//! The purpose of these tests is to cover corner cases of iterators //! and adaptors. //! //! In particular we test the tedious size_hint and exact size correctness. #[macro_use] extern crate itertools; extern crate quickcheck; extern crate rand; use std::default::Default; use quickcheck as qc; use std::ops::Range; use std::cmp::Ordering; use itertools::Itertools; use itertools::{ multizip, EitherOrBoth, }; use itertools::free::{ cloned, enumerate, multipeek, put_back, put_back_n, rciter, zip, zip_eq, }; use rand::Rng; use rand::seq::SliceRandom; use quickcheck::TestResult; /// Trait for size hint modifier types trait HintKind: Copy + Send + qc::Arbitrary { fn loosen_bounds(&self, org_hint: (usize, Option)) -> (usize, Option); } /// Exact size hint variant that leaves hints unchanged #[derive(Clone, Copy, Debug)] struct Exact {} impl HintKind for Exact { fn loosen_bounds(&self, org_hint: (usize, Option)) -> (usize, Option) { org_hint } } impl qc::Arbitrary for Exact { fn arbitrary(_: &mut G) -> Self { Exact {} } } /// Inexact size hint variant to simulate imprecise (but valid) size hints /// /// Will always decrease the lower bound and increase the upper bound /// of the size hint by set amounts. #[derive(Clone, Copy, Debug)] struct Inexact { underestimate: usize, overestimate: usize, } impl HintKind for Inexact { fn loosen_bounds(&self, org_hint: (usize, Option)) -> (usize, Option) { let (org_lower, org_upper) = org_hint; (org_lower.saturating_sub(self.underestimate), org_upper.and_then(move |x| x.checked_add(self.overestimate))) } } impl qc::Arbitrary for Inexact { fn arbitrary(g: &mut G) -> Self { let ue_value = usize::arbitrary(g); let oe_value = usize::arbitrary(g); // Compensate for quickcheck using extreme values too rarely let ue_choices = &[0, ue_value, usize::max_value()]; let oe_choices = &[0, oe_value, usize::max_value()]; Inexact { underestimate: *ue_choices.choose(g).unwrap(), overestimate: *oe_choices.choose(g).unwrap(), } } fn shrink(&self) -> Box> { let underestimate_value = self.underestimate; let overestimate_value = self.overestimate; Box::new( underestimate_value.shrink().flat_map(move |ue_value| overestimate_value.shrink().map(move |oe_value| Inexact { underestimate: ue_value, overestimate: oe_value, } ) ) ) } } /// Our base iterator that we can impl Arbitrary for /// /// By default we'll return inexact bounds estimates for size_hint /// to make tests harder to pass. /// /// NOTE: Iter is tricky and is not fused, to help catch bugs. /// At the end it will return None once, then return Some(0), /// then return None again. #[derive(Clone, Debug)] struct Iter { iterator: Range, // fuse/done flag fuse_flag: i32, hint_kind: SK, } impl Iter where HK: HintKind { fn new(it: Range, hint_kind: HK) -> Self { Iter { iterator: it, fuse_flag: 0, hint_kind: hint_kind } } } impl Iterator for Iter where Range: Iterator, as Iterator>::Item: Default, HK: HintKind, { type Item = as Iterator>::Item; fn next(&mut self) -> Option { let elt = self.iterator.next(); if elt.is_none() { self.fuse_flag += 1; // check fuse flag if self.fuse_flag == 2 { return Some(Default::default()) } } elt } fn size_hint(&self) -> (usize, Option) { let org_hint = self.iterator.size_hint(); self.hint_kind.loosen_bounds(org_hint) } } impl DoubleEndedIterator for Iter where Range: DoubleEndedIterator, as Iterator>::Item: Default, HK: HintKind { fn next_back(&mut self) -> Option { self.iterator.next_back() } } impl ExactSizeIterator for Iter where Range: ExactSizeIterator, as Iterator>::Item: Default, { } impl qc::Arbitrary for Iter where T: qc::Arbitrary, HK: HintKind, { fn arbitrary(g: &mut G) -> Self { Iter::new(T::arbitrary(g)..T::arbitrary(g), HK::arbitrary(g)) } fn shrink(&self) -> Box>> { let r = self.iterator.clone(); let hint_kind = self.hint_kind; Box::new( r.start.shrink().flat_map(move |a| r.end.shrink().map(move |b| Iter::new(a.clone()..b, hint_kind) ) ) ) } } /// A meta-iterator which yields `Iter`s whose start/endpoints are /// increased or decreased linearly on each iteration. #[derive(Clone, Debug)] struct ShiftRange { range_start: i32, range_end: i32, start_step: i32, end_step: i32, iter_count: u32, hint_kind: HK, } impl Iterator for ShiftRange where HK: HintKind { type Item = Iter; fn next(&mut self) -> Option { if self.iter_count == 0 { return None; } let iter = Iter::new(self.range_start..self.range_end, self.hint_kind); self.range_start += self.start_step; self.range_end += self.end_step; self.iter_count -= 1; Some(iter) } } impl ExactSizeIterator for ShiftRange { } impl qc::Arbitrary for ShiftRange where HK: HintKind { fn arbitrary(g: &mut G) -> Self { const MAX_STARTING_RANGE_DIFF: i32 = 32; const MAX_STEP_MODULO: i32 = 8; const MAX_ITER_COUNT: u32 = 3; let range_start = qc::Arbitrary::arbitrary(g); let range_end = range_start + g.gen_range(0, MAX_STARTING_RANGE_DIFF + 1); let start_step = g.gen_range(-MAX_STEP_MODULO, MAX_STEP_MODULO + 1); let end_step = g.gen_range(-MAX_STEP_MODULO, MAX_STEP_MODULO + 1); let iter_count = g.gen_range(0, MAX_ITER_COUNT + 1); let hint_kind = qc::Arbitrary::arbitrary(g); ShiftRange { range_start: range_start, range_end: range_end, start_step: start_step, end_step: end_step, iter_count: iter_count, hint_kind: hint_kind } } } fn correct_size_hint(mut it: I) -> bool { // record size hint at each iteration let initial_hint = it.size_hint(); let mut hints = Vec::with_capacity(initial_hint.0 + 1); hints.push(initial_hint); while let Some(_) = it.next() { hints.push(it.size_hint()) } let mut true_count = hints.len(); // start off +1 too much // check all the size hints for &(low, hi) in &hints { true_count -= 1; if low > true_count || (hi.is_some() && hi.unwrap() < true_count) { println!("True size: {:?}, size hint: {:?}", true_count, (low, hi)); //println!("All hints: {:?}", hints); return false } } true } fn exact_size(mut it: I) -> bool { // check every iteration let (mut low, mut hi) = it.size_hint(); if Some(low) != hi { return false; } while let Some(_) = it.next() { let (xlow, xhi) = it.size_hint(); if low != xlow + 1 { return false; } low = xlow; hi = xhi; if Some(low) != hi { return false; } } let (low, hi) = it.size_hint(); low == 0 && hi == Some(0) } // Exact size for this case, without ExactSizeIterator fn exact_size_for_this(mut it: I) -> bool { // check every iteration let (mut low, mut hi) = it.size_hint(); if Some(low) != hi { return false; } while let Some(_) = it.next() { let (xlow, xhi) = it.size_hint(); if low != xlow + 1 { return false; } low = xlow; hi = xhi; if Some(low) != hi { return false; } } let (low, hi) = it.size_hint(); low == 0 && hi == Some(0) } /* * NOTE: Range is broken! * (all signed ranges are) #[quickcheck] fn size_range_i8(a: Iter) -> bool { exact_size(a) } #[quickcheck] fn size_range_i16(a: Iter) -> bool { exact_size(a) } #[quickcheck] fn size_range_u8(a: Iter) -> bool { exact_size(a) } */ macro_rules! quickcheck { // accept several property function definitions // The property functions can use pattern matching and `mut` as usual // in the function arguments, but the functions can not be generic. {$($(#$attr:tt)* fn $fn_name:ident($($arg:tt)*) -> $ret:ty { $($code:tt)* })*} => ( $( #[test] $(#$attr)* fn $fn_name() { fn prop($($arg)*) -> $ret { $($code)* } ::quickcheck::quickcheck(quickcheck!(@fn prop [] $($arg)*)); } )* ); // parse argument list (with patterns allowed) into prop as fn(_, _) -> _ (@fn $f:ident [$($t:tt)*]) => { $f as fn($($t),*) -> _ }; (@fn $f:ident [$($p:tt)*] : $($tail:tt)*) => { quickcheck!(@fn $f [$($p)* _] $($tail)*) }; (@fn $f:ident [$($p:tt)*] $t:tt $($tail:tt)*) => { quickcheck!(@fn $f [$($p)*] $($tail)*) }; } quickcheck! { fn size_product(a: Iter, b: Iter) -> bool { correct_size_hint(a.cartesian_product(b)) } fn size_product3(a: Iter, b: Iter, c: Iter) -> bool { correct_size_hint(iproduct!(a, b, c)) } fn correct_cartesian_product3(a: Iter, b: Iter, c: Iter, take_manual: usize) -> () { // test correctness of iproduct through regular iteration (take) // and through fold. let ac = a.clone(); let br = &b.clone(); let cr = &c.clone(); let answer: Vec<_> = ac.flat_map(move |ea| br.clone().flat_map(move |eb| cr.clone().map(move |ec| (ea, eb, ec)))).collect(); let mut product_iter = iproduct!(a, b, c); let mut actual = Vec::new(); actual.extend((&mut product_iter).take(take_manual)); if actual.len() == take_manual { product_iter.fold((), |(), elt| actual.push(elt)); } assert_eq!(answer, actual); } fn size_multi_product(a: ShiftRange) -> bool { correct_size_hint(a.multi_cartesian_product()) } fn correct_multi_product3(a: ShiftRange, take_manual: usize) -> () { // Fix no. of iterators at 3 let a = ShiftRange { iter_count: 3, ..a }; // test correctness of MultiProduct through regular iteration (take) // and through fold. let mut iters = a.clone(); let i0 = iters.next().unwrap(); let i1r = &iters.next().unwrap(); let i2r = &iters.next().unwrap(); let answer: Vec<_> = i0.flat_map(move |ei0| i1r.clone().flat_map(move |ei1| i2r.clone().map(move |ei2| vec![ei0, ei1, ei2]))).collect(); let mut multi_product = a.clone().multi_cartesian_product(); let mut actual = Vec::new(); actual.extend((&mut multi_product).take(take_manual)); if actual.len() == take_manual { multi_product.fold((), |(), elt| actual.push(elt)); } assert_eq!(answer, actual); assert_eq!(answer.into_iter().last(), a.clone().multi_cartesian_product().last()); } #[allow(deprecated)] fn size_step(a: Iter, s: usize) -> bool { let mut s = s; if s == 0 { s += 1; // never zero } let filt = a.clone().dedup(); correct_size_hint(filt.step(s)) && exact_size(a.step(s)) } #[allow(deprecated)] fn equal_step(a: Iter, s: usize) -> bool { let mut s = s; if s == 0 { s += 1; // never zero } let mut i = 0; itertools::equal(a.clone().step(s), a.filter(|_| { let keep = i % s == 0; i += 1; keep })) } #[allow(deprecated)] fn equal_step_vec(a: Vec, s: usize) -> bool { let mut s = s; if s == 0 { s += 1; // never zero } let mut i = 0; itertools::equal(a.iter().step(s), a.iter().filter(|_| { let keep = i % s == 0; i += 1; keep })) } fn size_multipeek(a: Iter, s: u8) -> bool { let mut it = multipeek(a); // peek a few times for _ in 0..s { it.peek(); } exact_size(it) } fn equal_merge(a: Vec, b: Vec) -> bool { let mut sa = a.clone(); let mut sb = b.clone(); sa.sort(); sb.sort(); let mut merged = sa.clone(); merged.extend(sb.iter().cloned()); merged.sort(); itertools::equal(&merged, sa.iter().merge(&sb)) } fn size_merge(a: Iter, b: Iter) -> bool { correct_size_hint(a.merge(b)) } fn size_zip(a: Iter, b: Iter, c: Iter) -> bool { let filt = a.clone().dedup(); correct_size_hint(multizip((filt, b.clone(), c.clone()))) && exact_size(multizip((a, b, c))) } fn size_zip_rc(a: Iter, b: Iter) -> bool { let rc = rciter(a.clone()); correct_size_hint(multizip((&rc, &rc, b))) } fn size_zip_macro(a: Iter, b: Iter, c: Iter) -> bool { let filt = a.clone().dedup(); correct_size_hint(izip!(filt, b.clone(), c.clone())) && exact_size(izip!(a, b, c)) } fn equal_kmerge(a: Vec, b: Vec, c: Vec) -> bool { use itertools::free::kmerge; let mut sa = a.clone(); let mut sb = b.clone(); let mut sc = c.clone(); sa.sort(); sb.sort(); sc.sort(); let mut merged = sa.clone(); merged.extend(sb.iter().cloned()); merged.extend(sc.iter().cloned()); merged.sort(); itertools::equal(merged.into_iter(), kmerge(vec![sa, sb, sc])) } // Any number of input iterators fn equal_kmerge_2(mut inputs: Vec>) -> bool { use itertools::free::kmerge; // sort the inputs for input in &mut inputs { input.sort(); } let mut merged = inputs.concat(); merged.sort(); itertools::equal(merged.into_iter(), kmerge(inputs)) } // Any number of input iterators fn equal_kmerge_by_ge(mut inputs: Vec>) -> bool { // sort the inputs for input in &mut inputs { input.sort(); input.reverse(); } let mut merged = inputs.concat(); merged.sort(); merged.reverse(); itertools::equal(merged.into_iter(), inputs.into_iter().kmerge_by(|x, y| x >= y)) } // Any number of input iterators fn equal_kmerge_by_lt(mut inputs: Vec>) -> bool { // sort the inputs for input in &mut inputs { input.sort(); } let mut merged = inputs.concat(); merged.sort(); itertools::equal(merged.into_iter(), inputs.into_iter().kmerge_by(|x, y| x < y)) } // Any number of input iterators fn equal_kmerge_by_le(mut inputs: Vec>) -> bool { // sort the inputs for input in &mut inputs { input.sort(); } let mut merged = inputs.concat(); merged.sort(); itertools::equal(merged.into_iter(), inputs.into_iter().kmerge_by(|x, y| x <= y)) } fn size_kmerge(a: Iter, b: Iter, c: Iter) -> bool { use itertools::free::kmerge; correct_size_hint(kmerge(vec![a, b, c])) } fn equal_zip_eq(a: Vec, b: Vec) -> bool { let len = std::cmp::min(a.len(), b.len()); let a = &a[..len]; let b = &b[..len]; itertools::equal(zip_eq(a, b), zip(a, b)) } fn size_zip_longest(a: Iter, b: Iter) -> bool { let filt = a.clone().dedup(); let filt2 = b.clone().dedup(); correct_size_hint(filt.zip_longest(b.clone())) && correct_size_hint(a.clone().zip_longest(filt2)) && exact_size(a.zip_longest(b)) } fn size_2_zip_longest(a: Iter, b: Iter) -> bool { let it = a.clone().zip_longest(b.clone()); let jt = a.clone().zip_longest(b.clone()); itertools::equal(a.clone(), it.filter_map(|elt| match elt { EitherOrBoth::Both(x, _) => Some(x), EitherOrBoth::Left(x) => Some(x), _ => None, } )) && itertools::equal(b.clone(), jt.filter_map(|elt| match elt { EitherOrBoth::Both(_, y) => Some(y), EitherOrBoth::Right(y) => Some(y), _ => None, } )) } fn size_interleave(a: Iter, b: Iter) -> bool { correct_size_hint(a.interleave(b)) } fn exact_interleave(a: Iter, b: Iter) -> bool { exact_size_for_this(a.interleave(b)) } fn size_interleave_shortest(a: Iter, b: Iter) -> bool { correct_size_hint(a.interleave_shortest(b)) } fn exact_interleave_shortest(a: Vec<()>, b: Vec<()>) -> bool { exact_size_for_this(a.iter().interleave_shortest(&b)) } fn size_intersperse(a: Iter, x: i16) -> bool { correct_size_hint(a.intersperse(x)) } fn equal_intersperse(a: Vec, x: i32) -> bool { let mut inter = false; let mut i = 0; for elt in a.iter().cloned().intersperse(x) { if inter { if elt != x { return false } } else { if elt != a[i] { return false } i += 1; } inter = !inter; } true } fn equal_combinations_2(a: Vec) -> bool { let mut v = Vec::new(); for (i, x) in enumerate(&a) { for y in &a[i + 1..] { v.push((x, y)); } } itertools::equal(a.iter().tuple_combinations::<(_, _)>(), v) } fn collect_tuple_matches_size(a: Iter) -> bool { let size = a.clone().count(); a.collect_tuple::<(_, _, _)>().is_some() == (size == 3) } } quickcheck! { fn equal_dedup(a: Vec) -> bool { let mut b = a.clone(); b.dedup(); itertools::equal(&b, a.iter().dedup()) } } quickcheck! { fn size_dedup(a: Vec) -> bool { correct_size_hint(a.iter().dedup()) } } quickcheck! { fn exact_repeatn((n, x): (usize, i32)) -> bool { let it = itertools::repeat_n(x, n); exact_size(it) } } quickcheck! { fn size_put_back(a: Vec, x: Option) -> bool { let mut it = put_back(a.into_iter()); match x { Some(t) => it.put_back(t), None => {} } correct_size_hint(it) } } quickcheck! { fn size_put_backn(a: Vec, b: Vec) -> bool { let mut it = put_back_n(a.into_iter()); for elt in b { it.put_back(elt) } correct_size_hint(it) } } quickcheck! { fn size_tee(a: Vec) -> bool { let (mut t1, mut t2) = a.iter().tee(); t1.next(); t1.next(); t2.next(); exact_size(t1) && exact_size(t2) } } quickcheck! { fn size_tee_2(a: Vec) -> bool { let (mut t1, mut t2) = a.iter().dedup().tee(); t1.next(); t1.next(); t2.next(); correct_size_hint(t1) && correct_size_hint(t2) } } quickcheck! { fn size_take_while_ref(a: Vec, stop: u8) -> bool { correct_size_hint(a.iter().take_while_ref(|x| **x != stop)) } } quickcheck! { fn equal_partition(a: Vec) -> bool { let mut a = a; let mut ap = a.clone(); let split_index = itertools::partition(&mut ap, |x| *x >= 0); let parted = (0..split_index).all(|i| ap[i] >= 0) && (split_index..a.len()).all(|i| ap[i] < 0); a.sort(); ap.sort(); parted && (a == ap) } } quickcheck! { fn size_combinations(it: Iter) -> bool { correct_size_hint(it.tuple_combinations::<(_, _)>()) } } quickcheck! { fn equal_combinations(it: Iter) -> bool { let values = it.clone().collect_vec(); let mut cmb = it.tuple_combinations(); for i in 0..values.len() { for j in i+1..values.len() { let pair = (values[i], values[j]); if pair != cmb.next().unwrap() { return false; } } } cmb.next() == None } } quickcheck! { fn size_pad_tail(it: Iter, pad: u8) -> bool { correct_size_hint(it.clone().pad_using(pad as usize, |_| 0)) && correct_size_hint(it.dropping(1).rev().pad_using(pad as usize, |_| 0)) } } quickcheck! { fn size_pad_tail2(it: Iter, pad: u8) -> bool { exact_size(it.pad_using(pad as usize, |_| 0)) } } quickcheck! { fn size_unique(it: Iter) -> bool { correct_size_hint(it.unique()) } fn count_unique(it: Vec, take_first: u8) -> () { let answer = { let mut v = it.clone(); v.sort(); v.dedup(); v.len() }; let mut iter = cloned(&it).unique(); let first_count = (&mut iter).take(take_first as usize).count(); let rest_count = iter.count(); assert_eq!(answer, first_count + rest_count); } } quickcheck! { fn fuzz_group_by_lazy_1(it: Iter) -> bool { let jt = it.clone(); let groups = it.group_by(|k| *k); let res = itertools::equal(jt, groups.into_iter().flat_map(|(_, x)| x)); res } } quickcheck! { fn fuzz_group_by_lazy_2(data: Vec) -> bool { let groups = data.iter().group_by(|k| *k / 10); let res = itertools::equal(data.iter(), groups.into_iter().flat_map(|(_, x)| x)); res } } quickcheck! { fn fuzz_group_by_lazy_3(data: Vec) -> bool { let grouper = data.iter().group_by(|k| *k / 10); let groups = grouper.into_iter().collect_vec(); let res = itertools::equal(data.iter(), groups.into_iter().flat_map(|(_, x)| x)); res } } quickcheck! { fn fuzz_group_by_lazy_duo(data: Vec, order: Vec<(bool, bool)>) -> bool { let grouper = data.iter().group_by(|k| *k / 3); let mut groups1 = grouper.into_iter(); let mut groups2 = grouper.into_iter(); let mut elts = Vec::<&u8>::new(); let mut old_groups = Vec::new(); let tup1 = |(_, b)| b; for &(ord, consume_now) in &order { let iter = &mut [&mut groups1, &mut groups2][ord as usize]; match iter.next() { Some((_, gr)) => if consume_now { for og in old_groups.drain(..) { elts.extend(og); } elts.extend(gr); } else { old_groups.push(gr); }, None => break, } } for og in old_groups.drain(..) { elts.extend(og); } for gr in groups1.map(&tup1) { elts.extend(gr); } for gr in groups2.map(&tup1) { elts.extend(gr); } itertools::assert_equal(&data, elts); true } } quickcheck! { fn equal_chunks_lazy(a: Vec, size: u8) -> bool { let mut size = size; if size == 0 { size += 1; } let chunks = a.iter().chunks(size as usize); let it = a.chunks(size as usize); for (a, b) in chunks.into_iter().zip(it) { if !itertools::equal(a, b) { return false; } } true } } quickcheck! { fn equal_tuple_windows_1(a: Vec) -> bool { let x = a.windows(1).map(|s| (&s[0], )); let y = a.iter().tuple_windows::<(_,)>(); itertools::equal(x, y) } fn equal_tuple_windows_2(a: Vec) -> bool { let x = a.windows(2).map(|s| (&s[0], &s[1])); let y = a.iter().tuple_windows::<(_, _)>(); itertools::equal(x, y) } fn equal_tuple_windows_3(a: Vec) -> bool { let x = a.windows(3).map(|s| (&s[0], &s[1], &s[2])); let y = a.iter().tuple_windows::<(_, _, _)>(); itertools::equal(x, y) } fn equal_tuple_windows_4(a: Vec) -> bool { let x = a.windows(4).map(|s| (&s[0], &s[1], &s[2], &s[3])); let y = a.iter().tuple_windows::<(_, _, _, _)>(); itertools::equal(x, y) } fn equal_tuples_1(a: Vec) -> bool { let x = a.chunks(1).map(|s| (&s[0], )); let y = a.iter().tuples::<(_,)>(); itertools::equal(x, y) } fn equal_tuples_2(a: Vec) -> bool { let x = a.chunks(2).filter(|s| s.len() == 2).map(|s| (&s[0], &s[1])); let y = a.iter().tuples::<(_, _)>(); itertools::equal(x, y) } fn equal_tuples_3(a: Vec) -> bool { let x = a.chunks(3).filter(|s| s.len() == 3).map(|s| (&s[0], &s[1], &s[2])); let y = a.iter().tuples::<(_, _, _)>(); itertools::equal(x, y) } fn equal_tuples_4(a: Vec) -> bool { let x = a.chunks(4).filter(|s| s.len() == 4).map(|s| (&s[0], &s[1], &s[2], &s[3])); let y = a.iter().tuples::<(_, _, _, _)>(); itertools::equal(x, y) } fn exact_tuple_buffer(a: Vec) -> bool { let mut iter = a.iter().tuples::<(_, _, _, _)>(); (&mut iter).last(); let buffer = iter.into_buffer(); assert_eq!(buffer.len(), a.len() % 4); exact_size(buffer) } } // with_position quickcheck! { fn with_position_exact_size_1(a: Vec) -> bool { exact_size_for_this(a.iter().with_position()) } fn with_position_exact_size_2(a: Iter) -> bool { exact_size_for_this(a.with_position()) } } quickcheck! { fn correct_group_map_modulo_key(a: Vec, modulo: u8) -> () { let modulo = if modulo == 0 { 1 } else { modulo }; // Avoid `% 0` let count = a.len(); let lookup = a.into_iter().map(|i| (i % modulo, i)).into_group_map(); assert_eq!(lookup.values().flat_map(|vals| vals.iter()).count(), count); for (&key, vals) in lookup.iter() { assert!(vals.iter().all(|&val| val % modulo == key)); } } } /// A peculiar type: Equality compares both tuple items, but ordering only the /// first item. This is so we can check the stability property easily. #[derive(Clone, Debug, PartialEq, Eq)] struct Val(u32, u32); impl PartialOrd for Val { fn partial_cmp(&self, other: &Val) -> Option { self.0.partial_cmp(&other.0) } } impl Ord for Val { fn cmp(&self, other: &Val) -> Ordering { self.0.cmp(&other.0) } } impl qc::Arbitrary for Val { fn arbitrary(g: &mut G) -> Self { let (x, y) = <(u32, u32)>::arbitrary(g); Val(x, y) } fn shrink(&self) -> Box> { Box::new((self.0, self.1).shrink().map(|(x, y)| Val(x, y))) } } quickcheck! { fn minmax(a: Vec) -> bool { use itertools::MinMaxResult; let minmax = a.iter().minmax(); let expected = match a.len() { 0 => MinMaxResult::NoElements, 1 => MinMaxResult::OneElement(&a[0]), _ => MinMaxResult::MinMax(a.iter().min().unwrap(), a.iter().max().unwrap()), }; minmax == expected } } quickcheck! { fn minmax_f64(a: Vec) -> TestResult { use itertools::MinMaxResult; if a.iter().any(|x| x.is_nan()) { return TestResult::discard(); } let min = cloned(&a).fold1(f64::min); let max = cloned(&a).fold1(f64::max); let minmax = cloned(&a).minmax(); let expected = match a.len() { 0 => MinMaxResult::NoElements, 1 => MinMaxResult::OneElement(min.unwrap()), _ => MinMaxResult::MinMax(min.unwrap(), max.unwrap()), }; TestResult::from_bool(minmax == expected) } } quickcheck! { #[allow(deprecated)] fn tree_fold1_f64(mut a: Vec) -> TestResult { fn collapse_adjacent(x: Vec, mut f: F) -> Vec where F: FnMut(f64, f64) -> f64 { let mut out = Vec::new(); for i in (0..x.len()).step(2) { if i == x.len()-1 { out.push(x[i]) } else { out.push(f(x[i], x[i+1])); } } out } if a.iter().any(|x| x.is_nan()) { return TestResult::discard(); } let actual = a.iter().cloned().tree_fold1(f64::atan2); while a.len() > 1 { a = collapse_adjacent(a, f64::atan2); } let expected = a.pop(); TestResult::from_bool(actual == expected) } }