//! Bit level parsers and combinators //! //! Bit parsing is handled by tweaking the input in most macros. //! In byte level parsing, the input is generally a `&[u8]` passed from combinator //! to combinator as the slices are manipulated. //! //! Bit parsers take a `(&[u8], usize)` as input. The first part of the tuple is a byte slice, //! the second part is a bit offset in the first byte of the slice. //! //! By passing a pair like this, we can leverage most of the existing combinators, and avoid //! transforming the whole slice to a vector of booleans. This should make it easy //! to see a byte slice as a bit stream, and parse code points of arbitrary bit length. //! /// Transforms its byte slice input into a bit stream for the underlying parser. This allows the /// given bit stream parser to work on a byte slice input. /// /// Signature: /// `bits!( parser ) => ( &[u8], (&[u8], usize) -> IResult<(&[u8], usize), T> ) -> IResult<&[u8], T>` /// /// ``` /// # #[macro_use] extern crate nom; /// # use nom::{Err, Needed}; /// # fn main() { /// named!( take_4_bits, bits!( take_bits!( 4u8 ) ) ); /// /// let input = vec![0xAB, 0xCD, 0xEF, 0x12]; /// let sl = &input[..]; /// /// assert_eq!(take_4_bits( sl ), Ok( (&sl[1..], 0xA) )); /// assert_eq!(take_4_bits( &b""[..] ), Err(Err::Incomplete(Needed::Size(1)))); /// # } #[macro_export(local_inner_macros)] macro_rules! bits ( ($i:expr, $submac:ident!( $($args:tt)* )) => ({ $crate::bits::bitsc($i, move |i| { $submac!(i, $($args)*) }) }); ($i:expr, $f:expr) => ( bits!($i, call!($f)) ); ); /// Counterpart to bits, bytes! transforms its bit stream input into a byte slice for the underlying /// parser, allowing byte-slice parsers to work on bit streams. /// /// Signature: /// `bytes!( parser ) => ( (&[u8], usize), &[u8] -> IResult<&[u8], T> ) -> IResult<(&[u8], usize), T>`, /// /// A partial byte remaining in the input will be ignored and the given parser will start parsing /// at the next full byte. /// /// ``` /// # #[macro_use] extern crate nom; /// # use nom::combinator::rest; /// # use nom::error::ErrorKind; /// # fn main() { /// /// named!( parse<(u8, u8, &[u8])>, bits!( tuple!( /// take_bits!(4u8), /// take_bits!(8u8), /// bytes!(rest::<_, (_, ErrorKind)>) /// ))); /// /// let input = &[0xde, 0xad, 0xbe, 0xaf]; /// /// assert_eq!(parse( input ), Ok(( &[][..], (0xd, 0xea, &[0xbe, 0xaf][..]) ))); /// # } #[macro_export(local_inner_macros)] macro_rules! bytes ( ($i:expr, $submac:ident!( $($args:tt)* )) => ({ $crate::bits::bytesc($i, move |i| { $submac!(i, $($args)*) }) }); ($i:expr, $f:expr) => ( bytes!($i, call!($f)) ); ); /// Consumes the specified number of bits and returns them as the specified type. /// /// Signature: /// `take_bits!(type, count) => ( (&[T], usize), U, usize) -> IResult<(&[T], usize), U>` /// /// ``` /// # #[macro_use] extern crate nom; /// # fn main() { /// named!(bits_pair<(&[u8], usize), (u8, u8)>, pair!( take_bits!(4u8), take_bits!(4u8) ) ); /// named!( take_pair<(u8, u8)>, bits!( bits_pair ) ); /// /// let input = vec![0xAB, 0xCD, 0xEF]; /// let sl = &input[..]; /// /// assert_eq!(take_pair( sl ), Ok((&sl[1..], (0xA, 0xB))) ); /// assert_eq!(take_pair( &sl[1..] ), Ok((&sl[2..], (0xC, 0xD))) ); /// # } /// ``` #[macro_export(local_inner_macros)] macro_rules! take_bits ( ($i:expr, $count:expr) => ( { let res: $crate::IResult<_, _> = $crate::bits::streaming::take($count)($i); res } ); ); /// Matches the given bit pattern. /// /// Signature: /// `tag_bits!(type, count, pattern) => ( (&[T], usize), U, usize, U) -> IResult<(&[T], usize), U>` /// /// The caller must specify the number of bits to consume. The matched value is included in the /// result on success. /// /// ``` /// # #[macro_use] extern crate nom; /// # fn main() { /// named!( take_a, bits!( tag_bits!(4usize, 0xA) ) ); /// /// let input = vec![0xAB, 0xCD, 0xEF]; /// let sl = &input[..]; /// /// assert_eq!(take_a( sl ), Ok((&sl[1..], 0xA)) ); /// # } /// ``` #[macro_export(local_inner_macros)] macro_rules! tag_bits ( ($i:expr, $count:expr, $p: expr) => ( { let res: $crate::IResult<_, _> = $crate::bits::streaming::tag($p, $count)($i); res } ) ); #[cfg(test)] mod tests { use crate::lib::std::ops::{AddAssign, Shl, Shr}; use crate::internal::{Err, Needed, IResult}; use crate::error::ErrorKind; #[test] fn take_bits() { let input = [0b10_10_10_10, 0b11_11_00_00, 0b00_11_00_11]; let sl = &input[..]; assert_eq!(take_bits!((sl, 0), 0u8), Ok(((sl, 0), 0))); assert_eq!(take_bits!((sl, 0), 8u8), Ok(((&sl[1..], 0), 170))); assert_eq!(take_bits!((sl, 0), 3u8), Ok(((&sl[0..], 3), 5))); assert_eq!(take_bits!((sl, 0), 6u8), Ok(((&sl[0..], 6), 42))); assert_eq!(take_bits!((sl, 1), 1u8), Ok(((&sl[0..], 2), 0))); assert_eq!(take_bits!((sl, 1), 2u8), Ok(((&sl[0..], 3), 1))); assert_eq!(take_bits!((sl, 1), 3u8), Ok(((&sl[0..], 4), 2))); assert_eq!(take_bits!((sl, 6), 3u8), Ok(((&sl[1..], 1), 5))); assert_eq!(take_bits!((sl, 0), 10u8), Ok(((&sl[1..], 2), 683))); assert_eq!(take_bits!((sl, 0), 8u8), Ok(((&sl[1..], 0), 170))); assert_eq!(take_bits!((sl, 6), 10u8), Ok(((&sl[2..], 0), 752))); assert_eq!(take_bits!((sl, 6), 11u8), Ok(((&sl[2..], 1), 1504))); assert_eq!(take_bits!((sl, 0), 20u8), Ok(((&sl[2..], 4), 700_163))); assert_eq!(take_bits!((sl, 4), 20u8), Ok(((&sl[3..], 0), 716_851))); let r: IResult<_,u32> = take_bits!((sl, 4), 22u8); assert_eq!( r, Err(Err::Incomplete(Needed::Size(22))) ); } #[test] fn tag_bits() { let input = [0b10_10_10_10, 0b11_11_00_00, 0b00_11_00_11]; let sl = &input[..]; assert_eq!(tag_bits!((sl, 0), 3u8, 0b101), Ok(((&sl[0..], 3), 5))); assert_eq!(tag_bits!((sl, 0), 4u8, 0b1010), Ok(((&sl[0..], 4), 10))); } named!(ch<(&[u8],usize),(u8,u8)>, do_parse!( tag_bits!(3u8, 0b101) >> x: take_bits!(4u8) >> y: take_bits!(5u8) >> (x,y) ) ); #[test] fn chain_bits() { let input = [0b10_10_10_10, 0b11_11_00_00, 0b00_11_00_11]; let sl = &input[..]; assert_eq!(ch((&input[..], 0)), Ok(((&sl[1..], 4), (5, 15)))); assert_eq!(ch((&input[..], 4)), Ok(((&sl[2..], 0), (7, 16)))); assert_eq!(ch((&input[..1], 0)), Err(Err::Incomplete(Needed::Size(5)))); } named!(ch_bytes<(u8, u8)>, bits!(ch)); #[test] fn bits_to_bytes() { let input = [0b10_10_10_10, 0b11_11_00_00, 0b00_11_00_11]; assert_eq!(ch_bytes(&input[..]), Ok((&input[2..], (5, 15)))); assert_eq!(ch_bytes(&input[..1]), Err(Err::Incomplete(Needed::Size(1)))); assert_eq!( ch_bytes(&input[1..]), Err(Err::Error(error_position!(&input[1..], ErrorKind::TagBits))) ); } named!(bits_bytes_bs, bits!(bytes!(crate::combinator::rest::<_, (&[u8], ErrorKind)>))); #[test] fn bits_bytes() { let input = [0b10_10_10_10]; assert_eq!(bits_bytes_bs(&input[..]), Ok((&[][..], &[0b10_10_10_10][..]))); } #[derive(PartialEq, Debug)] struct FakeUint(u32); impl AddAssign for FakeUint { fn add_assign(&mut self, other: FakeUint) { *self = FakeUint(self.0 + other.0); } } impl Shr for FakeUint { type Output = FakeUint; fn shr(self, shift: usize) -> FakeUint { FakeUint(self.0 >> shift) } } impl Shl for FakeUint { type Output = FakeUint; fn shl(self, shift: usize) -> FakeUint { FakeUint(self.0 << shift) } } impl From for FakeUint { fn from(i: u8) -> FakeUint { FakeUint(u32::from(i)) } } #[test] fn non_privitive_type() { let input = [0b10_10_10_10, 0b11_11_00_00, 0b00_11_00_11]; let sl = &input[..]; assert_eq!( take_bits!((sl, 0), 20u8), Ok(((&sl[2..], 4), FakeUint(700_163))) ); assert_eq!( take_bits!((sl, 4), 20u8), Ok(((&sl[3..], 0), FakeUint(716_851))) ); let r3: IResult<_, FakeUint> = take_bits!((sl, 4), 22u8); assert_eq!( r3, Err(Err::Incomplete(Needed::Size(22))) ); } }