// This module defines pure Rust platform independent implementations of all // the memchr routines. We do our best to make them fast. Some of them may even // get auto-vectorized. use core::cmp; use core::usize; #[cfg(target_pointer_width = "16")] const USIZE_BYTES: usize = 2; #[cfg(target_pointer_width = "32")] const USIZE_BYTES: usize = 4; #[cfg(target_pointer_width = "64")] const USIZE_BYTES: usize = 8; // The number of bytes to loop at in one iteration of memchr/memrchr. const LOOP_SIZE: usize = 2 * USIZE_BYTES; /// Return `true` if `x` contains any zero byte. /// /// From *Matters Computational*, J. Arndt /// /// "The idea is to subtract one from each of the bytes and then look for /// bytes where the borrow propagated all the way to the most significant /// bit." #[inline(always)] fn contains_zero_byte(x: usize) -> bool { const LO_U64: u64 = 0x0101010101010101; const HI_U64: u64 = 0x8080808080808080; const LO_USIZE: usize = LO_U64 as usize; const HI_USIZE: usize = HI_U64 as usize; x.wrapping_sub(LO_USIZE) & !x & HI_USIZE != 0 } /// Repeat the given byte into a word size number. That is, every 8 bits /// is equivalent to the given byte. For example, if `b` is `\x4E` or /// `01001110` in binary, then the returned value on a 32-bit system would be: /// `01001110_01001110_01001110_01001110`. #[inline(always)] fn repeat_byte(b: u8) -> usize { (b as usize) * (usize::MAX / 255) } pub fn memchr(n1: u8, haystack: &[u8]) -> Option { let vn1 = repeat_byte(n1); let confirm = |byte| byte == n1; let loop_size = cmp::min(LOOP_SIZE, haystack.len()); let align = USIZE_BYTES - 1; let start_ptr = haystack.as_ptr(); let end_ptr = haystack[haystack.len()..].as_ptr(); let mut ptr = start_ptr; unsafe { if haystack.len() < USIZE_BYTES { return forward_search(start_ptr, end_ptr, ptr, confirm); } let chunk = (ptr as *const usize).read_unaligned(); if contains_zero_byte(chunk ^ vn1) { return forward_search(start_ptr, end_ptr, ptr, confirm); } ptr = ptr.add(USIZE_BYTES - (start_ptr as usize & align)); debug_assert!(ptr > start_ptr); debug_assert!(end_ptr.sub(USIZE_BYTES) >= start_ptr); while loop_size == LOOP_SIZE && ptr <= end_ptr.sub(loop_size) { debug_assert_eq!(0, (ptr as usize) % USIZE_BYTES); let a = *(ptr as *const usize); let b = *(ptr.add(USIZE_BYTES) as *const usize); let eqa = contains_zero_byte(a ^ vn1); let eqb = contains_zero_byte(b ^ vn1); if eqa || eqb { break; } ptr = ptr.add(LOOP_SIZE); } forward_search(start_ptr, end_ptr, ptr, confirm) } } /// Like `memchr`, but searches for two bytes instead of one. pub fn memchr2(n1: u8, n2: u8, haystack: &[u8]) -> Option { let vn1 = repeat_byte(n1); let vn2 = repeat_byte(n2); let confirm = |byte| byte == n1 || byte == n2; let align = USIZE_BYTES - 1; let start_ptr = haystack.as_ptr(); let end_ptr = haystack[haystack.len()..].as_ptr(); let mut ptr = start_ptr; unsafe { if haystack.len() < USIZE_BYTES { return forward_search(start_ptr, end_ptr, ptr, confirm); } let chunk = (ptr as *const usize).read_unaligned(); let eq1 = contains_zero_byte(chunk ^ vn1); let eq2 = contains_zero_byte(chunk ^ vn2); if eq1 || eq2 { return forward_search(start_ptr, end_ptr, ptr, confirm); } ptr = ptr.add(USIZE_BYTES - (start_ptr as usize & align)); debug_assert!(ptr > start_ptr); debug_assert!(end_ptr.sub(USIZE_BYTES) >= start_ptr); while ptr <= end_ptr.sub(USIZE_BYTES) { debug_assert_eq!(0, (ptr as usize) % USIZE_BYTES); let chunk = *(ptr as *const usize); let eq1 = contains_zero_byte(chunk ^ vn1); let eq2 = contains_zero_byte(chunk ^ vn2); if eq1 || eq2 { break; } ptr = ptr.add(USIZE_BYTES); } forward_search(start_ptr, end_ptr, ptr, confirm) } } /// Like `memchr`, but searches for three bytes instead of one. pub fn memchr3(n1: u8, n2: u8, n3: u8, haystack: &[u8]) -> Option { let vn1 = repeat_byte(n1); let vn2 = repeat_byte(n2); let vn3 = repeat_byte(n3); let confirm = |byte| byte == n1 || byte == n2 || byte == n3; let align = USIZE_BYTES - 1; let start_ptr = haystack.as_ptr(); let end_ptr = haystack[haystack.len()..].as_ptr(); let mut ptr = start_ptr; unsafe { if haystack.len() < USIZE_BYTES { return forward_search(start_ptr, end_ptr, ptr, confirm); } let chunk = (ptr as *const usize).read_unaligned(); let eq1 = contains_zero_byte(chunk ^ vn1); let eq2 = contains_zero_byte(chunk ^ vn2); let eq3 = contains_zero_byte(chunk ^ vn3); if eq1 || eq2 || eq3 { return forward_search(start_ptr, end_ptr, ptr, confirm); } ptr = ptr.add(USIZE_BYTES - (start_ptr as usize & align)); debug_assert!(ptr > start_ptr); debug_assert!(end_ptr.sub(USIZE_BYTES) >= start_ptr); while ptr <= end_ptr.sub(USIZE_BYTES) { debug_assert_eq!(0, (ptr as usize) % USIZE_BYTES); let chunk = *(ptr as *const usize); let eq1 = contains_zero_byte(chunk ^ vn1); let eq2 = contains_zero_byte(chunk ^ vn2); let eq3 = contains_zero_byte(chunk ^ vn3); if eq1 || eq2 || eq3 { break; } ptr = ptr.add(USIZE_BYTES); } forward_search(start_ptr, end_ptr, ptr, confirm) } } /// Return the last index matching the byte `x` in `text`. pub fn memrchr(n1: u8, haystack: &[u8]) -> Option { let vn1 = repeat_byte(n1); let confirm = |byte| byte == n1; let loop_size = cmp::min(LOOP_SIZE, haystack.len()); let align = USIZE_BYTES - 1; let start_ptr = haystack.as_ptr(); let end_ptr = haystack[haystack.len()..].as_ptr(); let mut ptr = end_ptr; unsafe { if haystack.len() < USIZE_BYTES { return reverse_search(start_ptr, end_ptr, ptr, confirm); } let chunk = (ptr.sub(USIZE_BYTES) as *const usize).read_unaligned(); if contains_zero_byte(chunk ^ vn1) { return reverse_search(start_ptr, end_ptr, ptr, confirm); } ptr = (end_ptr as usize & !align) as *const u8; debug_assert!(start_ptr <= ptr && ptr <= end_ptr); while loop_size == LOOP_SIZE && ptr >= start_ptr.add(loop_size) { debug_assert_eq!(0, (ptr as usize) % USIZE_BYTES); let a = *(ptr.sub(2 * USIZE_BYTES) as *const usize); let b = *(ptr.sub(1 * USIZE_BYTES) as *const usize); let eqa = contains_zero_byte(a ^ vn1); let eqb = contains_zero_byte(b ^ vn1); if eqa || eqb { break; } ptr = ptr.sub(loop_size); } reverse_search(start_ptr, end_ptr, ptr, confirm) } } /// Like `memrchr`, but searches for two bytes instead of one. pub fn memrchr2(n1: u8, n2: u8, haystack: &[u8]) -> Option { let vn1 = repeat_byte(n1); let vn2 = repeat_byte(n2); let confirm = |byte| byte == n1 || byte == n2; let align = USIZE_BYTES - 1; let start_ptr = haystack.as_ptr(); let end_ptr = haystack[haystack.len()..].as_ptr(); let mut ptr = end_ptr; unsafe { if haystack.len() < USIZE_BYTES { return reverse_search(start_ptr, end_ptr, ptr, confirm); } let chunk = (ptr.sub(USIZE_BYTES) as *const usize).read_unaligned(); let eq1 = contains_zero_byte(chunk ^ vn1); let eq2 = contains_zero_byte(chunk ^ vn2); if eq1 || eq2 { return reverse_search(start_ptr, end_ptr, ptr, confirm); } ptr = (end_ptr as usize & !align) as *const u8; debug_assert!(start_ptr <= ptr && ptr <= end_ptr); while ptr >= start_ptr.add(USIZE_BYTES) { debug_assert_eq!(0, (ptr as usize) % USIZE_BYTES); let chunk = *(ptr.sub(USIZE_BYTES) as *const usize); let eq1 = contains_zero_byte(chunk ^ vn1); let eq2 = contains_zero_byte(chunk ^ vn2); if eq1 || eq2 { break; } ptr = ptr.sub(USIZE_BYTES); } reverse_search(start_ptr, end_ptr, ptr, confirm) } } /// Like `memrchr`, but searches for three bytes instead of one. pub fn memrchr3(n1: u8, n2: u8, n3: u8, haystack: &[u8]) -> Option { let vn1 = repeat_byte(n1); let vn2 = repeat_byte(n2); let vn3 = repeat_byte(n3); let confirm = |byte| byte == n1 || byte == n2 || byte == n3; let align = USIZE_BYTES - 1; let start_ptr = haystack.as_ptr(); let end_ptr = haystack[haystack.len()..].as_ptr(); let mut ptr = end_ptr; unsafe { if haystack.len() < USIZE_BYTES { return reverse_search(start_ptr, end_ptr, ptr, confirm); } let chunk = (ptr.sub(USIZE_BYTES) as *const usize).read_unaligned(); let eq1 = contains_zero_byte(chunk ^ vn1); let eq2 = contains_zero_byte(chunk ^ vn2); let eq3 = contains_zero_byte(chunk ^ vn3); if eq1 || eq2 || eq3 { return reverse_search(start_ptr, end_ptr, ptr, confirm); } ptr = (end_ptr as usize & !align) as *const u8; debug_assert!(start_ptr <= ptr && ptr <= end_ptr); while ptr >= start_ptr.add(USIZE_BYTES) { debug_assert_eq!(0, (ptr as usize) % USIZE_BYTES); let chunk = *(ptr.sub(USIZE_BYTES) as *const usize); let eq1 = contains_zero_byte(chunk ^ vn1); let eq2 = contains_zero_byte(chunk ^ vn2); let eq3 = contains_zero_byte(chunk ^ vn3); if eq1 || eq2 || eq3 { break; } ptr = ptr.sub(USIZE_BYTES); } reverse_search(start_ptr, end_ptr, ptr, confirm) } } #[inline(always)] unsafe fn forward_search bool>( start_ptr: *const u8, end_ptr: *const u8, mut ptr: *const u8, confirm: F, ) -> Option { debug_assert!(start_ptr <= ptr); debug_assert!(ptr <= end_ptr); while ptr < end_ptr { if confirm(*ptr) { return Some(sub(ptr, start_ptr)); } ptr = ptr.offset(1); } None } #[inline(always)] unsafe fn reverse_search bool>( start_ptr: *const u8, end_ptr: *const u8, mut ptr: *const u8, confirm: F, ) -> Option { debug_assert!(start_ptr <= ptr); debug_assert!(ptr <= end_ptr); while ptr > start_ptr { ptr = ptr.offset(-1); if confirm(*ptr) { return Some(sub(ptr, start_ptr)); } } None } /// Subtract `b` from `a` and return the difference. `a` should be greater than /// or equal to `b`. fn sub(a: *const u8, b: *const u8) -> usize { debug_assert!(a >= b); (a as usize) - (b as usize) }