scanline_bytes;
progress_callback(Progress {current: bytes_read, total: total_bytes});
}
Ok(())
};
if x + width > u64::from(dimensions.0) || y + height > u64::from(dimensions.0)
|| width == 0 || height == 0 {
return Err(ImageError::DimensionError);
}
if scanline_bytes > usize::max_value() as u64 {
return Err(ImageError::InsufficientMemory);
}
progress_callback(Progress {current: 0, total: total_bytes});
if x == 0 && width == u64::from(dimensions.0) {
let start = x * bytes_per_pixel + y * row_bytes;
let end = (x + width) * bytes_per_pixel + (y + height - 1) * row_bytes;
read_image_range(start, end)?;
} else {
for row in y..(y+height) {
let start = x * bytes_per_pixel + row * row_bytes;
let end = (x + width) * bytes_per_pixel + row * row_bytes;
read_image_range(start, end)?;
}
}
}
// Seek back to the start
Ok(seek_scanline(decoder, 0)?)
}
/// Reads all of the bytes of a decoder into a Vec. No particular alignment
/// of the output buffer is guaranteed.
///
/// Panics if there isn't enough memory to decode the image.
pub(crate) fn decoder_to_vec<'a, T>(decoder: impl ImageDecoder<'a>) -> ImageResult>
where
T: crate::traits::Primitive + bytemuck::Pod,
{
let mut buf = vec![num_traits::Zero::zero(); usize::try_from(decoder.total_bytes()).unwrap() / std::mem::size_of::()];
decoder.read_image(bytemuck::cast_slice_mut(buf.as_mut_slice()))?;
Ok(buf)
}
/// Represents the progress of an image operation.
///
/// Note that this is not necessarily accurate and no change to the values passed to the progress
/// function during decoding will be considered breaking. A decoder could in theory report the
/// progress `(0, 0)` if progress is unknown, without violating the interface contract of the type.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub struct Progress {
current: u64,
total: u64,
}
impl Progress {
/// A measure of completed decoding.
pub fn current(self) -> u64 {
self.current
}
/// A measure of all necessary decoding work.
///
/// This is in general greater or equal than `current`.
pub fn total(self) -> u64 {
self.total
}
/// Calculate a measure for remaining decoding work.
pub fn remaining(self) -> u64 {
self.total.max(self.current) - self.current
}
}
/// The trait that all decoders implement
pub trait ImageDecoder<'a>: Sized {
/// The type of reader produced by `into_reader`.
type Reader: Read + 'a;
/// Returns a tuple containing the width and height of the image
fn dimensions(&self) -> (u32, u32);
/// Returns the color type of the image data produced by this decoder
fn color_type(&self) -> ColorType;
/// Retuns the color type of the image file before decoding
fn original_color_type(&self) -> ExtendedColorType {
self.color_type().into()
}
/// Returns a reader that can be used to obtain the bytes of the image. For the best
/// performance, always try to read at least `scanline_bytes` from the reader at a time. Reading
/// fewer bytes will cause the reader to perform internal buffering.
fn into_reader(self) -> ImageResult;
/// Returns the total number of bytes in the decoded image.
///
/// This is the size of the buffer that must be passed to `read_image` or
/// `read_image_with_progress`. The returned value may exceed usize::MAX, in
/// which case it isn't actually possible to construct a buffer to decode all the image data
/// into.
fn total_bytes(&self) -> u64 {
let dimensions = self.dimensions();
u64::from(dimensions.0) * u64::from(dimensions.1) * u64::from(self.color_type().bytes_per_pixel())
}
/// Returns the minimum number of bytes that can be efficiently read from this decoder. This may
/// be as few as 1 or as many as `total_bytes()`.
fn scanline_bytes(&self) -> u64 {
self.total_bytes()
}
/// Returns all the bytes in the image.
///
/// This function takes a slice of bytes and writes the pixel data of the image into it.
/// Although not required, for certain color types callers may want to pass buffers which are
/// aligned to 2 or 4 byte boundaries to the slice can be cast to a [u16] or [u32]. To accommodate
/// such casts, the returned contents will always be in native endian.
///
/// # Panics
///
/// This function panics if buf.len() != self.total_bytes().
///
/// # Examples
///
/// ```no_build
/// use zerocopy::{AsBytes, FromBytes};
/// fn read_16bit_image(decoder: impl ImageDecoder) -> Vec<16> {
/// let mut buf: Vec = vec![0; decoder.total_bytes()/2];
/// decoder.read_image(buf.as_bytes());
/// buf
/// }
fn read_image(self, buf: &mut [u8]) -> ImageResult<()> {
self.read_image_with_progress(buf, |_| {})
}
/// Same as `read_image` but periodically calls the provided callback to give updates on loading
/// progress.
fn read_image_with_progress(
self,
buf: &mut [u8],
progress_callback: F,
) -> ImageResult<()> {
assert_eq!(u64::try_from(buf.len()), Ok(self.total_bytes()));
let total_bytes = self.total_bytes() as usize;
let scanline_bytes = self.scanline_bytes() as usize;
let target_read_size = if scanline_bytes < 4096 {
(4096 / scanline_bytes) * scanline_bytes
} else {
scanline_bytes
};
let mut reader = self.into_reader()?;
let mut bytes_read = 0;
while bytes_read < total_bytes {
let read_size = target_read_size.min(total_bytes - bytes_read);
reader.read_exact(&mut buf[bytes_read..][..read_size])?;
bytes_read += read_size;
progress_callback(Progress {
current: bytes_read as u64,
total: total_bytes as u64,
});
}
Ok(())
}
}
/// ImageDecoderExt trait
pub trait ImageDecoderExt<'a>: ImageDecoder<'a> + Sized {
/// Read a rectangular section of the image.
fn read_rect(
&mut self,
x: u32,
y: u32,
width: u32,
height: u32,
buf: &mut [u8],
) -> ImageResult<()> {
self.read_rect_with_progress(x, y, width, height, buf, |_|{})
}
/// Read a rectangular section of the image, periodically reporting progress.
fn read_rect_with_progress(
&mut self,
x: u32,
y: u32,
width: u32,
height: u32,
buf: &mut [u8],
progress_callback: F,
) -> ImageResult<()>;
}
/// AnimationDecoder trait
pub trait AnimationDecoder<'a> {
/// Consume the decoder producing a series of frames.
fn into_frames(self) -> Frames<'a>;
}
/// The trait all encoders implement
pub trait ImageEncoder {
/// Writes all the bytes in an image to the encoder.
///
/// This function takes a slice of bytes of the pixel data of the image
/// and encodes them. Unlike particular format encoders inherent impl encode
/// methods where endianness is not specified, here image data bytes should
/// always be in native endian. The implementor will reorder the endianess
/// as necessary for the target encoding format.
///
/// See also `ImageDecoder::read_image` which reads byte buffers into
/// native endian.
fn write_image(
self,
buf: &[u8],
width: u32,
height: u32,
color_type: ColorType,
) -> ImageResult<()>;
}
/// Immutable pixel iterator
pub struct Pixels<'a, I: ?Sized + 'a> {
image: &'a I,
x: u32,
y: u32,
width: u32,
height: u32,
}
impl<'a, I: GenericImageView> Iterator for Pixels<'a, I> {
type Item = (u32, u32, I::Pixel);
fn next(&mut self) -> Option<(u32, u32, I::Pixel)> {
if self.x >= self.width {
self.x = 0;
self.y += 1;
}
if self.y >= self.height {
None
} else {
let pixel = self.image.get_pixel(self.x, self.y);
let p = (self.x, self.y, pixel);
self.x += 1;
Some(p)
}
}
}
/// Trait to inspect an image.
pub trait GenericImageView {
/// The type of pixel.
type Pixel: Pixel;
/// Underlying image type. This is mainly used by SubImages in order to
/// always have a reference to the original image. This allows for less
/// indirections and it eases the use of nested SubImages.
type InnerImageView: GenericImageView;
/// The width and height of this image.
fn dimensions(&self) -> (u32, u32);
/// The width of this image.
fn width(&self) -> u32 {
let (w, _) = self.dimensions();
w
}
/// The height of this image.
fn height(&self) -> u32 {
let (_, h) = self.dimensions();
h
}
/// The bounding rectangle of this image.
fn bounds(&self) -> (u32, u32, u32, u32);
/// Returns true if this x, y coordinate is contained inside the image.
fn in_bounds(&self, x: u32, y: u32) -> bool {
let (ix, iy, iw, ih) = self.bounds();
x >= ix && x < ix + iw && y >= iy && y < iy + ih
}
/// Returns the pixel located at (x, y)
///
/// # Panics
///
/// Panics if `(x, y)` is out of bounds.
///
/// TODO: change this signature to &P
fn get_pixel(&self, x: u32, y: u32) -> Self::Pixel;
/// Returns the pixel located at (x, y)
///
/// This function can be implemented in a way that ignores bounds checking.
unsafe fn unsafe_get_pixel(&self, x: u32, y: u32) -> Self::Pixel {
self.get_pixel(x, y)
}
/// Returns an Iterator over the pixels of this image.
/// The iterator yields the coordinates of each pixel
/// along with their value
fn pixels(&self) -> Pixels {
let (width, height) = self.dimensions();
Pixels {
image: self,
x: 0,
y: 0,
width,
height,
}
}
/// Returns a reference to the underlying image.
fn inner(&self) -> &Self::InnerImageView;
/// Returns an subimage that is an immutable view into this image.
/// You can use [`GenericImage::sub_image`] if you need a mutable view instead.
fn view(&self, x: u32, y: u32, width: u32, height: u32) -> SubImage<&Self::InnerImageView> {
SubImage::new(self.inner(), x, y, width, height)
}
}
/// A trait for manipulating images.
pub trait GenericImage: GenericImageView {
/// Underlying image type. This is mainly used by SubImages in order to
/// always have a reference to the original image. This allows for less
/// indirections and it eases the use of nested SubImages.
type InnerImage: GenericImage;
/// Gets a reference to the mutable pixel at location `(x, y)`
///
/// # Panics
///
/// Panics if `(x, y)` is out of bounds.
fn get_pixel_mut(&mut self, x: u32, y: u32) -> &mut Self::Pixel;
/// Put a pixel at location (x, y)
///
/// # Panics
///
/// Panics if `(x, y)` is out of bounds.
fn put_pixel(&mut self, x: u32, y: u32, pixel: Self::Pixel);
/// Puts a pixel at location (x, y)
///
/// This function can be implemented in a way that ignores bounds checking.
unsafe fn unsafe_put_pixel(&mut self, x: u32, y: u32, pixel: Self::Pixel) {
self.put_pixel(x, y, pixel);
}
/// Put a pixel at location (x, y), taking into account alpha channels
///
/// DEPRECATED: This method will be removed. Blend the pixel directly instead.
fn blend_pixel(&mut self, x: u32, y: u32, pixel: Self::Pixel);
/// Copies all of the pixels from another image into this image.
///
/// The other image is copied with the top-left corner of the
/// other image placed at (x, y).
///
/// In order to copy only a piece of the other image, use [`GenericImageView::view`].
///
/// # Returns
/// Returns an error if the image is too large to be copied at the given position
fn copy_from(&mut self, other: &O, x: u32, y: u32) -> ImageResult<()>
where
O: GenericImageView,
{
// Do bounds checking here so we can use the non-bounds-checking
// functions to copy pixels.
if self.width() < other.width() + x || self.height() < other.height() + y {
return Err(ImageError::DimensionError);
}
for i in 0..other.width() {
for k in 0..other.height() {
let p = other.get_pixel(i, k);
self.put_pixel(i + x, k + y, p);
}
}
Ok(())
}
/// Copies all of the pixels from one part of this image to another part of this image.
///
/// The destination rectangle of the copy is specified with the top-left corner placed at (x, y).
///
/// # Returns
/// `true` if the copy was successful, `false` if the image could not
/// be copied due to size constraints.
fn copy_within(&mut self, source: Rect, x: u32, y: u32) -> bool {
let Rect { x: sx, y: sy, width, height } = source;
let dx = x;
let dy = y;
assert!(sx < self.width() && dx < self.width());
assert!(sy < self.height() && dy < self.height());
if self.width() - dx.max(sx) < width || self.height() - dy.max(sy) < height {
return false;
}
// since `.rev()` creates a new dype we would either have to go with dynamic dispatch for the ranges
// or have quite a lot of code bloat. A macro gives us static dispatch with less visible bloat.
macro_rules! copy_within_impl_ {
($xiter:expr, $yiter:expr) => {
for y in $yiter {
let sy = sy + y;
let dy = dy + y;
for x in $xiter {
let sx = sx + x;
let dx = dx + x;
let pixel = self.get_pixel(sx, sy);
self.put_pixel(dx, dy, pixel);
}
}
};
}
// check how target and source rectangles relate to each other so we dont overwrite data before we copied it.
match (sx < dx, sy < dy) {
(true, true) => copy_within_impl_!((0..width).rev(), (0..height).rev()),
(true, false) => copy_within_impl_!((0..width).rev(), 0..height),
(false, true) => copy_within_impl_!(0..width, (0..height).rev()),
(false, false) => copy_within_impl_!(0..width, 0..height),
}
true
}
/// Returns a mutable reference to the underlying image.
fn inner_mut(&mut self) -> &mut Self::InnerImage;
/// Returns a mutable subimage that is a view into this image.
/// If you want an immutable subimage instead, use [`GenericImageView::view`]
fn sub_image(
&mut self,
x: u32,
y: u32,
width: u32,
height: u32,
) -> SubImage<&mut Self::InnerImage> {
SubImage::new(self.inner_mut(), x, y, width, height)
}
}
/// A View into another image
///
/// Instances of this struct can be created using:
/// - [`GenericImage::sub_image`] to create a mutable view,
/// - [`GenericImageView::view`] to create an immutable view,
/// - [`SubImage::new`] to instantiate the struct directly.
pub struct SubImage {
image: I,
xoffset: u32,
yoffset: u32,
xstride: u32,
ystride: u32,
}
/// Alias to access Pixel behind a reference
type DerefPixel = <::Target as GenericImageView>::Pixel;
/// Alias to access Subpixel behind a reference
type DerefSubpixel = as Pixel>::Subpixel;
impl SubImage {
/// Construct a new subimage
pub fn new(image: I, x: u32, y: u32, width: u32, height: u32) -> SubImage {
SubImage {
image,
xoffset: x,
yoffset: y,
xstride: width,
ystride: height,
}
}
/// Change the coordinates of this subimage.
pub fn change_bounds(&mut self, x: u32, y: u32, width: u32, height: u32) {
self.xoffset = x;
self.yoffset = y;
self.xstride = width;
self.ystride = height;
}
/// Convert this subimage to an ImageBuffer
pub fn to_image(&self) -> ImageBuffer, Vec>>
where
I: Deref,
I::Target: GenericImage + 'static,
{
let mut out = ImageBuffer::new(self.xstride, self.ystride);
let borrowed = self.image.deref();
for y in 0..self.ystride {
for x in 0..self.xstride {
let p = borrowed.get_pixel(x + self.xoffset, y + self.yoffset);
out.put_pixel(x, y, p);
}
}
out
}
}
#[allow(deprecated)]
impl GenericImageView for SubImage
where
I: Deref,
I::Target: GenericImageView + Sized,
{
type Pixel = DerefPixel;
type InnerImageView = I::Target;
fn dimensions(&self) -> (u32, u32) {
(self.xstride, self.ystride)
}
fn bounds(&self) -> (u32, u32, u32, u32) {
(self.xoffset, self.yoffset, self.xstride, self.ystride)
}
fn get_pixel(&self, x: u32, y: u32) -> Self::Pixel {
self.image.get_pixel(x + self.xoffset, y + self.yoffset)
}
fn view(&self, x: u32, y: u32, width: u32, height: u32) -> SubImage<&Self::InnerImageView> {
let x = self.xoffset + x;
let y = self.yoffset + y;
SubImage::new(self.inner(), x, y, width, height)
}
fn inner(&self) -> &Self::InnerImageView {
&self.image
}
}
#[allow(deprecated)]
impl GenericImage for SubImage
where
I: DerefMut,
I::Target: GenericImage + Sized,
{
type InnerImage = I::Target;
fn get_pixel_mut(&mut self, x: u32, y: u32) -> &mut Self::Pixel {
self.image.get_pixel_mut(x + self.xoffset, y + self.yoffset)
}
fn put_pixel(&mut self, x: u32, y: u32, pixel: Self::Pixel) {
self.image
.put_pixel(x + self.xoffset, y + self.yoffset, pixel)
}
/// DEPRECATED: This method will be removed. Blend the pixel directly instead.
fn blend_pixel(&mut self, x: u32, y: u32, pixel: Self::Pixel) {
self.image
.blend_pixel(x + self.xoffset, y + self.yoffset, pixel)
}
fn sub_image(
&mut self,
x: u32,
y: u32,
width: u32,
height: u32,
) -> SubImage<&mut Self::InnerImage> {
let x = self.xoffset + x;
let y = self.yoffset + y;
SubImage::new(self.inner_mut(), x, y, width, height)
}
fn inner_mut(&mut self) -> &mut Self::InnerImage {
&mut self.image
}
}
#[cfg(test)]
mod tests {
use std::io;
use std::path::Path;
use super::{ColorType, ImageDecoder, ImageResult, GenericImage, GenericImageView, load_rect, ImageFormat};
use crate::buffer::{GrayImage, ImageBuffer};
use crate::color::Rgba;
use crate::math::Rect;
#[test]
/// Test that alpha blending works as expected
fn test_image_alpha_blending() {
let mut target = ImageBuffer::new(1, 1);
target.put_pixel(0, 0, Rgba([255u8, 0, 0, 255]));
assert!(*target.get_pixel(0, 0) == Rgba([255, 0, 0, 255]));
target.blend_pixel(0, 0, Rgba([0, 255, 0, 255]));
assert!(*target.get_pixel(0, 0) == Rgba([0, 255, 0, 255]));
// Blending an alpha channel onto a solid background
target.blend_pixel(0, 0, Rgba([255, 0, 0, 127]));
assert!(*target.get_pixel(0, 0) == Rgba([127, 127, 0, 255]));
// Blending two alpha channels
target.put_pixel(0, 0, Rgba([0, 255, 0, 127]));
target.blend_pixel(0, 0, Rgba([255, 0, 0, 127]));
assert!(*target.get_pixel(0, 0) == Rgba([169, 85, 0, 190]));
}
#[test]
fn test_in_bounds() {
let mut target = ImageBuffer::new(2, 2);
target.put_pixel(0, 0, Rgba([255u8, 0, 0, 255]));
assert!(target.in_bounds(0, 0));
assert!(target.in_bounds(1, 0));
assert!(target.in_bounds(0, 1));
assert!(target.in_bounds(1, 1));
assert!(!target.in_bounds(2, 0));
assert!(!target.in_bounds(0, 2));
assert!(!target.in_bounds(2, 2));
}
#[test]
fn test_can_subimage_clone_nonmut() {
let mut source = ImageBuffer::new(3, 3);
source.put_pixel(1, 1, Rgba([255u8, 0, 0, 255]));
// A non-mutable copy of the source image
let source = source.clone();
// Clone a view into non-mutable to a separate buffer
let cloned = source.view(1, 1, 1, 1).to_image();
assert!(cloned.get_pixel(0, 0) == source.get_pixel(1, 1));
}
#[test]
fn test_can_nest_views() {
let mut source = ImageBuffer::from_pixel(3, 3, Rgba([255u8, 0, 0, 255]));
{
let mut sub1 = source.sub_image(0, 0, 2, 2);
let mut sub2 = sub1.sub_image(1, 1, 1, 1);
sub2.put_pixel(0, 0, Rgba([0, 0, 0, 0]));
}
assert_eq!(*source.get_pixel(1, 1), Rgba([0, 0, 0, 0]));
let view1 = source.view(0, 0, 2, 2);
assert_eq!(*source.get_pixel(1, 1), view1.get_pixel(1, 1));
let view2 = view1.view(1, 1, 1, 1);
assert_eq!(*source.get_pixel(1, 1), view2.get_pixel(0, 0));
}
#[test]
fn test_load_rect() {
struct MockDecoder {scanline_number: u64, scanline_bytes: u64}
impl<'a> ImageDecoder<'a> for MockDecoder {
type Reader = Box;
fn dimensions(&self) -> (u32, u32) {(5, 5)}
fn color_type(&self) -> ColorType { ColorType::L8 }
fn into_reader(self) -> ImageResult {unimplemented!()}
fn scanline_bytes(&self) -> u64 { self.scanline_bytes }
}
const DATA: [u8; 25] = [0, 1, 2, 3, 4,
5, 6, 7, 8, 9,
10, 11, 12, 13, 14,
15, 16, 17, 18, 19,
20, 21, 22, 23, 24];
fn seek_scanline(m: &mut MockDecoder, n: u64) -> io::Result<()> {
m.scanline_number = n;
Ok(())
}
fn read_scanline(m: &mut MockDecoder, buf: &mut [u8]) -> io::Result {
let bytes_read = m.scanline_number * m.scanline_bytes;
if bytes_read >= 25 {
return Ok(0);
}
let len = m.scanline_bytes.min(25 - bytes_read);
buf[..(len as usize)].copy_from_slice(&DATA[(bytes_read as usize)..][..(len as usize)]);
m.scanline_number += 1;
Ok(len as usize)
}
for scanline_bytes in 1..30 {
let mut output = [0u8; 26];
load_rect(0, 0, 5, 5, &mut output, |_|{},
&mut MockDecoder{scanline_number:0, scanline_bytes},
seek_scanline, read_scanline).unwrap();
assert_eq!(output[0..25], DATA);
assert_eq!(output[25], 0);
output = [0u8; 26];
load_rect(3, 2, 1, 1, &mut output, |_|{},
&mut MockDecoder{scanline_number:0, scanline_bytes},
seek_scanline, read_scanline).unwrap();
assert_eq!(output[0..2], [13, 0]);
output = [0u8; 26];
load_rect(3, 2, 2, 2, &mut output, |_|{},
&mut MockDecoder{scanline_number:0, scanline_bytes},
seek_scanline, read_scanline).unwrap();
assert_eq!(output[0..5], [13, 14, 18, 19, 0]);
output = [0u8; 26];
load_rect(1, 1, 2, 4, &mut output, |_|{},
&mut MockDecoder{scanline_number:0, scanline_bytes},
seek_scanline, read_scanline).unwrap();
assert_eq!(output[0..9], [6, 7, 11, 12, 16, 17, 21, 22, 0]);
}
}
#[test]
fn test_image_format_from_path() {
fn from_path(s: &str) -> ImageResult {
ImageFormat::from_path(Path::new(s))
}
assert_eq!(from_path("./a.jpg").unwrap(), ImageFormat::Jpeg);
assert_eq!(from_path("./a.jpeg").unwrap(), ImageFormat::Jpeg);
assert_eq!(from_path("./a.JPEG").unwrap(), ImageFormat::Jpeg);
assert_eq!(from_path("./a.pNg").unwrap(), ImageFormat::Png);
assert_eq!(from_path("./a.gif").unwrap(), ImageFormat::Gif);
assert_eq!(from_path("./a.webp").unwrap(), ImageFormat::WebP);
assert_eq!(from_path("./a.tiFF").unwrap(), ImageFormat::Tiff);
assert_eq!(from_path("./a.tif").unwrap(), ImageFormat::Tiff);
assert_eq!(from_path("./a.tga").unwrap(), ImageFormat::Tga);
assert_eq!(from_path("./a.dds").unwrap(), ImageFormat::Dds);
assert_eq!(from_path("./a.bmp").unwrap(), ImageFormat::Bmp);
assert_eq!(from_path("./a.Ico").unwrap(), ImageFormat::Ico);
assert_eq!(from_path("./a.hdr").unwrap(), ImageFormat::Hdr);
assert_eq!(from_path("./a.pbm").unwrap(), ImageFormat::Pnm);
assert_eq!(from_path("./a.pAM").unwrap(), ImageFormat::Pnm);
assert_eq!(from_path("./a.Ppm").unwrap(), ImageFormat::Pnm);
assert_eq!(from_path("./a.pgm").unwrap(), ImageFormat::Pnm);
assert!(from_path("./a.txt").is_err());
assert!(from_path("./a").is_err());
}
#[test]
fn test_generic_image_copy_within_oob() {
let mut image: GrayImage = ImageBuffer::from_raw(4, 4, vec![0u8; 16]).unwrap();
assert!(!image.sub_image(0, 0, 4, 4).copy_within(Rect { x: 0, y: 0, width: 5, height: 4 }, 0, 0));
assert!(!image.sub_image(0, 0, 4, 4).copy_within(Rect { x: 0, y: 0, width: 4, height: 5 }, 0, 0));
assert!(!image.sub_image(0, 0, 4, 4).copy_within(Rect { x: 1, y: 0, width: 4, height: 4 }, 0, 0));
assert!(!image.sub_image(0, 0, 4, 4).copy_within(Rect { x: 0, y: 0, width: 4, height: 4 }, 1, 0));
assert!(!image.sub_image(0, 0, 4, 4).copy_within(Rect { x: 0, y: 1, width: 4, height: 4 }, 0, 0));
assert!(!image.sub_image(0, 0, 4, 4).copy_within(Rect { x: 0, y: 0, width: 4, height: 4 }, 0, 1));
assert!(!image.sub_image(0, 0, 4, 4).copy_within(Rect { x: 1, y: 1, width: 4, height: 4 }, 0, 0));
}
#[test]
fn test_generic_image_copy_within_tl() {
let data = &[
00, 01, 02, 03,
04, 05, 06, 07,
08, 09, 10, 11,
12, 13, 14, 15
];
let expected = [
00, 01, 02, 03,
04, 00, 01, 02,
08, 04, 05, 06,
12, 08, 09, 10,
];
let mut image: GrayImage = ImageBuffer::from_raw(4, 4, Vec::from(&data[..])).unwrap();
assert!(image.sub_image(0, 0, 4, 4).copy_within(Rect { x: 0, y: 0, width: 3, height: 3 }, 1, 1));
assert_eq!(&image.into_raw(), &expected);
}
#[test]
fn test_generic_image_copy_within_tr() {
let data = &[
00, 01, 02, 03,
04, 05, 06, 07,
08, 09, 10, 11,
12, 13, 14, 15
];
let expected = [
00, 01, 02, 03,
01, 02, 03, 07,
05, 06, 07, 11,
09, 10, 11, 15
];
let mut image: GrayImage = ImageBuffer::from_raw(4, 4, Vec::from(&data[..])).unwrap();
assert!(image.sub_image(0, 0, 4, 4).copy_within(Rect { x: 1, y: 0, width: 3, height: 3 }, 0, 1));
assert_eq!(&image.into_raw(), &expected);
}
#[test]
fn test_generic_image_copy_within_bl() {
let data = &[
00, 01, 02, 03,
04, 05, 06, 07,
08, 09, 10, 11,
12, 13, 14, 15
];
let expected = [
00, 04, 05, 06,
04, 08, 09, 10,
08, 12, 13, 14,
12, 13, 14, 15
];
let mut image: GrayImage = ImageBuffer::from_raw(4, 4, Vec::from(&data[..])).unwrap();
assert!(image.sub_image(0, 0, 4, 4).copy_within(Rect { x: 0, y: 1, width: 3, height: 3 }, 1, 0));
assert_eq!(&image.into_raw(), &expected);
}
#[test]
fn test_generic_image_copy_within_br() {
let data = &[
00, 01, 02, 03,
04, 05, 06, 07,
08, 09, 10, 11,
12, 13, 14, 15
];
let expected = [
05, 06, 07, 03,
09, 10, 11, 07,
13, 14, 15, 11,
12, 13, 14, 15
];
let mut image: GrayImage = ImageBuffer::from_raw(4, 4, Vec::from(&data[..])).unwrap();
assert!(image.sub_image(0, 0, 4, 4).copy_within(Rect { x: 1, y: 1, width: 3, height: 3 }, 0, 0));
assert_eq!(&image.into_raw(), &expected);
}
}