// Copyright 2014-2015 The Servo Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! A [DEFLATE](http://www.gzip.org/zlib/rfc-deflate.html) decoder written in rust. //! //! This library provides functionality to decompress data compressed with the DEFLATE algorithm, //! both with and without a [zlib](https://tools.ietf.org/html/rfc1950) header/trailer. //! //! # Examples //! The easiest way to get `std::Vec` containing the decompressed bytes is to use either //! `inflate::inflate_bytes` or `inflate::inflate_bytes_zlib` (depending on whether //! the encoded data has zlib headers and trailers or not). The following example //! decodes the DEFLATE encoded string "Hello, world" and prints it: //! //! ```rust //! use inflate::inflate_bytes; //! use std::str::from_utf8; //! //! let encoded = [243, 72, 205, 201, 201, 215, 81, 40, 207, 47, 202, 73, 1, 0]; //! let decoded = inflate_bytes(&encoded).unwrap(); //! println!("{}", from_utf8(&decoded).unwrap()); // prints "Hello, world" //! ``` //! //! If you need more flexibility, then the library also provides an implementation //! of `std::io::Writer` in `inflate::writer`. Below is an example using an //! `inflate::writer::InflateWriter` to decode the DEFLATE encoded string "Hello, world": //! //! ```rust //! use inflate::InflateWriter; //! use std::io::Write; //! use std::str::from_utf8; //! //! let encoded = [243, 72, 205, 201, 201, 215, 81, 40, 207, 47, 202, 73, 1, 0]; //! let mut decoder = InflateWriter::new(Vec::new()); //! decoder.write(&encoded).unwrap(); //! let decoded = decoder.finish().unwrap(); //! println!("{}", from_utf8(&decoded).unwrap()); // prints "Hello, world" //! ``` //! //! Finally, if you need even more flexibility, or if you only want to depend on //! `core`, you can use the `inflate::InflateStream` API. The below example //! decodes an array of DEFLATE encoded bytes: //! //! ```rust //! use inflate::InflateStream; //! //! let data = [0x73, 0x49, 0x4d, 0xcb, 0x49, 0x2c, 0x49, 0x55, 0x00, 0x11, 0x00]; //! let mut inflater = InflateStream::new(); //! let mut out = Vec::::new(); //! let mut n = 0; //! while n < data.len() { //! let res = inflater.update(&data[n..]); //! if let Ok((num_bytes_read, result)) = res { //! n += num_bytes_read; //! out.extend(result.iter().cloned()); //! } else { //! res.unwrap(); //! } //! } //! ``` extern crate adler32; use std::cmp; use std::slice; mod checksum; use checksum::{Checksum, adler32_from_bytes}; mod writer; pub use self::writer::{InflateWriter}; mod utils; pub use self::utils::{inflate_bytes, inflate_bytes_zlib, inflate_bytes_zlib_no_checksum}; mod reader; pub use self::reader::{DeflateDecoder, DeflateDecoderBuf}; static BIT_REV_U8: [u8; 256] = [ 0b0000_0000, 0b1000_0000, 0b0100_0000, 0b1100_0000, 0b0010_0000, 0b1010_0000, 0b0110_0000, 0b1110_0000, 0b0001_0000, 0b1001_0000, 0b0101_0000, 0b1101_0000, 0b0011_0000, 0b1011_0000, 0b0111_0000, 0b1111_0000, 0b0000_1000, 0b1000_1000, 0b0100_1000, 0b1100_1000, 0b0010_1000, 0b1010_1000, 0b0110_1000, 0b1110_1000, 0b0001_1000, 0b1001_1000, 0b0101_1000, 0b1101_1000, 0b0011_1000, 0b1011_1000, 0b0111_1000, 0b1111_1000, 0b0000_0100, 0b1000_0100, 0b0100_0100, 0b1100_0100, 0b0010_0100, 0b1010_0100, 0b0110_0100, 0b1110_0100, 0b0001_0100, 0b1001_0100, 0b0101_0100, 0b1101_0100, 0b0011_0100, 0b1011_0100, 0b0111_0100, 0b1111_0100, 0b0000_1100, 0b1000_1100, 0b0100_1100, 0b1100_1100, 0b0010_1100, 0b1010_1100, 0b0110_1100, 0b1110_1100, 0b0001_1100, 0b1001_1100, 0b0101_1100, 0b1101_1100, 0b0011_1100, 0b1011_1100, 0b0111_1100, 0b1111_1100, 0b0000_0010, 0b1000_0010, 0b0100_0010, 0b1100_0010, 0b0010_0010, 0b1010_0010, 0b0110_0010, 0b1110_0010, 0b0001_0010, 0b1001_0010, 0b0101_0010, 0b1101_0010, 0b0011_0010, 0b1011_0010, 0b0111_0010, 0b1111_0010, 0b0000_1010, 0b1000_1010, 0b0100_1010, 0b1100_1010, 0b0010_1010, 0b1010_1010, 0b0110_1010, 0b1110_1010, 0b0001_1010, 0b1001_1010, 0b0101_1010, 0b1101_1010, 0b0011_1010, 0b1011_1010, 0b0111_1010, 0b1111_1010, 0b0000_0110, 0b1000_0110, 0b0100_0110, 0b1100_0110, 0b0010_0110, 0b1010_0110, 0b0110_0110, 0b1110_0110, 0b0001_0110, 0b1001_0110, 0b0101_0110, 0b1101_0110, 0b0011_0110, 0b1011_0110, 0b0111_0110, 0b1111_0110, 0b0000_1110, 0b1000_1110, 0b0100_1110, 0b1100_1110, 0b0010_1110, 0b1010_1110, 0b0110_1110, 0b1110_1110, 0b0001_1110, 0b1001_1110, 0b0101_1110, 0b1101_1110, 0b0011_1110, 0b1011_1110, 0b0111_1110, 0b1111_1110, 0b0000_0001, 0b1000_0001, 0b0100_0001, 0b1100_0001, 0b0010_0001, 0b1010_0001, 0b0110_0001, 0b1110_0001, 0b0001_0001, 0b1001_0001, 0b0101_0001, 0b1101_0001, 0b0011_0001, 0b1011_0001, 0b0111_0001, 0b1111_0001, 0b0000_1001, 0b1000_1001, 0b0100_1001, 0b1100_1001, 0b0010_1001, 0b1010_1001, 0b0110_1001, 0b1110_1001, 0b0001_1001, 0b1001_1001, 0b0101_1001, 0b1101_1001, 0b0011_1001, 0b1011_1001, 0b0111_1001, 0b1111_1001, 0b0000_0101, 0b1000_0101, 0b0100_0101, 0b1100_0101, 0b0010_0101, 0b1010_0101, 0b0110_0101, 0b1110_0101, 0b0001_0101, 0b1001_0101, 0b0101_0101, 0b1101_0101, 0b0011_0101, 0b1011_0101, 0b0111_0101, 0b1111_0101, 0b0000_1101, 0b1000_1101, 0b0100_1101, 0b1100_1101, 0b0010_1101, 0b1010_1101, 0b0110_1101, 0b1110_1101, 0b0001_1101, 0b1001_1101, 0b0101_1101, 0b1101_1101, 0b0011_1101, 0b1011_1101, 0b0111_1101, 0b1111_1101, 0b0000_0011, 0b1000_0011, 0b0100_0011, 0b1100_0011, 0b0010_0011, 0b1010_0011, 0b0110_0011, 0b1110_0011, 0b0001_0011, 0b1001_0011, 0b0101_0011, 0b1101_0011, 0b0011_0011, 0b1011_0011, 0b0111_0011, 0b1111_0011, 0b0000_1011, 0b1000_1011, 0b0100_1011, 0b1100_1011, 0b0010_1011, 0b1010_1011, 0b0110_1011, 0b1110_1011, 0b0001_1011, 0b1001_1011, 0b0101_1011, 0b1101_1011, 0b0011_1011, 0b1011_1011, 0b0111_1011, 0b1111_1011, 0b0000_0111, 0b1000_0111, 0b0100_0111, 0b1100_0111, 0b0010_0111, 0b1010_0111, 0b0110_0111, 0b1110_0111, 0b0001_0111, 0b1001_0111, 0b0101_0111, 0b1101_0111, 0b0011_0111, 0b1011_0111, 0b0111_0111, 0b1111_0111, 0b0000_1111, 0b1000_1111, 0b0100_1111, 0b1100_1111, 0b0010_1111, 0b1010_1111, 0b0110_1111, 0b1110_1111, 0b0001_1111, 0b1001_1111, 0b0101_1111, 0b1101_1111, 0b0011_1111, 0b1011_1111, 0b0111_1111, 0b1111_1111 ]; #[derive(Clone, Copy)] struct BitState { n: u8, v: u32, } #[derive(Clone)] struct BitStream<'a> { bytes: slice::Iter<'a, u8>, used: usize, state: BitState, } #[cfg(debug)] macro_rules! debug { ($($x:tt)*) => (println!($($x)*)) } #[cfg(not(debug))] macro_rules! debug { ($($x:tt)*) => (()) } impl<'a> BitStream<'a> { fn new(bytes: &'a [u8], state: BitState) -> BitStream<'a> { BitStream { bytes: bytes.iter(), used: 0, state: state, } } fn use_byte(&mut self) -> bool { match self.bytes.next() { Some(&b) => { self.state.v |= (b as u32) << self.state.n; self.state.n += 8; self.used += 1; true } None => false, } } fn need(&mut self, n: u8) -> bool { if self.state.n < n { if !self.use_byte() { return false; } if n > 8 && self.state.n < n { assert!(n <= 16); if !self.use_byte() { return false; } } } true } fn take16(&mut self, n: u8) -> Option { if self.need(n) { self.state.n -= n; let v = self.state.v & ((1 << n) - 1); self.state.v >>= n; Some(v as u16) } else { None } } fn take(&mut self, n: u8) -> Option { assert!(n <= 8); self.take16(n).map(|v: u16| v as u8) } fn fill(&mut self) -> BitState { while self.state.n + 8 <= 32 && self.use_byte() {} self.state } fn align_byte(&mut self) { if self.state.n > 0 { let n = self.state.n % 8; self.take(n); } } fn trailing_bytes(&mut self) -> (u8, [u8; 4]) { let mut len = 0; let mut bytes = [0; 4]; self.align_byte(); while self.state.n >= 8 { bytes[len as usize] = self.state.v as u8; len += 1; self.state.n -= 8; self.state.v >>= 8; } (len, bytes) } } /// Generate huffman codes from the given set of lengths and run `$cb` on them except the first /// code for each length. /// /// See also the [deflate specification](http://www.gzip.org/zlib/rfc-deflate.html#huffman) /// for an explanation of the algorithm. macro_rules! with_codes (($clens:expr, $max_bits:expr => $code_ty:ty, $cb:expr) => ({ // Count the number of codes for each bit length. let mut bl_count = [0 as $code_ty; ($max_bits+1)]; for &bits in $clens.iter() { if bits != 0 { // This should be safe from overflow as the number of lengths read from the input // is bounded by the number of bits the number of lengths is represented by in the // deflate compressed data. bl_count[bits as usize] += 1; } } // Compute the first code value for each bit length. let mut next_code = [0 as $code_ty; ($max_bits+1)]; let mut code = 0 as $code_ty; // TODO use range_inclusive as soon as it is stable //for bits in range_inclusive(1, $max_bits) { for bits in 1..$max_bits + 1 { code = try!( code.checked_add(bl_count[bits as usize - 1]) .ok_or_else(|| "Error generating huffman codes: Invalid set of code lengths") ) << 1; next_code[bits as usize] = code; } // Compute the rest of the codes for (i, &bits) in $clens.iter().enumerate() { if bits != 0 { let code = next_code[bits as usize]; // If there is an overflow here, the given set of code lengths won't allow enough // unique codes to be generated. let new_code = try!( code.checked_add(1) .ok_or_else(|| "Error generating huffman codes: Invalid set of code lengths!") ); next_code[bits as usize] = new_code; match $cb(i as $code_ty, code, bits) { Ok(()) => (), Err(err) => return Err(err) } } } })); struct CodeLengthReader { patterns: Box<[u8; 128]>, clens: Box<[u8; 19]>, result: Vec, num_lit: u16, num_dist: u8, } impl CodeLengthReader { fn new(clens: Box<[u8; 19]>, num_lit: u16, num_dist: u8) -> Result { // Fill in the 7-bit patterns that match each code. let mut patterns = Box::new([0xffu8; 128]); with_codes!(clens, 7 => u8, |i: u8, code: u8, bits| -> _ { /*let base = match BIT_REV_U8.get((code << (8 - bits)) as usize) { Some(&base) => base, None => return Err("invalid length code".to_owned()) }*/ let base = BIT_REV_U8[(code << (8 - bits)) as usize]; for rest in 0u8 .. 1u8 << (7 - bits) { patterns[(base | (rest << bits)) as usize] = i; } Ok(()) }); Ok(CodeLengthReader { patterns: patterns, clens: clens, result: Vec::with_capacity(num_lit as usize + num_dist as usize), num_lit: num_lit, num_dist: num_dist, }) } fn read(&mut self, stream: &mut BitStream) -> Result { let total_len = self.num_lit as usize + self.num_dist as usize; while self.result.len() < total_len { if !stream.need(7) { return Ok(false); } let save = stream.clone(); macro_rules! take (($n:expr) => (match stream.take($n) { Some(v) => v, None => { *stream = save; return Ok(false); } })); let code = self.patterns[(stream.state.v & 0x7f) as usize]; stream.take(match self.clens.get(code as usize) { Some(&len) => len, None => return Err("invalid length code".to_owned()), }); match code { 0...15 => self.result.push(code), 16 => { let last = match self.result.last() { Some(&v) => v, // 16 appeared before anything else None => return Err("invalid length code".to_owned()), }; for _ in 0..3 + take!(2) { self.result.push(last); } } 17 => { for _ in 0..3 + take!(3) { self.result.push(0); } } 18 => { for _ in 0..11 + take!(7) { self.result.push(0); } } _ => unreachable!(), } } Ok(true) } fn to_lit_and_dist(&self) -> Result<(DynHuffman16, DynHuffman16), String> { let num_lit = self.num_lit as usize; let lit = try!(DynHuffman16::new(&self.result[..num_lit])); let dist = try!(DynHuffman16::new(&self.result[num_lit..])); Ok((lit, dist)) } } struct Trie8bit { data: [T; 16], children: [Option>; 16], } struct DynHuffman16 { patterns: Box<[u16; 256]>, rest: Vec>, } impl DynHuffman16 { fn new(clens: &[u8]) -> Result { // Fill in the 8-bit patterns that match each code. // Longer patterns go into the trie. let mut patterns = Box::new([0xffffu16; 256]); let mut rest = Vec::new(); with_codes!(clens, 15 => u16, |i: u16, code: u16, bits: u8| -> _ { let entry = i | ((bits as u16) << 12); if bits <= 8 { let base = match BIT_REV_U8.get((code << (8 - bits)) as usize) { Some(&v) => v, None => return Err("invalid length code".to_owned()) }; for rest in 0u8 .. 1 << (8 - bits) { patterns[(base | (rest << (bits & 7))) as usize] = entry; } } else { let low = match BIT_REV_U8.get((code >> (bits - 8)) as usize) { Some(&v) => v, None => return Err("invalid length code".to_owned()) }; let high = BIT_REV_U8[((code << (16 - bits)) & 0xff) as usize]; let (min_bits, idx) = if patterns[low as usize] != 0xffff { let bits_prev = (patterns[low as usize] >> 12) as u8; (cmp::min(bits_prev, bits), patterns[low as usize] & 0x7ff) } else { rest.push(Trie8bit { data: [0xffff; 16], children: [ None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None ] }); (bits, (rest.len() - 1) as u16) }; patterns[low as usize] = idx | 0x800 | ((min_bits as u16) << 12); let trie_entry = match rest.get_mut(idx as usize) { Some(v) => v, None => return Err("invalid huffman code".to_owned()) }; if bits <= 12 { for rest in 0u8 .. 1 << (12 - bits) { trie_entry.data[(high | (rest << (bits - 8))) as usize] = entry; } } else { let child = &mut trie_entry.children[(high & 0xf) as usize]; if child.is_none() { *child = Some(Box::new([0xffff; 16])); } let child = &mut **child.as_mut().unwrap(); let high_top = high >> 4; for rest in 0u8 .. 1 << (16 - bits) { child[(high_top | (rest << (bits - 12))) as usize] = entry; } } } Ok(()) }); debug!("=== DYN HUFFMAN ==="); for _i in 0..256 { debug!("{:08b} {:04x}", _i, patterns[BIT_REV_U8[_i] as usize]); } debug!("==================="); Ok(DynHuffman16 { patterns: patterns, rest: rest, }) } fn read<'a>(&self, stream: &mut BitStream<'a>) -> Result, u16)>, String> { let has8 = stream.need(8); let entry = self.patterns[(stream.state.v & 0xff) as usize]; let bits = (entry >> 12) as u8; Ok(if !has8 { if bits <= stream.state.n { let save = stream.clone(); stream.state.n -= bits; stream.state.v >>= bits; Some((save, entry & 0xfff)) } else { None } } else if bits <= 8 { let save = stream.clone(); stream.state.n -= bits; stream.state.v >>= bits; Some((save, entry & 0xfff)) } else { let has16 = stream.need(16); let trie = match self.rest.get((entry & 0x7ff) as usize) { Some(trie) => trie, None => return Err("invalid entry in stream".to_owned()), }; let idx = stream.state.v >> 8; let trie_entry = match trie.children[(idx & 0xf) as usize] { Some(ref child) => child[((idx >> 4) & 0xf) as usize], None => trie.data[(idx & 0xf) as usize], }; let trie_bits = (trie_entry >> 12) as u8; if has16 || trie_bits <= stream.state.n { let save = stream.clone(); stream.state.n -= trie_bits; stream.state.v >>= trie_bits; Some((save, trie_entry & 0xfff)) } else { None } }) } } enum State { ZlibMethodAndFlags, // CMF ZlibFlags(/* CMF */ u8), // FLG, Bits(BitsNext, BitState), LenDist((BitsNext, BitState), /* len */ u16, /* dist */ u16), Uncompressed(/* len */ u16), CheckCRC(/* len */ u8, /* bytes */ [u8; 4]), Finished } use self::State::*; enum BitsNext { BlockHeader, BlockUncompressedLen, BlockUncompressedNlen(/* len */ u16), BlockDynHlit, BlockDynHdist(/* hlit */ u8), BlockDynHclen(/* hlit */ u8, /* hdist */ u8), BlockDynClenCodeLengths(/* hlit */ u8, /* hdist */ u8, /* hclen */ u8, /* idx */ u8, /* clens */ Box<[u8; 19]>), BlockDynCodeLengths(CodeLengthReader), BlockDyn(/* lit/len */ DynHuffman16, /* dist */ DynHuffman16, /* prev_len */ u16) } use self::BitsNext::*; pub struct InflateStream { buffer: Vec, pos: u16, state: Option, final_block: bool, checksum: Checksum, read_checksum: Option, } impl InflateStream { #[allow(dead_code)] /// Create a new stream for decoding raw deflate encoded data. pub fn new() -> InflateStream { let state = Bits(BlockHeader, BitState { n: 0, v: 0 }); let buffer = Vec::with_capacity(32 * 1024); InflateStream::with_state_and_buffer(state, buffer, Checksum::none()) } /// Create a new stream for decoding deflate encoded data with a zlib header and footer pub fn from_zlib() -> InflateStream { InflateStream::with_state_and_buffer(ZlibMethodAndFlags, Vec::new(), Checksum::zlib()) } /// Create a new stream for decoding deflate encoded data with a zlib header and footer /// /// This version creates a decoder that does not checksum the data to validate it with the /// checksum provided with the zlib wrapper. pub fn from_zlib_no_checksum() -> InflateStream { InflateStream::with_state_and_buffer(ZlibMethodAndFlags, Vec::new(), Checksum::none()) } pub fn reset(&mut self) { self.buffer.clear(); self.pos = 0; self.state = Some(Bits(BlockHeader, BitState { n: 0, v: 0 })); self.final_block = false; } pub fn reset_to_zlib(&mut self) { self.reset(); self.state = Some(ZlibMethodAndFlags); } fn with_state_and_buffer(state: State, buffer: Vec, checksum: Checksum) -> InflateStream { InflateStream { buffer: buffer, pos: 0, state: Some(state), final_block: false, checksum: checksum, read_checksum: None, } } fn run_len_dist(&mut self, len: u16, dist: u16) -> Result, String> { debug!("RLE -{}; {} (cap={} len={})", dist, len, self.buffer.capacity(), self.buffer.len()); if dist < 1 { return Err("invalid run length in stream".to_owned()); } // `buffer_size` is used for validating `unsafe` below, handle with care let buffer_size = self.buffer.capacity() as u16; let len = if self.pos < dist { // Handle copying from ahead, until we hit the end reading. let pos_end = self.pos + len; let (pos_end, left) = if pos_end < dist { (pos_end, 0) } else { (dist, pos_end - dist) }; if dist > buffer_size { return Err("run length distance is bigger than the window size".to_owned()); } let forward = buffer_size - dist; if pos_end + forward > self.buffer.len() as u16 { return Err("invalid run length in stream".to_owned()); } for i in self.pos as usize..pos_end as usize { self.buffer[i] = self.buffer[i + forward as usize]; } self.pos = pos_end; left } else { len }; // Handle copying from before, until we hit the end writing. let pos_end = self.pos + len; let (pos_end, left) = if pos_end <= buffer_size { (pos_end, None) } else { (buffer_size, Some(pos_end - buffer_size)) }; if self.pos < dist && pos_end > self.pos { return Err("invalid run length in stream".to_owned()); } if self.buffer.len() < pos_end as usize { // ensure the buffer length will not exceed the amount of allocated memory assert!(pos_end <= buffer_size); // ensure that the uninitialized chunk of memory will be fully overwritten assert!(self.pos as usize <= self.buffer.len()); unsafe { self.buffer.set_len(pos_end as usize); } } assert!(dist > 0); // validation against reading uninitialized memory for i in self.pos as usize..pos_end as usize { self.buffer[i] = self.buffer[i - dist as usize]; } self.pos = pos_end; Ok(left) } fn next_state(&mut self, data: &[u8]) -> Result { macro_rules! ok_bytes (($n:expr, $state:expr) => ({ self.state = Some($state); Ok($n) })); let debug_byte = |_i, _b| debug!("[{:04x}] {:02x}", _i, _b); macro_rules! push_or (($b:expr, $ret:expr) => (if self.pos < self.buffer.capacity() as u16 { let b = $b; debug_byte(self.pos, b); if (self.pos as usize) < self.buffer.len() { self.buffer[self.pos as usize] = b; } else { assert_eq!(self.pos as usize, self.buffer.len()); self.buffer.push(b); } self.pos += 1; } else { return $ret; })); macro_rules! run_len_dist (($len:expr, $dist:expr => ($bytes:expr, $next:expr, $state:expr)) => ({ let dist = $dist; let left = try!(self.run_len_dist($len, dist)); if let Some(len) = left { return ok_bytes!($bytes, LenDist(($next, $state), len, dist)); } })); match self.state.take().unwrap() { ZlibMethodAndFlags => { let b = match data.get(0) { Some(&x) => x, None => { self.state = Some(ZlibMethodAndFlags); return Ok(0); } }; let (method, info) = (b & 0xF, b >> 4); debug!("ZLIB CM=0x{:x} CINFO=0x{:x}", method, info); // CM = 8 (DEFLATE) is the only method defined by the ZLIB specification. match method { 8 => {/* DEFLATE */} _ => return Err(format!("unknown ZLIB method CM=0x{:x}", method)) } if info > 7 { return Err(format!("invalid ZLIB info CINFO=0x{:x}", info)); } self.buffer = Vec::with_capacity(1 << (8 + info)); ok_bytes!(1, ZlibFlags(b)) } ZlibFlags(cmf) => { let b = match data.get(0) { Some(&x) => x, None => { self.state = Some(ZlibFlags(cmf)); return Ok(0); } }; let (_check, dict, _level) = (b & 0x1F, (b & 0x20) != 0, b >> 6); debug!("ZLIB FCHECK=0x{:x} FDICT={} FLEVEL=0x{:x}", _check, dict, _level); if (((cmf as u16) << 8) | b as u16) % 31 != 0 { return Err(format!("invalid ZLIB checksum CMF=0x{:x} FLG=0x{:x}", cmf, b)); } if dict { return Err("unimplemented ZLIB FDICT=1".into()); } ok_bytes!(1, Bits(BlockHeader, BitState { n: 0, v: 0 })) } Bits(next, state) => { let mut stream = BitStream::new(data, state); macro_rules! ok_state (($state:expr) => ({self.state = Some($state); Ok(stream.used)})); macro_rules! ok (($next:expr) => (ok_state!(Bits($next, stream.fill())))); macro_rules! take ( ($n:expr => $next:expr) => (match stream.take($n) { Some(v) => v, None => return ok!($next) }); ($n:expr) => (take!($n => next)) ); macro_rules! take16 ( ($n:expr => $next:expr) => (match stream.take16($n) { Some(v) => v, None => return ok!($next) }); ($n:expr) => (take16!($n => next)) ); macro_rules! len_dist ( ($len:expr, $code:expr, $bits:expr => $next_early:expr, $next:expr) => ({ let dist = 1 + if $bits == 0 { 0 } else { // new_base 2 << $bits } + (($code as u16 - if $bits == 0 { 0 } else { // old_base $bits * 2 + 2 }) << $bits) + take16!($bits => $next_early) as u16; run_len_dist!($len, dist => (stream.used, $next, stream.state)); }); ($len:expr, $code:expr, $bits:expr) => ( len_dist!($len, $code, $bits => next, next) ) ); match next { BlockHeader => { if self.final_block { let (len, bytes) = stream.trailing_bytes(); return ok_state!(CheckCRC(len, bytes)); } let h = take!(3); let (final_, block_type) = ((h & 1) != 0, (h >> 1) & 0b11); self.final_block = final_; match block_type { 0 => { // Skip to the next byte for an uncompressed block. stream.align_byte(); ok!(BlockUncompressedLen) } 1 => { // Unwrap is safe because the data is valid. let lit = DynHuffman16::new(&[ 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, // 0-15 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, // 16-31 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, // 32-47 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, // 48-63 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, // 64-79 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, // 80-95 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, // 96-101 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, // 112-127 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, // 128-143 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, // 144-159 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, // 160-175 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, // 176-191 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, // 192-207 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, // 208-223 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, // 224-239 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, // 240-255 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, // 256-271 7, 7, 7, 7, 7, 7, 7, 7, // 272-279 8, 8, 8, 8, 8, 8, 8, 8, // 280-287 ]).unwrap(); let dist = DynHuffman16::new(&[ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5 ]).unwrap(); ok!(BlockDyn(lit, dist, 0)) } 2 => ok!(BlockDynHlit), _ => { Err(format!("unimplemented DEFLATE block type 0b{:?}", block_type)) } } } BlockUncompressedLen => { let len = take16!(16); ok_state!(Bits(BlockUncompressedNlen(len), stream.state)) } BlockUncompressedNlen(len) => { let nlen = take16!(16); assert_eq!(stream.state.n, 0); if !len != nlen { return Err(format!("invalid uncompressed block len: LEN: {:04x} NLEN: {:04x}", len, nlen)); } ok_state!(Uncompressed(len)) } BlockDynHlit => ok!(BlockDynHdist(take!(5) + 1)), BlockDynHdist(hlit) => ok!(BlockDynHclen(hlit, take!(5) + 1)), BlockDynHclen(hlit, hdist) => { ok!(BlockDynClenCodeLengths(hlit, hdist, take!(4) + 4, 0, Box::new([0; 19]))) } BlockDynClenCodeLengths(hlit, hdist, hclen, i, mut clens) => { let v = match stream.take(3) { Some(v) => v, None => return ok!(BlockDynClenCodeLengths(hlit, hdist, hclen, i, clens)), }; clens[[16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15][i as usize]] = v; if i < hclen - 1 { ok!(BlockDynClenCodeLengths(hlit, hdist, hclen, i + 1, clens)) } else { ok!(BlockDynCodeLengths(try!(CodeLengthReader::new(clens, hlit as u16 + 256, hdist)))) } } BlockDynCodeLengths(mut reader) => { let finished = try!(reader.read(&mut stream)); if finished { let (lit, dist) = try!(reader.to_lit_and_dist()); ok!(BlockDyn(lit, dist, 0)) } else { ok!(BlockDynCodeLengths(reader)) } } BlockDyn(huff_lit_len, huff_dist, mut prev_len) => { macro_rules! next (($save_len:expr) => (BlockDyn(huff_lit_len, huff_dist, $save_len))); loop { let len = if prev_len != 0 { let len = prev_len; prev_len = 0; len } else { let (save, code16) = match try!(huff_lit_len.read(&mut stream)) { Some(data) => data, None => return ok!(next!(0)), }; let code = code16 as u8; debug!("{:09b}", code16); match code16 { 0...255 => { push_or!(code, ok!({stream = save; next!(0)})); continue; } 256...285 => {} _ => return Err(format!("bad DEFLATE len code {}", code)), } macro_rules! len (($code:expr, $bits:expr) => ( 3 + if $bits == 0 { 0 } else { // new_base 4 << $bits } + ((if $code == 29 { 256 } else { $code as u16 } - if $bits == 0 { 0 } else { // old_base $bits * 4 + 4 } - 1) << $bits) + take!($bits => {stream = save; next!(0)}) as u16 )); match code { 0 => { return if self.final_block { let (len, bytes) = stream.trailing_bytes(); ok_state!(CheckCRC(len, bytes)) } else { ok!(BlockHeader) } } 1...8 => len!(code, 0), 9...12 => len!(code, 1), 13...16 => len!(code, 2), 17...20 => len!(code, 3), 21...24 => len!(code, 4), 25...28 => len!(code, 5), 29 => len!(29, 0), _ => return Err(format!("bad DEFLATE len code {}", code as u16 + 256)), } }; let (save, dist_code) = match try!(huff_dist.read(&mut stream)) { Some(data) => data, None => return ok!(next!(len)), }; debug!(" {:05b}", dist_code); macro_rules! len_dist_case (($bits:expr) => ( len_dist!(len, dist_code, $bits => {stream = save; next!(len)}, next!(0)) )); match dist_code { 0...3 => len_dist_case!(0), 4...5 => len_dist_case!(1), 6...7 => len_dist_case!(2), 8...9 => len_dist_case!(3), 10...11 => len_dist_case!(4), 12...13 => len_dist_case!(5), 14...15 => len_dist_case!(6), 16...17 => len_dist_case!(7), 18...19 => len_dist_case!(8), 20...21 => len_dist_case!(9), 22...23 => len_dist_case!(10), 24...25 => len_dist_case!(11), 26...27 => len_dist_case!(12), 28...29 => len_dist_case!(13), _ => return Err(format!("bad DEFLATE dist code {}", dist_code)), } } } } } LenDist((next, state), len, dist) => { run_len_dist!(len, dist => (0, next, state)); ok_bytes!(0, Bits(next, state)) } Uncompressed(mut len) => { for (i, &b) in data.iter().enumerate() { if len == 0 { return ok_bytes!(i, Bits(BlockHeader, BitState { n: 0, v: 0 })); } push_or!(b, ok_bytes!(i, Uncompressed(len))); len -= 1; } ok_bytes!(data.len(), Uncompressed(len)) } CheckCRC(mut len, mut bytes) => { if self.checksum.is_none() { // TODO: inform caller of unused bytes return ok_bytes!(0, Finished); } // Get the checksum value from the end of the stream. let mut used = 0; while len < 4 && used < data.len() { bytes[len as usize] = data[used]; len += 1; used += 1; } if len < 4 { return ok_bytes!(used, CheckCRC(len, bytes)); } self.read_checksum = Some(adler32_from_bytes(&bytes)); ok_bytes!(used, Finished) } Finished => { // TODO: inform caller of unused bytes ok_bytes!(data.len(), Finished) } } } /// Try to uncompress/decode the data in `data`. /// /// On success, returns how many bytes of the input data was decompressed, and a reference to /// the buffer containing the decompressed data. /// /// This function may not uncompress all the provided data in one call, so it has to be called /// repeatedly with the data that hasn't been decompressed yet as an input until the number of /// bytes decoded returned is 0. (See the [top level crate documentation](index.html) /// for an example.) /// /// # Errors /// If invalid input data is encountered, a string describing what went wrong is returned. pub fn update<'a>(&'a mut self, mut data: &[u8]) -> Result<(usize, &'a [u8]), String> { let original_size = data.len(); let original_pos = self.pos as usize; let mut empty = false; while !empty && ((self.pos as usize) < self.buffer.capacity() || self.buffer.capacity() == 0) { // next_state must be called at least once after the data is empty. empty = data.is_empty(); match self.next_state(data) { Ok(n) => { data = &data[n..]; } Err(m) => return Err(m), } } let output = &self.buffer[original_pos..self.pos as usize]; if self.pos as usize >= self.buffer.capacity() { self.pos = 0; } // Update the checksum.. self.checksum.update(output); // and validate if we are done decoding. if let Some(c) = self.read_checksum { try!(self.checksum.check(c)); } Ok((original_size - data.len(), output)) } /// Returns the calculated checksum value of the currently decoded data. /// /// Will return 0 for cases where the checksum is not validated. pub fn current_checksum(&self) -> u32 { self.checksum.current_value() } }