//! NEUQUANT Neural-Net quantization algorithm by Anthony Dekker, 1994. //! See "Kohonen neural networks for optimal colour quantization" //! in "Network: Computation in Neural Systems" Vol. 5 (1994) pp 351-367. //! for a discussion of the algorithm. //! See also /* NeuQuant Neural-Net Quantization Algorithm * ------------------------------------------ * * Copyright (c) 1994 Anthony Dekker * * NEUQUANT Neural-Net quantization algorithm by Anthony Dekker, 1994. * See "Kohonen neural networks for optimal colour quantization" * in "Network: Computation in Neural Systems" Vol. 5 (1994) pp 351-367. * for a discussion of the algorithm. * See also https://scientificgems.wordpress.com/stuff/neuquant-fast-high-quality-image-quantization/ * * Any party obtaining a copy of these files from the author, directly or * indirectly, is granted, free of charge, a full and unrestricted irrevocable, * world-wide, paid up, royalty-free, nonexclusive right and license to deal * in this software and documentation files (the "Software"), including without * limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons who receive * copies from any such party to do so, with the only requirement being * that this copyright notice remain intact. * * * Incorporated bugfixes and alpha channel handling from pngnq * http://pngnq.sourceforge.net * */ use crate::math::utils::clamp; use std::cmp::{max, min}; const CHANNELS: usize = 4; const RADIUS_DEC: i32 = 30; // factor of 1/30 each cycle const ALPHA_BIASSHIFT: i32 = 10; // alpha starts at 1 const INIT_ALPHA: i32 = 1 << ALPHA_BIASSHIFT; // biased by 10 bits const GAMMA: f64 = 1024.0; const BETA: f64 = 1.0 / GAMMA; const BETAGAMMA: f64 = BETA * GAMMA; // four primes near 500 - assume no image has a length so large // that it is divisible by all four primes const PRIMES: [usize; 4] = [499, 491, 478, 503]; #[derive(Clone, Copy)] struct Quad { r: T, g: T, b: T, a: T, } type Neuron = Quad; type Color = Quad; /// Neural network color quantizer pub struct NeuQuant { network: Vec, colormap: Vec, netindex: Vec, bias: Vec, // bias and freq arrays for learning freq: Vec, samplefac: i32, netsize: usize, } impl NeuQuant { /// Creates a new neural network and trains it with the supplied data pub fn new(samplefac: i32, colors: usize, pixels: &[u8]) -> Self { let netsize = colors; let mut this = NeuQuant { network: Vec::with_capacity(netsize), colormap: Vec::with_capacity(netsize), netindex: vec![0; 256], bias: Vec::with_capacity(netsize), freq: Vec::with_capacity(netsize), samplefac, netsize, }; this.init(pixels); this } /// Initializes the neural network and trains it with the supplied data pub fn init(&mut self, pixels: &[u8]) { self.network.clear(); self.colormap.clear(); self.bias.clear(); self.freq.clear(); let freq = (self.netsize as f64).recip(); for i in 0..self.netsize { let tmp = (i as f64) * 256.0 / (self.netsize as f64); // Sets alpha values at 0 for dark pixels. let a = if i < 16 { i as f64 * 16.0 } else { 255.0 }; self.network.push(Neuron { r: tmp, g: tmp, b: tmp, a, }); self.colormap.push(Color { r: 0, g: 0, b: 0, a: 255, }); self.freq.push(freq); self.bias.push(0.0); } self.learn(pixels); self.build_colormap(); self.build_netindex(); } /// Maps the pixel in-place to the best-matching color in the color map #[inline(always)] pub fn map_pixel(&self, pixel: &mut [u8]) { assert_eq!(pixel.len(), 4); match (pixel[0], pixel[1], pixel[2], pixel[3]) { (r, g, b, a) => { let i = self.search_netindex(b, g, r, a); pixel[0] = self.colormap[i].r as u8; pixel[1] = self.colormap[i].g as u8; pixel[2] = self.colormap[i].b as u8; pixel[3] = self.colormap[i].a as u8; } } } /// Finds the best-matching index in the color map for `pixel` #[inline(always)] pub fn index_of(&self, pixel: &[u8]) -> usize { assert_eq!(pixel.len(), 4); match (pixel[0], pixel[1], pixel[2], pixel[3]) { (r, g, b, a) => self.search_netindex(b, g, r, a), } } /// Move neuron i towards biased (a,b,g,r) by factor alpha fn alter_single(&mut self, alpha: f64, i: i32, quad: Quad) { let n = &mut self.network[i as usize]; n.b -= alpha * (n.b - quad.b); n.g -= alpha * (n.g - quad.g); n.r -= alpha * (n.r - quad.r); n.a -= alpha * (n.a - quad.a); } /// Move neuron adjacent neurons towards biased (a,b,g,r) by factor alpha fn alter_neighbour(&mut self, alpha: f64, rad: i32, i: i32, quad: Quad) { let lo = max(i - rad, 0); let hi = min(i + rad, self.netsize as i32); let mut j = i + 1; let mut k = i - 1; let mut q = 0; while (j < hi) || (k > lo) { let rad_sq = f64::from(rad) * f64::from(rad); let alpha = (alpha * (rad_sq - f64::from(q) * f64::from(q))) / rad_sq; q += 1; if j < hi { let p = &mut self.network[j as usize]; p.b -= alpha * (p.b - quad.b); p.g -= alpha * (p.g - quad.g); p.r -= alpha * (p.r - quad.r); p.a -= alpha * (p.a - quad.a); j += 1; } if k > lo { let p = &mut self.network[k as usize]; p.b -= alpha * (p.b - quad.b); p.g -= alpha * (p.g - quad.g); p.r -= alpha * (p.r - quad.r); p.a -= alpha * (p.a - quad.a); k -= 1; } } } /// Search for biased BGR values /// finds closest neuron (min dist) and updates freq /// finds best neuron (min dist-bias) and returns position /// for frequently chosen neurons, freq[i] is high and bias[i] is negative /// bias[i] = gamma*((1/self.netsize)-freq[i]) fn contest(&mut self, b: f64, g: f64, r: f64, a: f64) -> i32 { use std::f64; let mut bestd = f64::MAX; let mut bestbiasd: f64 = bestd; let mut bestpos = -1; let mut bestbiaspos: i32 = bestpos; for i in 0..self.netsize { let bestbiasd_biased = bestbiasd + self.bias[i]; let mut dist; let n = &self.network[i]; dist = (n.b - b).abs(); dist += (n.r - r).abs(); if dist < bestd || dist < bestbiasd_biased { dist += (n.g - g).abs(); dist += (n.a - a).abs(); if dist < bestd { bestd = dist; bestpos = i as i32; } let biasdist = dist - self.bias[i]; if biasdist < bestbiasd { bestbiasd = biasdist; bestbiaspos = i as i32; } } self.freq[i] -= BETA * self.freq[i]; self.bias[i] += BETAGAMMA * self.freq[i]; } self.freq[bestpos as usize] += BETA; self.bias[bestpos as usize] -= BETAGAMMA; bestbiaspos } /// Main learning loop /// Note: the number of learning cycles is crucial and the parameters are not /// optimized for net sizes < 26 or > 256. 1064 colors seems to work fine fn learn(&mut self, pixels: &[u8]) { let initrad: i32 = self.netsize as i32 / 8; // for 256 cols, radius starts at 32 let radiusbiasshift: i32 = 6; let radiusbias: i32 = 1 << radiusbiasshift; let init_bias_radius: i32 = initrad * radiusbias; let mut bias_radius = init_bias_radius; let alphadec = 30 + ((self.samplefac - 1) / 3); let lengthcount = pixels.len() / CHANNELS; let samplepixels = lengthcount / self.samplefac as usize; // learning cycles let n_cycles = match self.netsize >> 1 { n if n <= 100 => 100, n => n, }; let delta = match samplepixels / n_cycles { 0 => 1, n => n, }; let mut alpha = INIT_ALPHA; let mut rad = bias_radius >> radiusbiasshift; if rad <= 1 { rad = 0 }; let mut pos = 0; let step = *PRIMES .iter() .find(|&&prime| lengthcount % prime != 0) .unwrap_or(&PRIMES[3]); let mut i = 0; while i < samplepixels { let (r, g, b, a) = { let p = &pixels[CHANNELS * pos..][..CHANNELS]; ( f64::from(p[0]), f64::from(p[1]), f64::from(p[2]), f64::from(p[3]), ) }; let j = self.contest(b, g, r, a); let alpha_ = (1.0 * f64::from(alpha)) / f64::from(INIT_ALPHA); self.alter_single(alpha_, j, Quad { b, g, r, a }); if rad > 0 { self.alter_neighbour(alpha_, rad, j, Quad { b, g, r, a }) }; pos += step; while pos >= lengthcount { pos -= lengthcount } i += 1; if i % delta == 0 { alpha -= alpha / alphadec; bias_radius -= bias_radius / RADIUS_DEC; rad = bias_radius >> radiusbiasshift; if rad <= 1 { rad = 0 }; } } } /// initializes the color map fn build_colormap(&mut self) { for i in 0usize..self.netsize { self.colormap[i].b = clamp(self.network[i].b.round() as i32, 0, 255); self.colormap[i].g = clamp(self.network[i].g.round() as i32, 0, 255); self.colormap[i].r = clamp(self.network[i].r.round() as i32, 0, 255); self.colormap[i].a = clamp(self.network[i].a.round() as i32, 0, 255); } } /// Insertion sort of network and building of netindex[0..255] fn build_netindex(&mut self) { let mut previouscol = 0; let mut startpos = 0; for i in 0..self.netsize { let mut p = self.colormap[i]; let mut q; let mut smallpos = i; let mut smallval = p.g as usize; // index on g // find smallest in i..netsize-1 for j in (i + 1)..self.netsize { q = self.colormap[j]; if (q.g as usize) < smallval { // index on g smallpos = j; smallval = q.g as usize; // index on g } } q = self.colormap[smallpos]; // swap p (i) and q (smallpos) entries if i != smallpos { ::std::mem::swap(&mut p, &mut q); self.colormap[i] = p; self.colormap[smallpos] = q; } // smallval entry is now in position i if smallval != previouscol { self.netindex[previouscol] = (startpos + i) >> 1; for j in (previouscol + 1)..smallval { self.netindex[j] = i } previouscol = smallval; startpos = i; } } let max_netpos = self.netsize - 1; self.netindex[previouscol] = (startpos + max_netpos) >> 1; for j in (previouscol + 1)..256 { self.netindex[j] = max_netpos } // really 256 } /// Search for best matching color fn search_netindex(&self, b: u8, g: u8, r: u8, a: u8) -> usize { let mut bestd = 1 << 30; // ~ 1_000_000 let mut best = 0; // start at netindex[g] and work outwards let mut i = self.netindex[g as usize]; let mut j = if i > 0 { i - 1 } else { 0 }; while (i < self.netsize) || (j > 0) { if i < self.netsize { let p = self.colormap[i]; let mut e = p.g - i32::from(g); let mut dist = e * e; // index key if dist >= bestd { break; } else { e = p.b - i32::from(b); dist += e * e; if dist < bestd { e = p.r - i32::from(r); dist += e * e; if dist < bestd { e = p.a - i32::from(a); dist += e * e; if dist < bestd { bestd = dist; best = i; } } } i += 1; } } if j > 0 { let p = self.colormap[j]; let mut e = p.g - i32::from(g); let mut dist = e * e; // index key if dist >= bestd { break; } else { e = p.b - i32::from(b); dist += e * e; if dist < bestd { e = p.r - i32::from(r); dist += e * e; if dist < bestd { e = p.a - i32::from(a); dist += e * e; if dist < bestd { bestd = dist; best = j; } } } j -= 1; } } } best } }