use std::convert::TryFrom; use std::io::{self, BufRead, BufReader, Cursor, Read}; use std::str::{self, FromStr}; use std::fmt::Display; use std::marker::PhantomData; use std::mem; use super::{ArbitraryHeader, ArbitraryTuplType, BitmapHeader, GraymapHeader, PixmapHeader}; use super::{HeaderRecord, PNMHeader, PNMSubtype, SampleEncoding}; use crate::color::{ColorType, ExtendedColorType}; use crate::error::{ImageError, ImageResult}; use crate::image::{self, ImageDecoder}; use crate::utils; use byteorder::{BigEndian, ByteOrder, NativeEndian}; /// Dynamic representation, represents all decodable (sample, depth) combinations. #[derive(Clone, Copy)] enum TupleType { PbmBit, BWBit, GrayU8, GrayU16, RGBU8, RGBU16, } trait Sample { fn bytelen(width: u32, height: u32, samples: u32) -> ImageResult; /// It is guaranteed that `bytes.len() == bytelen(width, height, samples)` fn from_bytes(bytes: &[u8], width: u32, height: u32, samples: u32) -> ImageResult>; fn from_ascii(reader: &mut dyn Read, width: u32, height: u32, samples: u32) -> ImageResult>; } struct U8; struct U16; struct PbmBit; struct BWBit; trait DecodableImageHeader { fn tuple_type(&self) -> ImageResult; } /// PNM decoder pub struct PnmDecoder { reader: BufReader, header: PNMHeader, tuple: TupleType, } impl PnmDecoder { /// Create a new decoder that decodes from the stream ```read``` pub fn new(read: R) -> ImageResult> { let mut buf = BufReader::new(read); let magic = buf.read_magic_constant()?; if magic[0] != b'P' { return Err(ImageError::FormatError( format!("Expected magic constant for pnm, P1 through P7 instead of {:?}", magic), )); } let subtype = match magic[1] { b'1' => PNMSubtype::Bitmap(SampleEncoding::Ascii), b'2' => PNMSubtype::Graymap(SampleEncoding::Ascii), b'3' => PNMSubtype::Pixmap(SampleEncoding::Ascii), b'4' => PNMSubtype::Bitmap(SampleEncoding::Binary), b'5' => PNMSubtype::Graymap(SampleEncoding::Binary), b'6' => PNMSubtype::Pixmap(SampleEncoding::Binary), b'7' => PNMSubtype::ArbitraryMap, _ => { return Err(ImageError::FormatError( format!("Expected magic constant for pnm, P1 through P7 instead of {:?}", magic), )); } }; match subtype { PNMSubtype::Bitmap(enc) => PnmDecoder::read_bitmap_header(buf, enc), PNMSubtype::Graymap(enc) => PnmDecoder::read_graymap_header(buf, enc), PNMSubtype::Pixmap(enc) => PnmDecoder::read_pixmap_header(buf, enc), PNMSubtype::ArbitraryMap => PnmDecoder::read_arbitrary_header(buf), } } /// Extract the reader and header after an image has been read. pub fn into_inner(self) -> (R, PNMHeader) { (self.reader.into_inner(), self.header) } fn read_bitmap_header( mut reader: BufReader, encoding: SampleEncoding, ) -> ImageResult> { let header = reader.read_bitmap_header(encoding)?; Ok(PnmDecoder { reader, tuple: TupleType::PbmBit, header: PNMHeader { decoded: HeaderRecord::Bitmap(header), encoded: None, }, }) } fn read_graymap_header( mut reader: BufReader, encoding: SampleEncoding, ) -> ImageResult> { let header = reader.read_graymap_header(encoding)?; let tuple_type = header.tuple_type()?; Ok(PnmDecoder { reader, tuple: tuple_type, header: PNMHeader { decoded: HeaderRecord::Graymap(header), encoded: None, }, }) } fn read_pixmap_header( mut reader: BufReader, encoding: SampleEncoding, ) -> ImageResult> { let header = reader.read_pixmap_header(encoding)?; let tuple_type = header.tuple_type()?; Ok(PnmDecoder { reader, tuple: tuple_type, header: PNMHeader { decoded: HeaderRecord::Pixmap(header), encoded: None, }, }) } fn read_arbitrary_header(mut reader: BufReader) -> ImageResult> { let header = reader.read_arbitrary_header()?; let tuple_type = header.tuple_type()?; Ok(PnmDecoder { reader, tuple: tuple_type, header: PNMHeader { decoded: HeaderRecord::Arbitrary(header), encoded: None, }, }) } } trait HeaderReader: BufRead { /// Reads the two magic constant bytes fn read_magic_constant(&mut self) -> ImageResult<[u8; 2]> { let mut magic: [u8; 2] = [0, 0]; self.read_exact(&mut magic) .map_err(ImageError::IoError)?; Ok(magic) } /// Reads a string as well as a single whitespace after it, ignoring comments fn read_next_string(&mut self) -> ImageResult { let mut bytes = Vec::new(); // pair input bytes with a bool mask to remove comments let mark_comments = self.bytes().scan(true, |partof, read| { let byte = match read { Err(err) => return Some((*partof, Err(err))), Ok(byte) => byte, }; let cur_enabled = *partof && byte != b'#'; let next_enabled = cur_enabled || (byte == b'\r' || byte == b'\n'); *partof = next_enabled; Some((cur_enabled, Ok(byte))) }); for (_, byte) in mark_comments.filter(|ref e| e.0) { match byte { Ok(b'\t') | Ok(b'\n') | Ok(b'\x0b') | Ok(b'\x0c') | Ok(b'\r') | Ok(b' ') => { if !bytes.is_empty() { break; // We're done as we already have some content } } Ok(byte) if !byte.is_ascii() => { return Err(ImageError::FormatError( format!("Non ascii character {} in header", byte), )); }, Ok(byte) => { bytes.push(byte); }, Err(_) => break, } } if bytes.is_empty() { return Err(ImageError::IoError(io::ErrorKind::UnexpectedEof.into())); } if !bytes.as_slice().is_ascii() { // We have only filled the buffer with characters for which `byte.is_ascii()` holds. unreachable!("Non ascii character should have returned sooner") } let string = String::from_utf8(bytes) // We checked the precondition ourselves a few lines before, `bytes.as_slice().is_ascii()`. .unwrap_or_else(|_| unreachable!("Only ascii characters should be decoded")); Ok(string) } /// Read the next line fn read_next_line(&mut self) -> ImageResult { let mut buffer = String::new(); self.read_line(&mut buffer) .map_err(ImageError::IoError)?; Ok(buffer) } fn read_next_u32(&mut self) -> ImageResult { let s = self.read_next_string()?; s.parse::() .map_err(|err| ImageError::FormatError( format!("Error parsing number {} in preamble: {}", s, err) )) } fn read_bitmap_header(&mut self, encoding: SampleEncoding) -> ImageResult { let width = self.read_next_u32()?; let height = self.read_next_u32()?; Ok(BitmapHeader { encoding, width, height, }) } fn read_graymap_header(&mut self, encoding: SampleEncoding) -> ImageResult { self.read_pixmap_header(encoding).map( |PixmapHeader { encoding, width, height, maxval, }| GraymapHeader { encoding, width, height, maxwhite: maxval, }, ) } fn read_pixmap_header(&mut self, encoding: SampleEncoding) -> ImageResult { let width = self.read_next_u32()?; let height = self.read_next_u32()?; let maxval = self.read_next_u32()?; Ok(PixmapHeader { encoding, width, height, maxval, }) } fn read_arbitrary_header(&mut self) -> ImageResult { match self.bytes().next() { None => return Err(ImageError::IoError(io::ErrorKind::UnexpectedEof.into())), Some(Err(io)) => return Err(ImageError::IoError(io)), Some(Ok(b'\n')) => (), Some(Ok(c)) => { return Err(ImageError::FormatError( format!("Expected newline after P7 magic instead of {}", c), )) } } let mut line = String::new(); let mut height: Option = None; let mut width: Option = None; let mut depth: Option = None; let mut maxval: Option = None; let mut tupltype: Option = None; loop { line.truncate(0); let len = self.read_line(&mut line).map_err(ImageError::IoError)?; if len == 0 { return Err(ImageError::FormatError( "Unexpected end of pnm header".to_string(), )) } if line.as_bytes()[0] == b'#' { continue; } if !line.is_ascii() { return Err(ImageError::FormatError( "Only ascii characters allowed in pam header".to_string(), )); } #[allow(deprecated)] let (identifier, rest) = line.trim_left() .split_at(line.find(char::is_whitespace).unwrap_or_else(|| line.len())); match identifier { "ENDHDR" => break, "HEIGHT" => if height.is_some() { return Err(ImageError::FormatError("Duplicate HEIGHT line".to_string())); } else { let h = rest.trim() .parse::() .map_err(|err| ImageError::FormatError( format!("Invalid height {}: {}", rest, err) ))?; height = Some(h); }, "WIDTH" => if width.is_some() { return Err(ImageError::FormatError("Duplicate WIDTH line".to_string())); } else { let w = rest.trim() .parse::() .map_err(|err| ImageError::FormatError( format!("Invalid width {}: {}", rest, err) ))?; width = Some(w); }, "DEPTH" => if depth.is_some() { return Err(ImageError::FormatError("Duplicate DEPTH line".to_string())); } else { let d = rest.trim() .parse::() .map_err(|err| ImageError::FormatError( format!("Invalid depth {}: {}", rest, err) ))?; depth = Some(d); }, "MAXVAL" => if maxval.is_some() { return Err(ImageError::FormatError("Duplicate MAXVAL line".to_string())); } else { let m = rest.trim() .parse::() .map_err(|err| ImageError::FormatError( format!("Invalid maxval {}: {}", rest, err) ))?; maxval = Some(m); }, "TUPLTYPE" => { let identifier = rest.trim(); if tupltype.is_some() { let appended = tupltype.take().map(|mut v| { v.push(' '); v.push_str(identifier); v }); tupltype = appended; } else { tupltype = Some(identifier.to_string()); } } _ => return Err(ImageError::FormatError("Unknown header line".to_string())), } } let (h, w, d, m) = match (height, width, depth, maxval) { (None, _, _, _) => { return Err(ImageError::FormatError( "Expected one HEIGHT line".to_string(), )) } (_, None, _, _) => { return Err(ImageError::FormatError( "Expected one WIDTH line".to_string(), )) } (_, _, None, _) => { return Err(ImageError::FormatError( "Expected one DEPTH line".to_string(), )) } (_, _, _, None) => { return Err(ImageError::FormatError( "Expected one MAXVAL line".to_string(), )) } (Some(h), Some(w), Some(d), Some(m)) => (h, w, d, m), }; let tupltype = match tupltype { None => None, Some(ref t) if t == "BLACKANDWHITE" => Some(ArbitraryTuplType::BlackAndWhite), Some(ref t) if t == "BLACKANDWHITE_ALPHA" => { Some(ArbitraryTuplType::BlackAndWhiteAlpha) } Some(ref t) if t == "GRAYSCALE" => Some(ArbitraryTuplType::Grayscale), Some(ref t) if t == "GRAYSCALE_ALPHA" => Some(ArbitraryTuplType::GrayscaleAlpha), Some(ref t) if t == "RGB" => Some(ArbitraryTuplType::RGB), Some(ref t) if t == "RGB_ALPHA" => Some(ArbitraryTuplType::RGBAlpha), Some(other) => Some(ArbitraryTuplType::Custom(other)), }; Ok(ArbitraryHeader { height: h, width: w, depth: d, maxval: m, tupltype, }) } } impl HeaderReader for BufReader {} /// Wrapper struct around a `Cursor>` pub struct PnmReader(Cursor>, PhantomData); impl Read for PnmReader { fn read(&mut self, buf: &mut [u8]) -> io::Result { self.0.read(buf) } fn read_to_end(&mut self, buf: &mut Vec) -> io::Result { if self.0.position() == 0 && buf.is_empty() { mem::swap(buf, self.0.get_mut()); Ok(buf.len()) } else { self.0.read_to_end(buf) } } } impl<'a, R: 'a + Read> ImageDecoder<'a> for PnmDecoder { type Reader = PnmReader; fn dimensions(&self) -> (u32, u32) { (self.header.width(), self.header.height()) } fn color_type(&self) -> ColorType { match self.tuple { TupleType::PbmBit => ColorType::L8, TupleType::BWBit => ColorType::L8, TupleType::GrayU8 => ColorType::L8, TupleType::GrayU16 => ColorType::L16, TupleType::RGBU8 => ColorType::Rgb8, TupleType::RGBU16 => ColorType::Rgb16, } } fn original_color_type(&self) -> ExtendedColorType { match self.tuple { TupleType::PbmBit => ExtendedColorType::L1, TupleType::BWBit => ExtendedColorType::L1, TupleType::GrayU8 => ExtendedColorType::L8, TupleType::GrayU16 => ExtendedColorType::L16, TupleType::RGBU8 => ExtendedColorType::Rgb8, TupleType::RGBU16 => ExtendedColorType::Rgb16, } } fn into_reader(self) -> ImageResult { Ok(PnmReader(Cursor::new(image::decoder_to_vec(self)?), PhantomData)) } fn read_image(mut self, buf: &mut [u8]) -> ImageResult<()> { assert_eq!(u64::try_from(buf.len()), Ok(self.total_bytes())); buf.copy_from_slice(&match self.tuple { TupleType::PbmBit => self.read_samples::(1), TupleType::BWBit => self.read_samples::(1), TupleType::RGBU8 => self.read_samples::(3), TupleType::RGBU16 => self.read_samples::(3), TupleType::GrayU8 => self.read_samples::(1), TupleType::GrayU16 => self.read_samples::(1), }?); Ok(()) } } fn err_input_is_too_short() -> ImageError { return ImageError::FormatError( "Not enough data was provided to the Decoder to decode the image".into() ) } impl PnmDecoder { fn read_samples(&mut self, components: u32) -> ImageResult> { match self.subtype().sample_encoding() { SampleEncoding::Binary => { let width = self.header.width(); let height = self.header.height(); let bytecount = S::bytelen(width, height, components)?; let mut bytes = vec![]; self.reader .by_ref() // This conversion is potentially lossy but unlikely and in that case we error // later anyways. .take(bytecount as u64) .read_to_end(&mut bytes)?; if bytes.len() != bytecount { return Err(err_input_is_too_short()); } let samples = S::from_bytes(&bytes, width, height, components)?; Ok(samples) } SampleEncoding::Ascii => { let samples = self.read_ascii::(components)?; Ok(samples) } } } fn read_ascii(&mut self, components: u32) -> ImageResult> { Basic::from_ascii(&mut self.reader, self.header.width(), self.header.height(), components) } /// Get the pnm subtype, depending on the magic constant contained in the header pub fn subtype(&self) -> PNMSubtype { self.header.subtype() } } fn read_separated_ascii(reader: &mut dyn Read) -> ImageResult where T::Err: Display { let is_separator = |v: &u8| match *v { b'\t' | b'\n' | b'\x0b' | b'\x0c' | b'\r' | b' ' => true, _ => false, }; let token = reader .bytes() .skip_while(|v| v.as_ref().ok().map(&is_separator).unwrap_or(false)) .take_while(|v| v.as_ref().ok().map(|c| !is_separator(c)).unwrap_or(false)) .collect::, _>>()?; if !token.is_ascii() { return Err(ImageError::FormatError( "Non ascii character where sample value was expected".to_string(), )); } let string = str::from_utf8(&token) // We checked the precondition ourselves a few lines before, `token.is_ascii()`. .unwrap_or_else(|_| unreachable!("Only ascii characters should be decoded")); string .parse() .map_err(|err| ImageError::FormatError(format!("Error parsing {} as a sample: {}", string, err))) } impl Sample for U8 { fn bytelen(width: u32, height: u32, samples: u32) -> ImageResult { Ok((width * height * samples) as usize) } fn from_bytes( bytes: &[u8], width: u32, height: u32, samples: u32, ) -> ImageResult> { assert_eq!(bytes.len(), Self::bytelen(width, height, samples).unwrap()); Ok(bytes.to_vec()) } fn from_ascii( reader: &mut dyn Read, width: u32, height: u32, samples: u32, ) -> ImageResult> { (0..width*height*samples) .map(|_| read_separated_ascii(reader)) .collect() } } impl Sample for U16 { fn bytelen(width: u32, height: u32, samples: u32) -> ImageResult { Ok((width * height * samples * 2) as usize) } fn from_bytes( bytes: &[u8], width: u32, height: u32, samples: u32, ) -> ImageResult> { assert_eq!(bytes.len(), Self::bytelen(width, height, samples).unwrap()); let mut buffer = bytes.to_vec(); for chunk in buffer.chunks_mut(2) { let v = BigEndian::read_u16(chunk); NativeEndian::write_u16(chunk, v); } Ok(buffer) } fn from_ascii( reader: &mut dyn Read, width: u32, height: u32, samples: u32, ) -> ImageResult> { let mut buffer = vec![0; (width * height * samples * 2) as usize]; for i in 0..(width*height*samples) as usize { let v = read_separated_ascii::(reader)?; NativeEndian::write_u16(&mut buffer[2*i..][..2], v); } Ok(buffer) } } // The image is encoded in rows of bits, high order bits first. Any bits beyond the row bits should // be ignored. Also, contrary to rgb, black pixels are encoded as a 1 while white is 0. This will // need to be reversed for the grayscale output. impl Sample for PbmBit { fn bytelen(width: u32, height: u32, samples: u32) -> ImageResult { let count = width * samples; let linelen = (count / 8) + ((count % 8) != 0) as u32; Ok((linelen * height) as usize) } fn from_bytes( bytes: &[u8], width: u32, height: u32, samples: u32, ) -> ImageResult> { assert_eq!(bytes.len(), Self::bytelen(width, height, samples).unwrap()); let mut expanded = utils::expand_bits(1, width * samples, bytes); for b in expanded.iter_mut() { *b = !*b; } Ok(expanded) } fn from_ascii( reader: &mut dyn Read, width: u32, height: u32, samples: u32, ) -> ImageResult> { let count = (width*height*samples) as usize; let raw_samples = reader.bytes() .filter_map(|ascii| match ascii { Ok(b'0') => Some(Ok(1)), Ok(b'1') => Some(Ok(0)), Err(err) => Some(Err(ImageError::IoError(err))), Ok(b'\t') | Ok(b'\n') | Ok(b'\x0b') | Ok(b'\x0c') | Ok(b'\r') | Ok(b' ') => None, Ok(c) => Some(Err(ImageError::FormatError( format!("Unexpected character {} within sample raster", c), ))), }) .take(count) .collect::>>()?; if raw_samples.len() < count { return Err(err_input_is_too_short()) } Ok(raw_samples) } } // Encoded just like a normal U8 but we check the values. impl Sample for BWBit { fn bytelen(width: u32, height: u32, samples: u32) -> ImageResult { U8::bytelen(width, height, samples) } fn from_bytes( bytes: &[u8], width: u32, height: u32, samples: u32, ) -> ImageResult> { assert_eq!(bytes.len(), Self::bytelen(width, height, samples).unwrap()); let values = U8::from_bytes(bytes, width, height, samples)?; if let Some(val) = values.iter().find(|&val| *val > 1) { return Err(ImageError::FormatError( format!("Sample value {} outside of bounds", val), )); }; Ok(values) } fn from_ascii( _reader: &mut dyn Read, _width: u32, _height: u32, _samples: u32, ) -> ImageResult> { unreachable!("BW bits from anymaps are never encoded as ascii") } } impl DecodableImageHeader for BitmapHeader { fn tuple_type(&self) -> ImageResult { Ok(TupleType::PbmBit) } } impl DecodableImageHeader for GraymapHeader { fn tuple_type(&self) -> ImageResult { match self.maxwhite { v if v <= 0xFF => Ok(TupleType::GrayU8), v if v <= 0xFFFF => Ok(TupleType::GrayU16), _ => Err(ImageError::FormatError( "Image maxval is not less or equal to 65535".to_string(), )), } } } impl DecodableImageHeader for PixmapHeader { fn tuple_type(&self) -> ImageResult { match self.maxval { v if v <= 0xFF => Ok(TupleType::RGBU8), v if v <= 0xFFFF => Ok(TupleType::RGBU16), _ => Err(ImageError::FormatError( "Image maxval is not less or equal to 65535".to_string(), )), } } } impl DecodableImageHeader for ArbitraryHeader { fn tuple_type(&self) -> ImageResult { match self.tupltype { None if self.depth == 1 => Ok(TupleType::GrayU8), None if self.depth == 2 => Err(ImageError::UnsupportedColor(ExtendedColorType::La8)), None if self.depth == 3 => Ok(TupleType::RGBU8), None if self.depth == 4 => Err(ImageError::UnsupportedColor(ExtendedColorType::Rgba8)), Some(ArbitraryTuplType::BlackAndWhite) if self.maxval == 1 && self.depth == 1 => { Ok(TupleType::BWBit) } Some(ArbitraryTuplType::BlackAndWhite) => Err(ImageError::FormatError( "Invalid depth or maxval for tuple type BLACKANDWHITE".to_string(), )), Some(ArbitraryTuplType::Grayscale) if self.depth == 1 && self.maxval <= 0xFF => { Ok(TupleType::GrayU8) } Some(ArbitraryTuplType::Grayscale) if self.depth <= 1 && self.maxval <= 0xFFFF => { Ok(TupleType::GrayU16) } Some(ArbitraryTuplType::Grayscale) => Err(ImageError::FormatError( "Invalid depth or maxval for tuple type GRAYSCALE".to_string(), )), Some(ArbitraryTuplType::RGB) if self.depth == 3 && self.maxval <= 0xFF => { Ok(TupleType::RGBU8) } Some(ArbitraryTuplType::RGB) if self.depth == 3 && self.maxval <= 0xFFFF => { Ok(TupleType::RGBU16) } Some(ArbitraryTuplType::RGB) => Err(ImageError::FormatError( "Invalid depth for tuple type RGB".to_string(), )), Some(ArbitraryTuplType::BlackAndWhiteAlpha) => Err(ImageError::FormatError( "Unsupported color type: BlackAndWhiteAlpha".to_string() )), Some(ArbitraryTuplType::GrayscaleAlpha) => { Err(ImageError::UnsupportedColor(ExtendedColorType::La8)) } Some(ArbitraryTuplType::RGBAlpha) => { Err(ImageError::UnsupportedColor(ExtendedColorType::Rgba8)) } _ => Err(ImageError::FormatError( "Tuple type not recognized".to_string(), )), } } } #[cfg(test)] mod tests { use super::*; /// Tests reading of a valid blackandwhite pam #[test] fn pam_blackandwhite() { let pamdata = b"P7 WIDTH 4 HEIGHT 4 DEPTH 1 MAXVAL 1 TUPLTYPE BLACKANDWHITE # Comment line ENDHDR \x01\x00\x00\x01\x01\x00\x00\x01\x01\x00\x00\x01\x01\x00\x00\x01"; let decoder = PnmDecoder::new(&pamdata[..]).unwrap(); assert_eq!(decoder.color_type(), ColorType::L8); assert_eq!(decoder.original_color_type(), ExtendedColorType::L1); assert_eq!(decoder.dimensions(), (4, 4)); assert_eq!(decoder.subtype(), PNMSubtype::ArbitraryMap); let mut image = vec![0; decoder.total_bytes() as usize]; decoder.read_image(&mut image).unwrap(); assert_eq!( image, vec![0x01, 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01] ); match PnmDecoder::new(&pamdata[..]).unwrap().into_inner() { ( _, PNMHeader { decoded: HeaderRecord::Arbitrary(ArbitraryHeader { width: 4, height: 4, maxval: 1, depth: 1, tupltype: Some(ArbitraryTuplType::BlackAndWhite), }), encoded: _, }, ) => (), _ => panic!("Decoded header is incorrect"), } } /// Tests reading of a valid grayscale pam #[test] fn pam_grayscale() { let pamdata = b"P7 WIDTH 4 HEIGHT 4 DEPTH 1 MAXVAL 255 TUPLTYPE GRAYSCALE # Comment line ENDHDR \xde\xad\xbe\xef\xde\xad\xbe\xef\xde\xad\xbe\xef\xde\xad\xbe\xef"; let decoder = PnmDecoder::new(&pamdata[..]).unwrap(); assert_eq!(decoder.color_type(), ColorType::L8); assert_eq!(decoder.dimensions(), (4, 4)); assert_eq!(decoder.subtype(), PNMSubtype::ArbitraryMap); let mut image = vec![0; decoder.total_bytes() as usize]; decoder.read_image(&mut image).unwrap(); assert_eq!( image, vec![0xde, 0xad, 0xbe, 0xef, 0xde, 0xad, 0xbe, 0xef, 0xde, 0xad, 0xbe, 0xef, 0xde, 0xad, 0xbe, 0xef] ); match PnmDecoder::new(&pamdata[..]).unwrap().into_inner() { ( _, PNMHeader { decoded: HeaderRecord::Arbitrary(ArbitraryHeader { width: 4, height: 4, depth: 1, maxval: 255, tupltype: Some(ArbitraryTuplType::Grayscale), }), encoded: _, }, ) => (), _ => panic!("Decoded header is incorrect"), } } /// Tests reading of a valid rgb pam #[test] fn pam_rgb() { let pamdata = b"P7 # Comment line MAXVAL 255 TUPLTYPE RGB DEPTH 3 WIDTH 2 HEIGHT 2 ENDHDR \xde\xad\xbe\xef\xde\xad\xbe\xef\xde\xad\xbe\xef"; let decoder = PnmDecoder::new(&pamdata[..]).unwrap(); assert_eq!(decoder.color_type(), ColorType::Rgb8); assert_eq!(decoder.dimensions(), (2, 2)); assert_eq!(decoder.subtype(), PNMSubtype::ArbitraryMap); let mut image = vec![0; decoder.total_bytes() as usize]; decoder.read_image(&mut image).unwrap(); assert_eq!(image, vec![0xde, 0xad, 0xbe, 0xef, 0xde, 0xad, 0xbe, 0xef, 0xde, 0xad, 0xbe, 0xef]); match PnmDecoder::new(&pamdata[..]).unwrap().into_inner() { ( _, PNMHeader { decoded: HeaderRecord::Arbitrary(ArbitraryHeader { maxval: 255, tupltype: Some(ArbitraryTuplType::RGB), depth: 3, width: 2, height: 2, }), encoded: _, }, ) => (), _ => panic!("Decoded header is incorrect"), } } #[test] fn pbm_binary() { // The data contains two rows of the image (each line is padded to the full byte). For // comments on its format, see documentation of `impl SampleType for PbmBit`. let pbmbinary = [&b"P4 6 2\n"[..], &[0b01101100 as u8, 0b10110111]].concat(); let decoder = PnmDecoder::new(&pbmbinary[..]).unwrap(); assert_eq!(decoder.color_type(), ColorType::L8); assert_eq!(decoder.original_color_type(), ExtendedColorType::L1); assert_eq!(decoder.dimensions(), (6, 2)); assert_eq!( decoder.subtype(), PNMSubtype::Bitmap(SampleEncoding::Binary) ); let mut image = vec![0; decoder.total_bytes() as usize]; decoder.read_image(&mut image).unwrap(); assert_eq!(image, vec![255, 0, 0, 255, 0, 0, 0, 255, 0, 0, 255, 0]); match PnmDecoder::new(&pbmbinary[..]).unwrap().into_inner() { ( _, PNMHeader { decoded: HeaderRecord::Bitmap(BitmapHeader { encoding: SampleEncoding::Binary, width: 6, height: 2, }), encoded: _, }, ) => (), _ => panic!("Decoded header is incorrect"), } } /// A previous inifite loop. #[test] fn pbm_binary_ascii_termination() { use std::io::{Cursor, Error, ErrorKind, Read, Result}; struct FailRead(Cursor<&'static [u8]>); impl Read for FailRead { fn read(&mut self, buf: &mut [u8]) -> Result { match self.0.read(buf) { Ok(n) if n > 0 => Ok(n), _ => Err(Error::new( ErrorKind::BrokenPipe, "Simulated broken pipe error" )), } } } let pbmbinary = FailRead(Cursor::new(b"P1 1 1\n")); let decoder = PnmDecoder::new(pbmbinary).unwrap(); let mut image = vec![0; decoder.total_bytes() as usize]; decoder.read_image(&mut image).expect_err("Image is malformed"); } #[test] fn pbm_ascii() { // The data contains two rows of the image (each line is padded to the full byte). For // comments on its format, see documentation of `impl SampleType for PbmBit`. Tests all // whitespace characters that should be allowed (the 6 characters according to POSIX). let pbmbinary = b"P1 6 2\n 0 1 1 0 1 1\n1 0 1 1 0\t\n\x0b\x0c\r1"; let decoder = PnmDecoder::new(&pbmbinary[..]).unwrap(); assert_eq!(decoder.color_type(), ColorType::L8); assert_eq!(decoder.original_color_type(), ExtendedColorType::L1); assert_eq!(decoder.dimensions(), (6, 2)); assert_eq!(decoder.subtype(), PNMSubtype::Bitmap(SampleEncoding::Ascii)); let mut image = vec![0; decoder.total_bytes() as usize]; decoder.read_image(&mut image).unwrap(); assert_eq!(image, vec![1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0]); match PnmDecoder::new(&pbmbinary[..]).unwrap().into_inner() { ( _, PNMHeader { decoded: HeaderRecord::Bitmap(BitmapHeader { encoding: SampleEncoding::Ascii, width: 6, height: 2, }), encoded: _, }, ) => (), _ => panic!("Decoded header is incorrect"), } } #[test] fn pbm_ascii_nospace() { // The data contains two rows of the image (each line is padded to the full byte). Notably, // it is completely within specification for the ascii data not to contain separating // whitespace for the pbm format or any mix. let pbmbinary = b"P1 6 2\n011011101101"; let decoder = PnmDecoder::new(&pbmbinary[..]).unwrap(); assert_eq!(decoder.color_type(), ColorType::L8); assert_eq!(decoder.original_color_type(), ExtendedColorType::L1); assert_eq!(decoder.dimensions(), (6, 2)); assert_eq!(decoder.subtype(), PNMSubtype::Bitmap(SampleEncoding::Ascii)); let mut image = vec![0; decoder.total_bytes() as usize]; decoder.read_image(&mut image).unwrap(); assert_eq!(image, vec![1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0]); match PnmDecoder::new(&pbmbinary[..]).unwrap().into_inner() { ( _, PNMHeader { decoded: HeaderRecord::Bitmap(BitmapHeader { encoding: SampleEncoding::Ascii, width: 6, height: 2, }), encoded: _, }, ) => (), _ => panic!("Decoded header is incorrect"), } } #[test] fn pgm_binary() { // The data contains two rows of the image (each line is padded to the full byte). For // comments on its format, see documentation of `impl SampleType for PbmBit`. let elements = (0..16).collect::>(); let pbmbinary = [&b"P5 4 4 255\n"[..], &elements].concat(); let decoder = PnmDecoder::new(&pbmbinary[..]).unwrap(); assert_eq!(decoder.color_type(), ColorType::L8); assert_eq!(decoder.dimensions(), (4, 4)); assert_eq!( decoder.subtype(), PNMSubtype::Graymap(SampleEncoding::Binary) ); let mut image = vec![0; decoder.total_bytes() as usize]; decoder.read_image(&mut image).unwrap(); assert_eq!(image, elements); match PnmDecoder::new(&pbmbinary[..]).unwrap().into_inner() { ( _, PNMHeader { decoded: HeaderRecord::Graymap(GraymapHeader { encoding: SampleEncoding::Binary, width: 4, height: 4, maxwhite: 255, }), encoded: _, }, ) => (), _ => panic!("Decoded header is incorrect"), } } #[test] fn pgm_ascii() { // The data contains two rows of the image (each line is padded to the full byte). For // comments on its format, see documentation of `impl SampleType for PbmBit`. let pbmbinary = b"P2 4 4 255\n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15"; let decoder = PnmDecoder::new(&pbmbinary[..]).unwrap(); assert_eq!(decoder.color_type(), ColorType::L8); assert_eq!(decoder.dimensions(), (4, 4)); assert_eq!( decoder.subtype(), PNMSubtype::Graymap(SampleEncoding::Ascii) ); let mut image = vec![0; decoder.total_bytes() as usize]; decoder.read_image(&mut image).unwrap(); assert_eq!(image, (0..16).collect::>()); match PnmDecoder::new(&pbmbinary[..]).unwrap().into_inner() { ( _, PNMHeader { decoded: HeaderRecord::Graymap(GraymapHeader { encoding: SampleEncoding::Ascii, width: 4, height: 4, maxwhite: 255, }), encoded: _, }, ) => (), _ => panic!("Decoded header is incorrect"), } } }