#[allow(deprecated, unused_imports)] use std::ascii::AsciiExt; use std::cmp::Ordering::{self, Equal, Greater, Less}; use std::default::Default; use std::fmt; use std::iter::{Product, Sum}; use std::mem; use std::ops::{ Add, AddAssign, BitAnd, BitAndAssign, BitOr, BitOrAssign, BitXor, BitXorAssign, Div, DivAssign, Mul, MulAssign, Neg, Not, Rem, RemAssign, Shl, ShlAssign, Shr, ShrAssign, Sub, SubAssign, }; use std::str::{self, FromStr}; #[cfg(has_i128)] use std::{i128, u128}; use std::{i64, u64}; #[cfg(feature = "serde")] use serde; use integer::{Integer, Roots}; use traits::{ CheckedAdd, CheckedDiv, CheckedMul, CheckedSub, FromPrimitive, Num, One, Pow, Signed, ToPrimitive, Zero, }; use self::Sign::{Minus, NoSign, Plus}; use super::ParseBigIntError; use big_digit::{self, BigDigit, DoubleBigDigit}; use biguint; use biguint::to_str_radix_reversed; use biguint::{BigUint, IntDigits}; use IsizePromotion; use UsizePromotion; #[cfg(feature = "quickcheck")] use quickcheck::{Arbitrary, Gen}; /// A Sign is a `BigInt`'s composing element. #[derive(PartialEq, PartialOrd, Eq, Ord, Copy, Clone, Debug, Hash)] pub enum Sign { Minus, NoSign, Plus, } impl Neg for Sign { type Output = Sign; /// Negate Sign value. #[inline] fn neg(self) -> Sign { match self { Minus => Plus, NoSign => NoSign, Plus => Minus, } } } impl Mul for Sign { type Output = Sign; #[inline] fn mul(self, other: Sign) -> Sign { match (self, other) { (NoSign, _) | (_, NoSign) => NoSign, (Plus, Plus) | (Minus, Minus) => Plus, (Plus, Minus) | (Minus, Plus) => Minus, } } } #[cfg(feature = "serde")] impl serde::Serialize for Sign { fn serialize(&self, serializer: S) -> Result where S: serde::Serializer, { // Note: do not change the serialization format, or it may break // forward and backward compatibility of serialized data! match *self { Sign::Minus => (-1i8).serialize(serializer), Sign::NoSign => 0i8.serialize(serializer), Sign::Plus => 1i8.serialize(serializer), } } } #[cfg(feature = "serde")] impl<'de> serde::Deserialize<'de> for Sign { fn deserialize(deserializer: D) -> Result where D: serde::Deserializer<'de>, { use serde::de::Error; use serde::de::Unexpected; let sign: i8 = serde::Deserialize::deserialize(deserializer)?; match sign { -1 => Ok(Sign::Minus), 0 => Ok(Sign::NoSign), 1 => Ok(Sign::Plus), _ => Err(D::Error::invalid_value( Unexpected::Signed(sign.into()), &"a sign of -1, 0, or 1", )), } } } /// A big signed integer type. #[derive(Clone, Debug, Hash)] pub struct BigInt { sign: Sign, data: BigUint, } #[cfg(feature = "quickcheck")] impl Arbitrary for BigInt { fn arbitrary(g: &mut G) -> Self { let positive = bool::arbitrary(g); let sign = if positive { Sign::Plus } else { Sign::Minus }; Self::from_biguint(sign, BigUint::arbitrary(g)) } #[allow(bare_trait_objects)] // `dyn` needs Rust 1.27 to parse, even when cfg-disabled fn shrink(&self) -> Box> { let sign = self.sign(); let unsigned_shrink = self.data.shrink(); Box::new(unsigned_shrink.map(move |x| BigInt::from_biguint(sign, x))) } } /// Return the magnitude of a `BigInt`. /// /// This is in a private module, pseudo pub(crate) #[cfg(feature = "rand")] pub fn magnitude(i: &BigInt) -> &BigUint { &i.data } /// Return the owned magnitude of a `BigInt`. /// /// This is in a private module, pseudo pub(crate) #[cfg(feature = "rand")] pub fn into_magnitude(i: BigInt) -> BigUint { i.data } impl PartialEq for BigInt { #[inline] fn eq(&self, other: &BigInt) -> bool { self.cmp(other) == Equal } } impl Eq for BigInt {} impl PartialOrd for BigInt { #[inline] fn partial_cmp(&self, other: &BigInt) -> Option { Some(self.cmp(other)) } } impl Ord for BigInt { #[inline] fn cmp(&self, other: &BigInt) -> Ordering { let scmp = self.sign.cmp(&other.sign); if scmp != Equal { return scmp; } match self.sign { NoSign => Equal, Plus => self.data.cmp(&other.data), Minus => other.data.cmp(&self.data), } } } impl Default for BigInt { #[inline] fn default() -> BigInt { Zero::zero() } } impl fmt::Display for BigInt { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { f.pad_integral(!self.is_negative(), "", &self.data.to_str_radix(10)) } } impl fmt::Binary for BigInt { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { f.pad_integral(!self.is_negative(), "0b", &self.data.to_str_radix(2)) } } impl fmt::Octal for BigInt { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { f.pad_integral(!self.is_negative(), "0o", &self.data.to_str_radix(8)) } } impl fmt::LowerHex for BigInt { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { f.pad_integral(!self.is_negative(), "0x", &self.data.to_str_radix(16)) } } impl fmt::UpperHex for BigInt { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { let mut s = self.data.to_str_radix(16); s.make_ascii_uppercase(); f.pad_integral(!self.is_negative(), "0x", &s) } } // Negation in two's complement. // acc must be initialized as 1 for least-significant digit. // // When negating, a carry (acc == 1) means that all the digits // considered to this point were zero. This means that if all the // digits of a negative BigInt have been considered, carry must be // zero as we cannot have negative zero. // // 01 -> ...f ff // ff -> ...f 01 // 01 00 -> ...f ff 00 // 01 01 -> ...f fe ff // 01 ff -> ...f fe 01 // ff 00 -> ...f 01 00 // ff 01 -> ...f 00 ff // ff ff -> ...f 00 01 #[inline] fn negate_carry(a: BigDigit, acc: &mut DoubleBigDigit) -> BigDigit { *acc += DoubleBigDigit::from(!a); let lo = *acc as BigDigit; *acc >>= big_digit::BITS; lo } // !-2 = !...f fe = ...0 01 = +1 // !-1 = !...f ff = ...0 00 = 0 // ! 0 = !...0 00 = ...f ff = -1 // !+1 = !...0 01 = ...f fe = -2 impl Not for BigInt { type Output = BigInt; fn not(mut self) -> BigInt { match self.sign { NoSign | Plus => { self.data += 1u32; self.sign = Minus; } Minus => { self.data -= 1u32; self.sign = if self.data.is_zero() { NoSign } else { Plus }; } } self } } impl<'a> Not for &'a BigInt { type Output = BigInt; fn not(self) -> BigInt { match self.sign { NoSign | Plus => BigInt::from_biguint(Minus, &self.data + 1u32), Minus => BigInt::from_biguint(Plus, &self.data - 1u32), } } } // + 1 & -ff = ...0 01 & ...f 01 = ...0 01 = + 1 // +ff & - 1 = ...0 ff & ...f ff = ...0 ff = +ff // answer is pos, has length of a fn bitand_pos_neg(a: &mut Vec, b: &[BigDigit]) { let mut carry_b = 1; for (ai, &bi) in a.iter_mut().zip(b.iter()) { let twos_b = negate_carry(bi, &mut carry_b); *ai &= twos_b; } debug_assert!(b.len() > a.len() || carry_b == 0); } // - 1 & +ff = ...f ff & ...0 ff = ...0 ff = +ff // -ff & + 1 = ...f 01 & ...0 01 = ...0 01 = + 1 // answer is pos, has length of b fn bitand_neg_pos(a: &mut Vec, b: &[BigDigit]) { let mut carry_a = 1; for (ai, &bi) in a.iter_mut().zip(b.iter()) { let twos_a = negate_carry(*ai, &mut carry_a); *ai = twos_a & bi; } debug_assert!(a.len() > b.len() || carry_a == 0); if a.len() > b.len() { a.truncate(b.len()); } else if b.len() > a.len() { let extra = &b[a.len()..]; a.extend(extra.iter().cloned()); } } // - 1 & -ff = ...f ff & ...f 01 = ...f 01 = - ff // -ff & - 1 = ...f 01 & ...f ff = ...f 01 = - ff // -ff & -fe = ...f 01 & ...f 02 = ...f 00 = -100 // answer is neg, has length of longest with a possible carry fn bitand_neg_neg(a: &mut Vec, b: &[BigDigit]) { let mut carry_a = 1; let mut carry_b = 1; let mut carry_and = 1; for (ai, &bi) in a.iter_mut().zip(b.iter()) { let twos_a = negate_carry(*ai, &mut carry_a); let twos_b = negate_carry(bi, &mut carry_b); *ai = negate_carry(twos_a & twos_b, &mut carry_and); } debug_assert!(a.len() > b.len() || carry_a == 0); debug_assert!(b.len() > a.len() || carry_b == 0); if a.len() > b.len() { for ai in a[b.len()..].iter_mut() { let twos_a = negate_carry(*ai, &mut carry_a); *ai = negate_carry(twos_a, &mut carry_and); } debug_assert!(carry_a == 0); } else if b.len() > a.len() { let extra = &b[a.len()..]; a.extend(extra.iter().map(|&bi| { let twos_b = negate_carry(bi, &mut carry_b); negate_carry(twos_b, &mut carry_and) })); debug_assert!(carry_b == 0); } if carry_and != 0 { a.push(1); } } forward_val_val_binop!(impl BitAnd for BigInt, bitand); forward_ref_val_binop!(impl BitAnd for BigInt, bitand); // do not use forward_ref_ref_binop_commutative! for bitand so that we can // clone as needed, avoiding over-allocation impl<'a, 'b> BitAnd<&'b BigInt> for &'a BigInt { type Output = BigInt; #[inline] fn bitand(self, other: &BigInt) -> BigInt { match (self.sign, other.sign) { (NoSign, _) | (_, NoSign) => BigInt::from_slice(NoSign, &[]), (Plus, Plus) => BigInt::from_biguint(Plus, &self.data & &other.data), (Plus, Minus) => self.clone() & other, (Minus, Plus) => other.clone() & self, (Minus, Minus) => { // forward to val-ref, choosing the larger to clone if self.len() >= other.len() { self.clone() & other } else { other.clone() & self } } } } } impl<'a> BitAnd<&'a BigInt> for BigInt { type Output = BigInt; #[inline] fn bitand(mut self, other: &BigInt) -> BigInt { self &= other; self } } forward_val_assign!(impl BitAndAssign for BigInt, bitand_assign); impl<'a> BitAndAssign<&'a BigInt> for BigInt { fn bitand_assign(&mut self, other: &BigInt) { match (self.sign, other.sign) { (NoSign, _) => {} (_, NoSign) => self.assign_from_slice(NoSign, &[]), (Plus, Plus) => { self.data &= &other.data; if self.data.is_zero() { self.sign = NoSign; } } (Plus, Minus) => { bitand_pos_neg(self.digits_mut(), other.digits()); self.normalize(); } (Minus, Plus) => { bitand_neg_pos(self.digits_mut(), other.digits()); self.sign = Plus; self.normalize(); } (Minus, Minus) => { bitand_neg_neg(self.digits_mut(), other.digits()); self.normalize(); } } } } // + 1 | -ff = ...0 01 | ...f 01 = ...f 01 = -ff // +ff | - 1 = ...0 ff | ...f ff = ...f ff = - 1 // answer is neg, has length of b fn bitor_pos_neg(a: &mut Vec, b: &[BigDigit]) { let mut carry_b = 1; let mut carry_or = 1; for (ai, &bi) in a.iter_mut().zip(b.iter()) { let twos_b = negate_carry(bi, &mut carry_b); *ai = negate_carry(*ai | twos_b, &mut carry_or); } debug_assert!(b.len() > a.len() || carry_b == 0); if a.len() > b.len() { a.truncate(b.len()); } else if b.len() > a.len() { let extra = &b[a.len()..]; a.extend(extra.iter().map(|&bi| { let twos_b = negate_carry(bi, &mut carry_b); negate_carry(twos_b, &mut carry_or) })); debug_assert!(carry_b == 0); } // for carry_or to be non-zero, we would need twos_b == 0 debug_assert!(carry_or == 0); } // - 1 | +ff = ...f ff | ...0 ff = ...f ff = - 1 // -ff | + 1 = ...f 01 | ...0 01 = ...f 01 = -ff // answer is neg, has length of a fn bitor_neg_pos(a: &mut Vec, b: &[BigDigit]) { let mut carry_a = 1; let mut carry_or = 1; for (ai, &bi) in a.iter_mut().zip(b.iter()) { let twos_a = negate_carry(*ai, &mut carry_a); *ai = negate_carry(twos_a | bi, &mut carry_or); } debug_assert!(a.len() > b.len() || carry_a == 0); if a.len() > b.len() { for ai in a[b.len()..].iter_mut() { let twos_a = negate_carry(*ai, &mut carry_a); *ai = negate_carry(twos_a, &mut carry_or); } debug_assert!(carry_a == 0); } // for carry_or to be non-zero, we would need twos_a == 0 debug_assert!(carry_or == 0); } // - 1 | -ff = ...f ff | ...f 01 = ...f ff = -1 // -ff | - 1 = ...f 01 | ...f ff = ...f ff = -1 // answer is neg, has length of shortest fn bitor_neg_neg(a: &mut Vec, b: &[BigDigit]) { let mut carry_a = 1; let mut carry_b = 1; let mut carry_or = 1; for (ai, &bi) in a.iter_mut().zip(b.iter()) { let twos_a = negate_carry(*ai, &mut carry_a); let twos_b = negate_carry(bi, &mut carry_b); *ai = negate_carry(twos_a | twos_b, &mut carry_or); } debug_assert!(a.len() > b.len() || carry_a == 0); debug_assert!(b.len() > a.len() || carry_b == 0); if a.len() > b.len() { a.truncate(b.len()); } // for carry_or to be non-zero, we would need twos_a == 0 or twos_b == 0 debug_assert!(carry_or == 0); } forward_val_val_binop!(impl BitOr for BigInt, bitor); forward_ref_val_binop!(impl BitOr for BigInt, bitor); // do not use forward_ref_ref_binop_commutative! for bitor so that we can // clone as needed, avoiding over-allocation impl<'a, 'b> BitOr<&'b BigInt> for &'a BigInt { type Output = BigInt; #[inline] fn bitor(self, other: &BigInt) -> BigInt { match (self.sign, other.sign) { (NoSign, _) => other.clone(), (_, NoSign) => self.clone(), (Plus, Plus) => BigInt::from_biguint(Plus, &self.data | &other.data), (Plus, Minus) => other.clone() | self, (Minus, Plus) => self.clone() | other, (Minus, Minus) => { // forward to val-ref, choosing the smaller to clone if self.len() <= other.len() { self.clone() | other } else { other.clone() | self } } } } } impl<'a> BitOr<&'a BigInt> for BigInt { type Output = BigInt; #[inline] fn bitor(mut self, other: &BigInt) -> BigInt { self |= other; self } } forward_val_assign!(impl BitOrAssign for BigInt, bitor_assign); impl<'a> BitOrAssign<&'a BigInt> for BigInt { fn bitor_assign(&mut self, other: &BigInt) { match (self.sign, other.sign) { (_, NoSign) => {} (NoSign, _) => self.assign_from_slice(other.sign, other.digits()), (Plus, Plus) => self.data |= &other.data, (Plus, Minus) => { bitor_pos_neg(self.digits_mut(), other.digits()); self.sign = Minus; self.normalize(); } (Minus, Plus) => { bitor_neg_pos(self.digits_mut(), other.digits()); self.normalize(); } (Minus, Minus) => { bitor_neg_neg(self.digits_mut(), other.digits()); self.normalize(); } } } } // + 1 ^ -ff = ...0 01 ^ ...f 01 = ...f 00 = -100 // +ff ^ - 1 = ...0 ff ^ ...f ff = ...f 00 = -100 // answer is neg, has length of longest with a possible carry fn bitxor_pos_neg(a: &mut Vec, b: &[BigDigit]) { let mut carry_b = 1; let mut carry_xor = 1; for (ai, &bi) in a.iter_mut().zip(b.iter()) { let twos_b = negate_carry(bi, &mut carry_b); *ai = negate_carry(*ai ^ twos_b, &mut carry_xor); } debug_assert!(b.len() > a.len() || carry_b == 0); if a.len() > b.len() { for ai in a[b.len()..].iter_mut() { let twos_b = !0; *ai = negate_carry(*ai ^ twos_b, &mut carry_xor); } } else if b.len() > a.len() { let extra = &b[a.len()..]; a.extend(extra.iter().map(|&bi| { let twos_b = negate_carry(bi, &mut carry_b); negate_carry(twos_b, &mut carry_xor) })); debug_assert!(carry_b == 0); } if carry_xor != 0 { a.push(1); } } // - 1 ^ +ff = ...f ff ^ ...0 ff = ...f 00 = -100 // -ff ^ + 1 = ...f 01 ^ ...0 01 = ...f 00 = -100 // answer is neg, has length of longest with a possible carry fn bitxor_neg_pos(a: &mut Vec, b: &[BigDigit]) { let mut carry_a = 1; let mut carry_xor = 1; for (ai, &bi) in a.iter_mut().zip(b.iter()) { let twos_a = negate_carry(*ai, &mut carry_a); *ai = negate_carry(twos_a ^ bi, &mut carry_xor); } debug_assert!(a.len() > b.len() || carry_a == 0); if a.len() > b.len() { for ai in a[b.len()..].iter_mut() { let twos_a = negate_carry(*ai, &mut carry_a); *ai = negate_carry(twos_a, &mut carry_xor); } debug_assert!(carry_a == 0); } else if b.len() > a.len() { let extra = &b[a.len()..]; a.extend(extra.iter().map(|&bi| { let twos_a = !0; negate_carry(twos_a ^ bi, &mut carry_xor) })); } if carry_xor != 0 { a.push(1); } } // - 1 ^ -ff = ...f ff ^ ...f 01 = ...0 fe = +fe // -ff & - 1 = ...f 01 ^ ...f ff = ...0 fe = +fe // answer is pos, has length of longest fn bitxor_neg_neg(a: &mut Vec, b: &[BigDigit]) { let mut carry_a = 1; let mut carry_b = 1; for (ai, &bi) in a.iter_mut().zip(b.iter()) { let twos_a = negate_carry(*ai, &mut carry_a); let twos_b = negate_carry(bi, &mut carry_b); *ai = twos_a ^ twos_b; } debug_assert!(a.len() > b.len() || carry_a == 0); debug_assert!(b.len() > a.len() || carry_b == 0); if a.len() > b.len() { for ai in a[b.len()..].iter_mut() { let twos_a = negate_carry(*ai, &mut carry_a); let twos_b = !0; *ai = twos_a ^ twos_b; } debug_assert!(carry_a == 0); } else if b.len() > a.len() { let extra = &b[a.len()..]; a.extend(extra.iter().map(|&bi| { let twos_a = !0; let twos_b = negate_carry(bi, &mut carry_b); twos_a ^ twos_b })); debug_assert!(carry_b == 0); } } forward_all_binop_to_val_ref_commutative!(impl BitXor for BigInt, bitxor); impl<'a> BitXor<&'a BigInt> for BigInt { type Output = BigInt; #[inline] fn bitxor(mut self, other: &BigInt) -> BigInt { self ^= other; self } } forward_val_assign!(impl BitXorAssign for BigInt, bitxor_assign); impl<'a> BitXorAssign<&'a BigInt> for BigInt { fn bitxor_assign(&mut self, other: &BigInt) { match (self.sign, other.sign) { (_, NoSign) => {} (NoSign, _) => self.assign_from_slice(other.sign, other.digits()), (Plus, Plus) => { self.data ^= &other.data; if self.data.is_zero() { self.sign = NoSign; } } (Plus, Minus) => { bitxor_pos_neg(self.digits_mut(), other.digits()); self.sign = Minus; self.normalize(); } (Minus, Plus) => { bitxor_neg_pos(self.digits_mut(), other.digits()); self.normalize(); } (Minus, Minus) => { bitxor_neg_neg(self.digits_mut(), other.digits()); self.sign = Plus; self.normalize(); } } } } impl FromStr for BigInt { type Err = ParseBigIntError; #[inline] fn from_str(s: &str) -> Result { BigInt::from_str_radix(s, 10) } } impl Num for BigInt { type FromStrRadixErr = ParseBigIntError; /// Creates and initializes a BigInt. #[inline] fn from_str_radix(mut s: &str, radix: u32) -> Result { let sign = if s.starts_with('-') { let tail = &s[1..]; if !tail.starts_with('+') { s = tail } Minus } else { Plus }; let bu = BigUint::from_str_radix(s, radix)?; Ok(BigInt::from_biguint(sign, bu)) } } impl Shl for BigInt { type Output = BigInt; #[inline] fn shl(mut self, rhs: usize) -> BigInt { self <<= rhs; self } } impl<'a> Shl for &'a BigInt { type Output = BigInt; #[inline] fn shl(self, rhs: usize) -> BigInt { BigInt::from_biguint(self.sign, &self.data << rhs) } } impl ShlAssign for BigInt { #[inline] fn shl_assign(&mut self, rhs: usize) { self.data <<= rhs; } } // Negative values need a rounding adjustment if there are any ones in the // bits that are getting shifted out. fn shr_round_down(i: &BigInt, rhs: usize) -> bool { i.is_negative() && biguint::trailing_zeros(&i.data) .map(|n| n < rhs) .unwrap_or(false) } impl Shr for BigInt { type Output = BigInt; #[inline] fn shr(mut self, rhs: usize) -> BigInt { self >>= rhs; self } } impl<'a> Shr for &'a BigInt { type Output = BigInt; #[inline] fn shr(self, rhs: usize) -> BigInt { let round_down = shr_round_down(self, rhs); let data = &self.data >> rhs; BigInt::from_biguint(self.sign, if round_down { data + 1u8 } else { data }) } } impl ShrAssign for BigInt { #[inline] fn shr_assign(&mut self, rhs: usize) { let round_down = shr_round_down(self, rhs); self.data >>= rhs; if round_down { self.data += 1u8; } else if self.data.is_zero() { self.sign = NoSign; } } } impl Zero for BigInt { #[inline] fn zero() -> BigInt { BigInt::from_biguint(NoSign, Zero::zero()) } #[inline] fn set_zero(&mut self) { self.data.set_zero(); self.sign = NoSign; } #[inline] fn is_zero(&self) -> bool { self.sign == NoSign } } impl One for BigInt { #[inline] fn one() -> BigInt { BigInt::from_biguint(Plus, One::one()) } #[inline] fn set_one(&mut self) { self.data.set_one(); self.sign = Plus; } #[inline] fn is_one(&self) -> bool { self.sign == Plus && self.data.is_one() } } impl Signed for BigInt { #[inline] fn abs(&self) -> BigInt { match self.sign { Plus | NoSign => self.clone(), Minus => BigInt::from_biguint(Plus, self.data.clone()), } } #[inline] fn abs_sub(&self, other: &BigInt) -> BigInt { if *self <= *other { Zero::zero() } else { self - other } } #[inline] fn signum(&self) -> BigInt { match self.sign { Plus => BigInt::from_biguint(Plus, One::one()), Minus => BigInt::from_biguint(Minus, One::one()), NoSign => Zero::zero(), } } #[inline] fn is_positive(&self) -> bool { self.sign == Plus } #[inline] fn is_negative(&self) -> bool { self.sign == Minus } } /// Help function for pow /// /// Computes the effect of the exponent on the sign. #[inline] fn powsign(sign: Sign, other: &T) -> Sign { if other.is_zero() { Plus } else if sign != Minus { sign } else if other.is_odd() { sign } else { -sign } } macro_rules! pow_impl { ($T:ty) => { impl<'a> Pow<$T> for &'a BigInt { type Output = BigInt; #[inline] fn pow(self, rhs: $T) -> BigInt { BigInt::from_biguint(powsign(self.sign, &rhs), (&self.data).pow(rhs)) } } impl<'a, 'b> Pow<&'b $T> for &'a BigInt { type Output = BigInt; #[inline] fn pow(self, rhs: &$T) -> BigInt { BigInt::from_biguint(powsign(self.sign, rhs), (&self.data).pow(rhs)) } } }; } pow_impl!(u8); pow_impl!(u16); pow_impl!(u32); pow_impl!(u64); pow_impl!(usize); #[cfg(has_i128)] pow_impl!(u128); pow_impl!(BigUint); // A convenience method for getting the absolute value of an i32 in a u32. #[inline] fn i32_abs_as_u32(a: i32) -> u32 { if a == i32::min_value() { a as u32 } else { a.abs() as u32 } } // A convenience method for getting the absolute value of an i64 in a u64. #[inline] fn i64_abs_as_u64(a: i64) -> u64 { if a == i64::min_value() { a as u64 } else { a.abs() as u64 } } // A convenience method for getting the absolute value of an i128 in a u128. #[cfg(has_i128)] #[inline] fn i128_abs_as_u128(a: i128) -> u128 { if a == i128::min_value() { a as u128 } else { a.abs() as u128 } } // We want to forward to BigUint::add, but it's not clear how that will go until // we compare both sign and magnitude. So we duplicate this body for every // val/ref combination, deferring that decision to BigUint's own forwarding. macro_rules! bigint_add { ($a:expr, $a_owned:expr, $a_data:expr, $b:expr, $b_owned:expr, $b_data:expr) => { match ($a.sign, $b.sign) { (_, NoSign) => $a_owned, (NoSign, _) => $b_owned, // same sign => keep the sign with the sum of magnitudes (Plus, Plus) | (Minus, Minus) => BigInt::from_biguint($a.sign, $a_data + $b_data), // opposite signs => keep the sign of the larger with the difference of magnitudes (Plus, Minus) | (Minus, Plus) => match $a.data.cmp(&$b.data) { Less => BigInt::from_biguint($b.sign, $b_data - $a_data), Greater => BigInt::from_biguint($a.sign, $a_data - $b_data), Equal => Zero::zero(), }, } }; } impl<'a, 'b> Add<&'b BigInt> for &'a BigInt { type Output = BigInt; #[inline] fn add(self, other: &BigInt) -> BigInt { bigint_add!( self, self.clone(), &self.data, other, other.clone(), &other.data ) } } impl<'a> Add for &'a BigInt { type Output = BigInt; #[inline] fn add(self, other: BigInt) -> BigInt { bigint_add!(self, self.clone(), &self.data, other, other, other.data) } } impl<'a> Add<&'a BigInt> for BigInt { type Output = BigInt; #[inline] fn add(self, other: &BigInt) -> BigInt { bigint_add!(self, self, self.data, other, other.clone(), &other.data) } } impl Add for BigInt { type Output = BigInt; #[inline] fn add(self, other: BigInt) -> BigInt { bigint_add!(self, self, self.data, other, other, other.data) } } impl<'a> AddAssign<&'a BigInt> for BigInt { #[inline] fn add_assign(&mut self, other: &BigInt) { let n = mem::replace(self, BigInt::zero()); *self = n + other; } } forward_val_assign!(impl AddAssign for BigInt, add_assign); promote_all_scalars!(impl Add for BigInt, add); promote_all_scalars_assign!(impl AddAssign for BigInt, add_assign); forward_all_scalar_binop_to_val_val_commutative!(impl Add for BigInt, add); forward_all_scalar_binop_to_val_val_commutative!(impl Add for BigInt, add); #[cfg(has_i128)] forward_all_scalar_binop_to_val_val_commutative!(impl Add for BigInt, add); impl Add for BigInt { type Output = BigInt; #[inline] fn add(self, other: u32) -> BigInt { match self.sign { NoSign => From::from(other), Plus => BigInt::from_biguint(Plus, self.data + other), Minus => match self.data.cmp(&From::from(other)) { Equal => Zero::zero(), Less => BigInt::from_biguint(Plus, other - self.data), Greater => BigInt::from_biguint(Minus, self.data - other), }, } } } impl AddAssign for BigInt { #[inline] fn add_assign(&mut self, other: u32) { let n = mem::replace(self, BigInt::zero()); *self = n + other; } } impl Add for BigInt { type Output = BigInt; #[inline] fn add(self, other: u64) -> BigInt { match self.sign { NoSign => From::from(other), Plus => BigInt::from_biguint(Plus, self.data + other), Minus => match self.data.cmp(&From::from(other)) { Equal => Zero::zero(), Less => BigInt::from_biguint(Plus, other - self.data), Greater => BigInt::from_biguint(Minus, self.data - other), }, } } } impl AddAssign for BigInt { #[inline] fn add_assign(&mut self, other: u64) { let n = mem::replace(self, BigInt::zero()); *self = n + other; } } #[cfg(has_i128)] impl Add for BigInt { type Output = BigInt; #[inline] fn add(self, other: u128) -> BigInt { match self.sign { NoSign => From::from(other), Plus => BigInt::from_biguint(Plus, self.data + other), Minus => match self.data.cmp(&From::from(other)) { Equal => Zero::zero(), Less => BigInt::from_biguint(Plus, other - self.data), Greater => BigInt::from_biguint(Minus, self.data - other), }, } } } #[cfg(has_i128)] impl AddAssign for BigInt { #[inline] fn add_assign(&mut self, other: u128) { let n = mem::replace(self, BigInt::zero()); *self = n + other; } } forward_all_scalar_binop_to_val_val_commutative!(impl Add for BigInt, add); forward_all_scalar_binop_to_val_val_commutative!(impl Add for BigInt, add); #[cfg(has_i128)] forward_all_scalar_binop_to_val_val_commutative!(impl Add for BigInt, add); impl Add for BigInt { type Output = BigInt; #[inline] fn add(self, other: i32) -> BigInt { if other >= 0 { self + other as u32 } else { self - i32_abs_as_u32(other) } } } impl AddAssign for BigInt { #[inline] fn add_assign(&mut self, other: i32) { if other >= 0 { *self += other as u32; } else { *self -= i32_abs_as_u32(other); } } } impl Add for BigInt { type Output = BigInt; #[inline] fn add(self, other: i64) -> BigInt { if other >= 0 { self + other as u64 } else { self - i64_abs_as_u64(other) } } } impl AddAssign for BigInt { #[inline] fn add_assign(&mut self, other: i64) { if other >= 0 { *self += other as u64; } else { *self -= i64_abs_as_u64(other); } } } #[cfg(has_i128)] impl Add for BigInt { type Output = BigInt; #[inline] fn add(self, other: i128) -> BigInt { if other >= 0 { self + other as u128 } else { self - i128_abs_as_u128(other) } } } #[cfg(has_i128)] impl AddAssign for BigInt { #[inline] fn add_assign(&mut self, other: i128) { if other >= 0 { *self += other as u128; } else { *self -= i128_abs_as_u128(other); } } } // We want to forward to BigUint::sub, but it's not clear how that will go until // we compare both sign and magnitude. So we duplicate this body for every // val/ref combination, deferring that decision to BigUint's own forwarding. macro_rules! bigint_sub { ($a:expr, $a_owned:expr, $a_data:expr, $b:expr, $b_owned:expr, $b_data:expr) => { match ($a.sign, $b.sign) { (_, NoSign) => $a_owned, (NoSign, _) => -$b_owned, // opposite signs => keep the sign of the left with the sum of magnitudes (Plus, Minus) | (Minus, Plus) => BigInt::from_biguint($a.sign, $a_data + $b_data), // same sign => keep or toggle the sign of the left with the difference of magnitudes (Plus, Plus) | (Minus, Minus) => match $a.data.cmp(&$b.data) { Less => BigInt::from_biguint(-$a.sign, $b_data - $a_data), Greater => BigInt::from_biguint($a.sign, $a_data - $b_data), Equal => Zero::zero(), }, } }; } impl<'a, 'b> Sub<&'b BigInt> for &'a BigInt { type Output = BigInt; #[inline] fn sub(self, other: &BigInt) -> BigInt { bigint_sub!( self, self.clone(), &self.data, other, other.clone(), &other.data ) } } impl<'a> Sub for &'a BigInt { type Output = BigInt; #[inline] fn sub(self, other: BigInt) -> BigInt { bigint_sub!(self, self.clone(), &self.data, other, other, other.data) } } impl<'a> Sub<&'a BigInt> for BigInt { type Output = BigInt; #[inline] fn sub(self, other: &BigInt) -> BigInt { bigint_sub!(self, self, self.data, other, other.clone(), &other.data) } } impl Sub for BigInt { type Output = BigInt; #[inline] fn sub(self, other: BigInt) -> BigInt { bigint_sub!(self, self, self.data, other, other, other.data) } } impl<'a> SubAssign<&'a BigInt> for BigInt { #[inline] fn sub_assign(&mut self, other: &BigInt) { let n = mem::replace(self, BigInt::zero()); *self = n - other; } } forward_val_assign!(impl SubAssign for BigInt, sub_assign); promote_all_scalars!(impl Sub for BigInt, sub); promote_all_scalars_assign!(impl SubAssign for BigInt, sub_assign); forward_all_scalar_binop_to_val_val!(impl Sub for BigInt, sub); forward_all_scalar_binop_to_val_val!(impl Sub for BigInt, sub); #[cfg(has_i128)] forward_all_scalar_binop_to_val_val!(impl Sub for BigInt, sub); impl Sub for BigInt { type Output = BigInt; #[inline] fn sub(self, other: u32) -> BigInt { match self.sign { NoSign => BigInt::from_biguint(Minus, From::from(other)), Minus => BigInt::from_biguint(Minus, self.data + other), Plus => match self.data.cmp(&From::from(other)) { Equal => Zero::zero(), Greater => BigInt::from_biguint(Plus, self.data - other), Less => BigInt::from_biguint(Minus, other - self.data), }, } } } impl SubAssign for BigInt { #[inline] fn sub_assign(&mut self, other: u32) { let n = mem::replace(self, BigInt::zero()); *self = n - other; } } impl Sub for u32 { type Output = BigInt; #[inline] fn sub(self, other: BigInt) -> BigInt { -(other - self) } } impl Sub for u64 { type Output = BigInt; #[inline] fn sub(self, other: BigInt) -> BigInt { -(other - self) } } #[cfg(has_i128)] impl Sub for u128 { type Output = BigInt; #[inline] fn sub(self, other: BigInt) -> BigInt { -(other - self) } } impl Sub for BigInt { type Output = BigInt; #[inline] fn sub(self, other: u64) -> BigInt { match self.sign { NoSign => BigInt::from_biguint(Minus, From::from(other)), Minus => BigInt::from_biguint(Minus, self.data + other), Plus => match self.data.cmp(&From::from(other)) { Equal => Zero::zero(), Greater => BigInt::from_biguint(Plus, self.data - other), Less => BigInt::from_biguint(Minus, other - self.data), }, } } } impl SubAssign for BigInt { #[inline] fn sub_assign(&mut self, other: u64) { let n = mem::replace(self, BigInt::zero()); *self = n - other; } } #[cfg(has_i128)] impl Sub for BigInt { type Output = BigInt; #[inline] fn sub(self, other: u128) -> BigInt { match self.sign { NoSign => BigInt::from_biguint(Minus, From::from(other)), Minus => BigInt::from_biguint(Minus, self.data + other), Plus => match self.data.cmp(&From::from(other)) { Equal => Zero::zero(), Greater => BigInt::from_biguint(Plus, self.data - other), Less => BigInt::from_biguint(Minus, other - self.data), }, } } } #[cfg(has_i128)] impl SubAssign for BigInt { #[inline] fn sub_assign(&mut self, other: u128) { let n = mem::replace(self, BigInt::zero()); *self = n - other; } } forward_all_scalar_binop_to_val_val!(impl Sub for BigInt, sub); forward_all_scalar_binop_to_val_val!(impl Sub for BigInt, sub); #[cfg(has_i128)] forward_all_scalar_binop_to_val_val!(impl Sub for BigInt, sub); impl Sub for BigInt { type Output = BigInt; #[inline] fn sub(self, other: i32) -> BigInt { if other >= 0 { self - other as u32 } else { self + i32_abs_as_u32(other) } } } impl SubAssign for BigInt { #[inline] fn sub_assign(&mut self, other: i32) { if other >= 0 { *self -= other as u32; } else { *self += i32_abs_as_u32(other); } } } impl Sub for i32 { type Output = BigInt; #[inline] fn sub(self, other: BigInt) -> BigInt { if self >= 0 { self as u32 - other } else { -other - i32_abs_as_u32(self) } } } impl Sub for BigInt { type Output = BigInt; #[inline] fn sub(self, other: i64) -> BigInt { if other >= 0 { self - other as u64 } else { self + i64_abs_as_u64(other) } } } impl SubAssign for BigInt { #[inline] fn sub_assign(&mut self, other: i64) { if other >= 0 { *self -= other as u64; } else { *self += i64_abs_as_u64(other); } } } impl Sub for i64 { type Output = BigInt; #[inline] fn sub(self, other: BigInt) -> BigInt { if self >= 0 { self as u64 - other } else { -other - i64_abs_as_u64(self) } } } #[cfg(has_i128)] impl Sub for BigInt { type Output = BigInt; #[inline] fn sub(self, other: i128) -> BigInt { if other >= 0 { self - other as u128 } else { self + i128_abs_as_u128(other) } } } #[cfg(has_i128)] impl SubAssign for BigInt { #[inline] fn sub_assign(&mut self, other: i128) { if other >= 0 { *self -= other as u128; } else { *self += i128_abs_as_u128(other); } } } #[cfg(has_i128)] impl Sub for i128 { type Output = BigInt; #[inline] fn sub(self, other: BigInt) -> BigInt { if self >= 0 { self as u128 - other } else { -other - i128_abs_as_u128(self) } } } forward_all_binop_to_ref_ref!(impl Mul for BigInt, mul); impl<'a, 'b> Mul<&'b BigInt> for &'a BigInt { type Output = BigInt; #[inline] fn mul(self, other: &BigInt) -> BigInt { BigInt::from_biguint(self.sign * other.sign, &self.data * &other.data) } } impl<'a> MulAssign<&'a BigInt> for BigInt { #[inline] fn mul_assign(&mut self, other: &BigInt) { *self = &*self * other; } } forward_val_assign!(impl MulAssign for BigInt, mul_assign); promote_all_scalars!(impl Mul for BigInt, mul); promote_all_scalars_assign!(impl MulAssign for BigInt, mul_assign); forward_all_scalar_binop_to_val_val_commutative!(impl Mul for BigInt, mul); forward_all_scalar_binop_to_val_val_commutative!(impl Mul for BigInt, mul); #[cfg(has_i128)] forward_all_scalar_binop_to_val_val_commutative!(impl Mul for BigInt, mul); impl Mul for BigInt { type Output = BigInt; #[inline] fn mul(self, other: u32) -> BigInt { BigInt::from_biguint(self.sign, self.data * other) } } impl MulAssign for BigInt { #[inline] fn mul_assign(&mut self, other: u32) { self.data *= other; if self.data.is_zero() { self.sign = NoSign; } } } impl Mul for BigInt { type Output = BigInt; #[inline] fn mul(self, other: u64) -> BigInt { BigInt::from_biguint(self.sign, self.data * other) } } impl MulAssign for BigInt { #[inline] fn mul_assign(&mut self, other: u64) { self.data *= other; if self.data.is_zero() { self.sign = NoSign; } } } #[cfg(has_i128)] impl Mul for BigInt { type Output = BigInt; #[inline] fn mul(self, other: u128) -> BigInt { BigInt::from_biguint(self.sign, self.data * other) } } #[cfg(has_i128)] impl MulAssign for BigInt { #[inline] fn mul_assign(&mut self, other: u128) { self.data *= other; if self.data.is_zero() { self.sign = NoSign; } } } forward_all_scalar_binop_to_val_val_commutative!(impl Mul for BigInt, mul); forward_all_scalar_binop_to_val_val_commutative!(impl Mul for BigInt, mul); #[cfg(has_i128)] forward_all_scalar_binop_to_val_val_commutative!(impl Mul for BigInt, mul); impl Mul for BigInt { type Output = BigInt; #[inline] fn mul(self, other: i32) -> BigInt { if other >= 0 { self * other as u32 } else { -(self * i32_abs_as_u32(other)) } } } impl MulAssign for BigInt { #[inline] fn mul_assign(&mut self, other: i32) { if other >= 0 { *self *= other as u32; } else { self.sign = -self.sign; *self *= i32_abs_as_u32(other); } } } impl Mul for BigInt { type Output = BigInt; #[inline] fn mul(self, other: i64) -> BigInt { if other >= 0 { self * other as u64 } else { -(self * i64_abs_as_u64(other)) } } } impl MulAssign for BigInt { #[inline] fn mul_assign(&mut self, other: i64) { if other >= 0 { *self *= other as u64; } else { self.sign = -self.sign; *self *= i64_abs_as_u64(other); } } } #[cfg(has_i128)] impl Mul for BigInt { type Output = BigInt; #[inline] fn mul(self, other: i128) -> BigInt { if other >= 0 { self * other as u128 } else { -(self * i128_abs_as_u128(other)) } } } #[cfg(has_i128)] impl MulAssign for BigInt { #[inline] fn mul_assign(&mut self, other: i128) { if other >= 0 { *self *= other as u128; } else { self.sign = -self.sign; *self *= i128_abs_as_u128(other); } } } forward_all_binop_to_ref_ref!(impl Div for BigInt, div); impl<'a, 'b> Div<&'b BigInt> for &'a BigInt { type Output = BigInt; #[inline] fn div(self, other: &BigInt) -> BigInt { let (q, _) = self.div_rem(other); q } } impl<'a> DivAssign<&'a BigInt> for BigInt { #[inline] fn div_assign(&mut self, other: &BigInt) { *self = &*self / other; } } forward_val_assign!(impl DivAssign for BigInt, div_assign); promote_all_scalars!(impl Div for BigInt, div); promote_all_scalars_assign!(impl DivAssign for BigInt, div_assign); forward_all_scalar_binop_to_val_val!(impl Div for BigInt, div); forward_all_scalar_binop_to_val_val!(impl Div for BigInt, div); #[cfg(has_i128)] forward_all_scalar_binop_to_val_val!(impl Div for BigInt, div); impl Div for BigInt { type Output = BigInt; #[inline] fn div(self, other: u32) -> BigInt { BigInt::from_biguint(self.sign, self.data / other) } } impl DivAssign for BigInt { #[inline] fn div_assign(&mut self, other: u32) { self.data /= other; if self.data.is_zero() { self.sign = NoSign; } } } impl Div for u32 { type Output = BigInt; #[inline] fn div(self, other: BigInt) -> BigInt { BigInt::from_biguint(other.sign, self / other.data) } } impl Div for BigInt { type Output = BigInt; #[inline] fn div(self, other: u64) -> BigInt { BigInt::from_biguint(self.sign, self.data / other) } } impl DivAssign for BigInt { #[inline] fn div_assign(&mut self, other: u64) { self.data /= other; if self.data.is_zero() { self.sign = NoSign; } } } impl Div for u64 { type Output = BigInt; #[inline] fn div(self, other: BigInt) -> BigInt { BigInt::from_biguint(other.sign, self / other.data) } } #[cfg(has_i128)] impl Div for BigInt { type Output = BigInt; #[inline] fn div(self, other: u128) -> BigInt { BigInt::from_biguint(self.sign, self.data / other) } } #[cfg(has_i128)] impl DivAssign for BigInt { #[inline] fn div_assign(&mut self, other: u128) { self.data /= other; if self.data.is_zero() { self.sign = NoSign; } } } #[cfg(has_i128)] impl Div for u128 { type Output = BigInt; #[inline] fn div(self, other: BigInt) -> BigInt { BigInt::from_biguint(other.sign, self / other.data) } } forward_all_scalar_binop_to_val_val!(impl Div for BigInt, div); forward_all_scalar_binop_to_val_val!(impl Div for BigInt, div); #[cfg(has_i128)] forward_all_scalar_binop_to_val_val!(impl Div for BigInt, div); impl Div for BigInt { type Output = BigInt; #[inline] fn div(self, other: i32) -> BigInt { if other >= 0 { self / other as u32 } else { -(self / i32_abs_as_u32(other)) } } } impl DivAssign for BigInt { #[inline] fn div_assign(&mut self, other: i32) { if other >= 0 { *self /= other as u32; } else { self.sign = -self.sign; *self /= i32_abs_as_u32(other); } } } impl Div for i32 { type Output = BigInt; #[inline] fn div(self, other: BigInt) -> BigInt { if self >= 0 { self as u32 / other } else { -(i32_abs_as_u32(self) / other) } } } impl Div for BigInt { type Output = BigInt; #[inline] fn div(self, other: i64) -> BigInt { if other >= 0 { self / other as u64 } else { -(self / i64_abs_as_u64(other)) } } } impl DivAssign for BigInt { #[inline] fn div_assign(&mut self, other: i64) { if other >= 0 { *self /= other as u64; } else { self.sign = -self.sign; *self /= i64_abs_as_u64(other); } } } impl Div for i64 { type Output = BigInt; #[inline] fn div(self, other: BigInt) -> BigInt { if self >= 0 { self as u64 / other } else { -(i64_abs_as_u64(self) / other) } } } #[cfg(has_i128)] impl Div for BigInt { type Output = BigInt; #[inline] fn div(self, other: i128) -> BigInt { if other >= 0 { self / other as u128 } else { -(self / i128_abs_as_u128(other)) } } } #[cfg(has_i128)] impl DivAssign for BigInt { #[inline] fn div_assign(&mut self, other: i128) { if other >= 0 { *self /= other as u128; } else { self.sign = -self.sign; *self /= i128_abs_as_u128(other); } } } #[cfg(has_i128)] impl Div for i128 { type Output = BigInt; #[inline] fn div(self, other: BigInt) -> BigInt { if self >= 0 { self as u128 / other } else { -(i128_abs_as_u128(self) / other) } } } forward_all_binop_to_ref_ref!(impl Rem for BigInt, rem); impl<'a, 'b> Rem<&'b BigInt> for &'a BigInt { type Output = BigInt; #[inline] fn rem(self, other: &BigInt) -> BigInt { let (_, r) = self.div_rem(other); r } } impl<'a> RemAssign<&'a BigInt> for BigInt { #[inline] fn rem_assign(&mut self, other: &BigInt) { *self = &*self % other; } } forward_val_assign!(impl RemAssign for BigInt, rem_assign); promote_all_scalars!(impl Rem for BigInt, rem); promote_all_scalars_assign!(impl RemAssign for BigInt, rem_assign); forward_all_scalar_binop_to_val_val!(impl Rem for BigInt, rem); forward_all_scalar_binop_to_val_val!(impl Rem for BigInt, rem); #[cfg(has_i128)] forward_all_scalar_binop_to_val_val!(impl Rem for BigInt, rem); impl Rem for BigInt { type Output = BigInt; #[inline] fn rem(self, other: u32) -> BigInt { BigInt::from_biguint(self.sign, self.data % other) } } impl RemAssign for BigInt { #[inline] fn rem_assign(&mut self, other: u32) { self.data %= other; if self.data.is_zero() { self.sign = NoSign; } } } impl Rem for u32 { type Output = BigInt; #[inline] fn rem(self, other: BigInt) -> BigInt { BigInt::from_biguint(Plus, self % other.data) } } impl Rem for BigInt { type Output = BigInt; #[inline] fn rem(self, other: u64) -> BigInt { BigInt::from_biguint(self.sign, self.data % other) } } impl RemAssign for BigInt { #[inline] fn rem_assign(&mut self, other: u64) { self.data %= other; if self.data.is_zero() { self.sign = NoSign; } } } impl Rem for u64 { type Output = BigInt; #[inline] fn rem(self, other: BigInt) -> BigInt { BigInt::from_biguint(Plus, self % other.data) } } #[cfg(has_i128)] impl Rem for BigInt { type Output = BigInt; #[inline] fn rem(self, other: u128) -> BigInt { BigInt::from_biguint(self.sign, self.data % other) } } #[cfg(has_i128)] impl RemAssign for BigInt { #[inline] fn rem_assign(&mut self, other: u128) { self.data %= other; if self.data.is_zero() { self.sign = NoSign; } } } #[cfg(has_i128)] impl Rem for u128 { type Output = BigInt; #[inline] fn rem(self, other: BigInt) -> BigInt { BigInt::from_biguint(Plus, self % other.data) } } forward_all_scalar_binop_to_val_val!(impl Rem for BigInt, rem); forward_all_scalar_binop_to_val_val!(impl Rem for BigInt, rem); #[cfg(has_i128)] forward_all_scalar_binop_to_val_val!(impl Rem for BigInt, rem); impl Rem for BigInt { type Output = BigInt; #[inline] fn rem(self, other: i32) -> BigInt { if other >= 0 { self % other as u32 } else { self % i32_abs_as_u32(other) } } } impl RemAssign for BigInt { #[inline] fn rem_assign(&mut self, other: i32) { if other >= 0 { *self %= other as u32; } else { *self %= i32_abs_as_u32(other); } } } impl Rem for i32 { type Output = BigInt; #[inline] fn rem(self, other: BigInt) -> BigInt { if self >= 0 { self as u32 % other } else { -(i32_abs_as_u32(self) % other) } } } impl Rem for BigInt { type Output = BigInt; #[inline] fn rem(self, other: i64) -> BigInt { if other >= 0 { self % other as u64 } else { self % i64_abs_as_u64(other) } } } impl RemAssign for BigInt { #[inline] fn rem_assign(&mut self, other: i64) { if other >= 0 { *self %= other as u64; } else { *self %= i64_abs_as_u64(other); } } } impl Rem for i64 { type Output = BigInt; #[inline] fn rem(self, other: BigInt) -> BigInt { if self >= 0 { self as u64 % other } else { -(i64_abs_as_u64(self) % other) } } } #[cfg(has_i128)] impl Rem for BigInt { type Output = BigInt; #[inline] fn rem(self, other: i128) -> BigInt { if other >= 0 { self % other as u128 } else { self % i128_abs_as_u128(other) } } } #[cfg(has_i128)] impl RemAssign for BigInt { #[inline] fn rem_assign(&mut self, other: i128) { if other >= 0 { *self %= other as u128; } else { *self %= i128_abs_as_u128(other); } } } #[cfg(has_i128)] impl Rem for i128 { type Output = BigInt; #[inline] fn rem(self, other: BigInt) -> BigInt { if self >= 0 { self as u128 % other } else { -(i128_abs_as_u128(self) % other) } } } impl Neg for BigInt { type Output = BigInt; #[inline] fn neg(mut self) -> BigInt { self.sign = -self.sign; self } } impl<'a> Neg for &'a BigInt { type Output = BigInt; #[inline] fn neg(self) -> BigInt { -self.clone() } } impl CheckedAdd for BigInt { #[inline] fn checked_add(&self, v: &BigInt) -> Option { return Some(self.add(v)); } } impl CheckedSub for BigInt { #[inline] fn checked_sub(&self, v: &BigInt) -> Option { return Some(self.sub(v)); } } impl CheckedMul for BigInt { #[inline] fn checked_mul(&self, v: &BigInt) -> Option { return Some(self.mul(v)); } } impl CheckedDiv for BigInt { #[inline] fn checked_div(&self, v: &BigInt) -> Option { if v.is_zero() { return None; } return Some(self.div(v)); } } impl Integer for BigInt { #[inline] fn div_rem(&self, other: &BigInt) -> (BigInt, BigInt) { // r.sign == self.sign let (d_ui, r_ui) = self.data.div_mod_floor(&other.data); let d = BigInt::from_biguint(self.sign, d_ui); let r = BigInt::from_biguint(self.sign, r_ui); if other.is_negative() { (-d, r) } else { (d, r) } } #[inline] fn div_floor(&self, other: &BigInt) -> BigInt { let (d, _) = self.div_mod_floor(other); d } #[inline] fn mod_floor(&self, other: &BigInt) -> BigInt { let (_, m) = self.div_mod_floor(other); m } fn div_mod_floor(&self, other: &BigInt) -> (BigInt, BigInt) { // m.sign == other.sign let (d_ui, m_ui) = self.data.div_rem(&other.data); let d = BigInt::from_biguint(Plus, d_ui); let m = BigInt::from_biguint(Plus, m_ui); let one: BigInt = One::one(); match (self.sign, other.sign) { (_, NoSign) => panic!(), (Plus, Plus) | (NoSign, Plus) => (d, m), (Plus, Minus) | (NoSign, Minus) => { if m.is_zero() { (-d, Zero::zero()) } else { (-d - one, m + other) } } (Minus, Plus) => { if m.is_zero() { (-d, Zero::zero()) } else { (-d - one, other - m) } } (Minus, Minus) => (d, -m), } } /// Calculates the Greatest Common Divisor (GCD) of the number and `other`. /// /// The result is always positive. #[inline] fn gcd(&self, other: &BigInt) -> BigInt { BigInt::from_biguint(Plus, self.data.gcd(&other.data)) } /// Calculates the Lowest Common Multiple (LCM) of the number and `other`. #[inline] fn lcm(&self, other: &BigInt) -> BigInt { BigInt::from_biguint(Plus, self.data.lcm(&other.data)) } /// Deprecated, use `is_multiple_of` instead. #[inline] fn divides(&self, other: &BigInt) -> bool { return self.is_multiple_of(other); } /// Returns `true` if the number is a multiple of `other`. #[inline] fn is_multiple_of(&self, other: &BigInt) -> bool { self.data.is_multiple_of(&other.data) } /// Returns `true` if the number is divisible by `2`. #[inline] fn is_even(&self) -> bool { self.data.is_even() } /// Returns `true` if the number is not divisible by `2`. #[inline] fn is_odd(&self) -> bool { self.data.is_odd() } } impl Roots for BigInt { fn nth_root(&self, n: u32) -> Self { assert!( !(self.is_negative() && n.is_even()), "root of degree {} is imaginary", n ); BigInt::from_biguint(self.sign, self.data.nth_root(n)) } fn sqrt(&self) -> Self { assert!(!self.is_negative(), "square root is imaginary"); BigInt::from_biguint(self.sign, self.data.sqrt()) } fn cbrt(&self) -> Self { BigInt::from_biguint(self.sign, self.data.cbrt()) } } impl ToPrimitive for BigInt { #[inline] fn to_i64(&self) -> Option { match self.sign { Plus => self.data.to_i64(), NoSign => Some(0), Minus => self.data.to_u64().and_then(|n| { let m: u64 = 1 << 63; if n < m { Some(-(n as i64)) } else if n == m { Some(i64::MIN) } else { None } }), } } #[inline] #[cfg(has_i128)] fn to_i128(&self) -> Option { match self.sign { Plus => self.data.to_i128(), NoSign => Some(0), Minus => self.data.to_u128().and_then(|n| { let m: u128 = 1 << 127; if n < m { Some(-(n as i128)) } else if n == m { Some(i128::MIN) } else { None } }), } } #[inline] fn to_u64(&self) -> Option { match self.sign { Plus => self.data.to_u64(), NoSign => Some(0), Minus => None, } } #[inline] #[cfg(has_i128)] fn to_u128(&self) -> Option { match self.sign { Plus => self.data.to_u128(), NoSign => Some(0), Minus => None, } } #[inline] fn to_f32(&self) -> Option { self.data .to_f32() .map(|n| if self.sign == Minus { -n } else { n }) } #[inline] fn to_f64(&self) -> Option { self.data .to_f64() .map(|n| if self.sign == Minus { -n } else { n }) } } impl FromPrimitive for BigInt { #[inline] fn from_i64(n: i64) -> Option { Some(BigInt::from(n)) } #[inline] #[cfg(has_i128)] fn from_i128(n: i128) -> Option { Some(BigInt::from(n)) } #[inline] fn from_u64(n: u64) -> Option { Some(BigInt::from(n)) } #[inline] #[cfg(has_i128)] fn from_u128(n: u128) -> Option { Some(BigInt::from(n)) } #[inline] fn from_f64(n: f64) -> Option { if n >= 0.0 { BigUint::from_f64(n).map(|x| BigInt::from_biguint(Plus, x)) } else { BigUint::from_f64(-n).map(|x| BigInt::from_biguint(Minus, x)) } } } impl From for BigInt { #[inline] fn from(n: i64) -> Self { if n >= 0 { BigInt::from(n as u64) } else { let u = u64::MAX - (n as u64) + 1; BigInt { sign: Minus, data: BigUint::from(u), } } } } #[cfg(has_i128)] impl From for BigInt { #[inline] fn from(n: i128) -> Self { if n >= 0 { BigInt::from(n as u128) } else { let u = u128::MAX - (n as u128) + 1; BigInt { sign: Minus, data: BigUint::from(u), } } } } macro_rules! impl_bigint_from_int { ($T:ty) => { impl From<$T> for BigInt { #[inline] fn from(n: $T) -> Self { BigInt::from(n as i64) } } }; } impl_bigint_from_int!(i8); impl_bigint_from_int!(i16); impl_bigint_from_int!(i32); impl_bigint_from_int!(isize); impl From for BigInt { #[inline] fn from(n: u64) -> Self { if n > 0 { BigInt { sign: Plus, data: BigUint::from(n), } } else { BigInt::zero() } } } #[cfg(has_i128)] impl From for BigInt { #[inline] fn from(n: u128) -> Self { if n > 0 { BigInt { sign: Plus, data: BigUint::from(n), } } else { BigInt::zero() } } } macro_rules! impl_bigint_from_uint { ($T:ty) => { impl From<$T> for BigInt { #[inline] fn from(n: $T) -> Self { BigInt::from(n as u64) } } }; } impl_bigint_from_uint!(u8); impl_bigint_from_uint!(u16); impl_bigint_from_uint!(u32); impl_bigint_from_uint!(usize); impl From for BigInt { #[inline] fn from(n: BigUint) -> Self { if n.is_zero() { BigInt::zero() } else { BigInt { sign: Plus, data: n, } } } } impl IntDigits for BigInt { #[inline] fn digits(&self) -> &[BigDigit] { self.data.digits() } #[inline] fn digits_mut(&mut self) -> &mut Vec { self.data.digits_mut() } #[inline] fn normalize(&mut self) { self.data.normalize(); if self.data.is_zero() { self.sign = NoSign; } } #[inline] fn capacity(&self) -> usize { self.data.capacity() } #[inline] fn len(&self) -> usize { self.data.len() } } #[cfg(feature = "serde")] impl serde::Serialize for BigInt { fn serialize(&self, serializer: S) -> Result where S: serde::Serializer, { // Note: do not change the serialization format, or it may break // forward and backward compatibility of serialized data! (self.sign, &self.data).serialize(serializer) } } #[cfg(feature = "serde")] impl<'de> serde::Deserialize<'de> for BigInt { fn deserialize(deserializer: D) -> Result where D: serde::Deserializer<'de>, { let (sign, data) = serde::Deserialize::deserialize(deserializer)?; Ok(BigInt::from_biguint(sign, data)) } } /// A generic trait for converting a value to a `BigInt`. This may return /// `None` when converting from `f32` or `f64`, and will always succeed /// when converting from any integer or unsigned primitive, or `BigUint`. pub trait ToBigInt { /// Converts the value of `self` to a `BigInt`. fn to_bigint(&self) -> Option; } impl ToBigInt for BigInt { #[inline] fn to_bigint(&self) -> Option { Some(self.clone()) } } impl ToBigInt for BigUint { #[inline] fn to_bigint(&self) -> Option { if self.is_zero() { Some(Zero::zero()) } else { Some(BigInt { sign: Plus, data: self.clone(), }) } } } impl biguint::ToBigUint for BigInt { #[inline] fn to_biguint(&self) -> Option { match self.sign() { Plus => Some(self.data.clone()), NoSign => Some(Zero::zero()), Minus => None, } } } macro_rules! impl_to_bigint { ($T:ty, $from_ty:path) => { impl ToBigInt for $T { #[inline] fn to_bigint(&self) -> Option { $from_ty(*self) } } }; } impl_to_bigint!(isize, FromPrimitive::from_isize); impl_to_bigint!(i8, FromPrimitive::from_i8); impl_to_bigint!(i16, FromPrimitive::from_i16); impl_to_bigint!(i32, FromPrimitive::from_i32); impl_to_bigint!(i64, FromPrimitive::from_i64); #[cfg(has_i128)] impl_to_bigint!(i128, FromPrimitive::from_i128); impl_to_bigint!(usize, FromPrimitive::from_usize); impl_to_bigint!(u8, FromPrimitive::from_u8); impl_to_bigint!(u16, FromPrimitive::from_u16); impl_to_bigint!(u32, FromPrimitive::from_u32); impl_to_bigint!(u64, FromPrimitive::from_u64); #[cfg(has_i128)] impl_to_bigint!(u128, FromPrimitive::from_u128); impl_to_bigint!(f32, FromPrimitive::from_f32); impl_to_bigint!(f64, FromPrimitive::from_f64); impl BigInt { /// Creates and initializes a BigInt. /// /// The digits are in little-endian base 232. #[inline] pub fn new(sign: Sign, digits: Vec) -> BigInt { BigInt::from_biguint(sign, BigUint::new(digits)) } /// Creates and initializes a `BigInt`. /// /// The digits are in little-endian base 232. #[inline] pub fn from_biguint(mut sign: Sign, mut data: BigUint) -> BigInt { if sign == NoSign { data.assign_from_slice(&[]); } else if data.is_zero() { sign = NoSign; } BigInt { sign: sign, data: data, } } /// Creates and initializes a `BigInt`. #[inline] pub fn from_slice(sign: Sign, slice: &[u32]) -> BigInt { BigInt::from_biguint(sign, BigUint::from_slice(slice)) } /// Reinitializes a `BigInt`. #[inline] pub fn assign_from_slice(&mut self, sign: Sign, slice: &[u32]) { if sign == NoSign { self.data.assign_from_slice(&[]); self.sign = NoSign; } else { self.data.assign_from_slice(slice); self.sign = match self.data.is_zero() { true => NoSign, false => sign, } } } /// Creates and initializes a `BigInt`. /// /// The bytes are in big-endian byte order. /// /// # Examples /// /// ``` /// use num_bigint::{BigInt, Sign}; /// /// assert_eq!(BigInt::from_bytes_be(Sign::Plus, b"A"), /// BigInt::parse_bytes(b"65", 10).unwrap()); /// assert_eq!(BigInt::from_bytes_be(Sign::Plus, b"AA"), /// BigInt::parse_bytes(b"16705", 10).unwrap()); /// assert_eq!(BigInt::from_bytes_be(Sign::Plus, b"AB"), /// BigInt::parse_bytes(b"16706", 10).unwrap()); /// assert_eq!(BigInt::from_bytes_be(Sign::Plus, b"Hello world!"), /// BigInt::parse_bytes(b"22405534230753963835153736737", 10).unwrap()); /// ``` #[inline] pub fn from_bytes_be(sign: Sign, bytes: &[u8]) -> BigInt { BigInt::from_biguint(sign, BigUint::from_bytes_be(bytes)) } /// Creates and initializes a `BigInt`. /// /// The bytes are in little-endian byte order. #[inline] pub fn from_bytes_le(sign: Sign, bytes: &[u8]) -> BigInt { BigInt::from_biguint(sign, BigUint::from_bytes_le(bytes)) } /// Creates and initializes a `BigInt` from an array of bytes in /// two's complement binary representation. /// /// The digits are in big-endian base 28. #[inline] pub fn from_signed_bytes_be(digits: &[u8]) -> BigInt { let sign = match digits.first() { Some(v) if *v > 0x7f => Sign::Minus, Some(_) => Sign::Plus, None => return BigInt::zero(), }; if sign == Sign::Minus { // two's-complement the content to retrieve the magnitude let mut digits = Vec::from(digits); twos_complement_be(&mut digits); BigInt::from_biguint(sign, BigUint::from_bytes_be(&*digits)) } else { BigInt::from_biguint(sign, BigUint::from_bytes_be(digits)) } } /// Creates and initializes a `BigInt` from an array of bytes in two's complement. /// /// The digits are in little-endian base 28. #[inline] pub fn from_signed_bytes_le(digits: &[u8]) -> BigInt { let sign = match digits.last() { Some(v) if *v > 0x7f => Sign::Minus, Some(_) => Sign::Plus, None => return BigInt::zero(), }; if sign == Sign::Minus { // two's-complement the content to retrieve the magnitude let mut digits = Vec::from(digits); twos_complement_le(&mut digits); BigInt::from_biguint(sign, BigUint::from_bytes_le(&*digits)) } else { BigInt::from_biguint(sign, BigUint::from_bytes_le(digits)) } } /// Creates and initializes a `BigInt`. /// /// # Examples /// /// ``` /// use num_bigint::{BigInt, ToBigInt}; /// /// assert_eq!(BigInt::parse_bytes(b"1234", 10), ToBigInt::to_bigint(&1234)); /// assert_eq!(BigInt::parse_bytes(b"ABCD", 16), ToBigInt::to_bigint(&0xABCD)); /// assert_eq!(BigInt::parse_bytes(b"G", 16), None); /// ``` #[inline] pub fn parse_bytes(buf: &[u8], radix: u32) -> Option { str::from_utf8(buf) .ok() .and_then(|s| BigInt::from_str_radix(s, radix).ok()) } /// Creates and initializes a `BigInt`. Each u8 of the input slice is /// interpreted as one digit of the number /// and must therefore be less than `radix`. /// /// The bytes are in big-endian byte order. /// `radix` must be in the range `2...256`. /// /// # Examples /// /// ``` /// use num_bigint::{BigInt, Sign}; /// /// let inbase190 = vec![15, 33, 125, 12, 14]; /// let a = BigInt::from_radix_be(Sign::Minus, &inbase190, 190).unwrap(); /// assert_eq!(a.to_radix_be(190), (Sign:: Minus, inbase190)); /// ``` pub fn from_radix_be(sign: Sign, buf: &[u8], radix: u32) -> Option { BigUint::from_radix_be(buf, radix).map(|u| BigInt::from_biguint(sign, u)) } /// Creates and initializes a `BigInt`. Each u8 of the input slice is /// interpreted as one digit of the number /// and must therefore be less than `radix`. /// /// The bytes are in little-endian byte order. /// `radix` must be in the range `2...256`. /// /// # Examples /// /// ``` /// use num_bigint::{BigInt, Sign}; /// /// let inbase190 = vec![14, 12, 125, 33, 15]; /// let a = BigInt::from_radix_be(Sign::Minus, &inbase190, 190).unwrap(); /// assert_eq!(a.to_radix_be(190), (Sign::Minus, inbase190)); /// ``` pub fn from_radix_le(sign: Sign, buf: &[u8], radix: u32) -> Option { BigUint::from_radix_le(buf, radix).map(|u| BigInt::from_biguint(sign, u)) } /// Returns the sign and the byte representation of the `BigInt` in big-endian byte order. /// /// # Examples /// /// ``` /// use num_bigint::{ToBigInt, Sign}; /// /// let i = -1125.to_bigint().unwrap(); /// assert_eq!(i.to_bytes_be(), (Sign::Minus, vec![4, 101])); /// ``` #[inline] pub fn to_bytes_be(&self) -> (Sign, Vec) { (self.sign, self.data.to_bytes_be()) } /// Returns the sign and the byte representation of the `BigInt` in little-endian byte order. /// /// # Examples /// /// ``` /// use num_bigint::{ToBigInt, Sign}; /// /// let i = -1125.to_bigint().unwrap(); /// assert_eq!(i.to_bytes_le(), (Sign::Minus, vec![101, 4])); /// ``` #[inline] pub fn to_bytes_le(&self) -> (Sign, Vec) { (self.sign, self.data.to_bytes_le()) } /// Returns the two's complement byte representation of the `BigInt` in big-endian byte order. /// /// # Examples /// /// ``` /// use num_bigint::ToBigInt; /// /// let i = -1125.to_bigint().unwrap(); /// assert_eq!(i.to_signed_bytes_be(), vec![251, 155]); /// ``` #[inline] pub fn to_signed_bytes_be(&self) -> Vec { let mut bytes = self.data.to_bytes_be(); let first_byte = bytes.first().map(|v| *v).unwrap_or(0); if first_byte > 0x7f && !(first_byte == 0x80 && bytes.iter().skip(1).all(Zero::is_zero) && self.sign == Sign::Minus) { // msb used by magnitude, extend by 1 byte bytes.insert(0, 0); } if self.sign == Sign::Minus { twos_complement_be(&mut bytes); } bytes } /// Returns the two's complement byte representation of the `BigInt` in little-endian byte order. /// /// # Examples /// /// ``` /// use num_bigint::ToBigInt; /// /// let i = -1125.to_bigint().unwrap(); /// assert_eq!(i.to_signed_bytes_le(), vec![155, 251]); /// ``` #[inline] pub fn to_signed_bytes_le(&self) -> Vec { let mut bytes = self.data.to_bytes_le(); let last_byte = bytes.last().map(|v| *v).unwrap_or(0); if last_byte > 0x7f && !(last_byte == 0x80 && bytes.iter().rev().skip(1).all(Zero::is_zero) && self.sign == Sign::Minus) { // msb used by magnitude, extend by 1 byte bytes.push(0); } if self.sign == Sign::Minus { twos_complement_le(&mut bytes); } bytes } /// Returns the integer formatted as a string in the given radix. /// `radix` must be in the range `2...36`. /// /// # Examples /// /// ``` /// use num_bigint::BigInt; /// /// let i = BigInt::parse_bytes(b"ff", 16).unwrap(); /// assert_eq!(i.to_str_radix(16), "ff"); /// ``` #[inline] pub fn to_str_radix(&self, radix: u32) -> String { let mut v = to_str_radix_reversed(&self.data, radix); if self.is_negative() { v.push(b'-'); } v.reverse(); unsafe { String::from_utf8_unchecked(v) } } /// Returns the integer in the requested base in big-endian digit order. /// The output is not given in a human readable alphabet but as a zero /// based u8 number. /// `radix` must be in the range `2...256`. /// /// # Examples /// /// ``` /// use num_bigint::{BigInt, Sign}; /// /// assert_eq!(BigInt::from(-0xFFFFi64).to_radix_be(159), /// (Sign::Minus, vec![2, 94, 27])); /// // 0xFFFF = 65535 = 2*(159^2) + 94*159 + 27 /// ``` #[inline] pub fn to_radix_be(&self, radix: u32) -> (Sign, Vec) { (self.sign, self.data.to_radix_be(radix)) } /// Returns the integer in the requested base in little-endian digit order. /// The output is not given in a human readable alphabet but as a zero /// based u8 number. /// `radix` must be in the range `2...256`. /// /// # Examples /// /// ``` /// use num_bigint::{BigInt, Sign}; /// /// assert_eq!(BigInt::from(-0xFFFFi64).to_radix_le(159), /// (Sign::Minus, vec![27, 94, 2])); /// // 0xFFFF = 65535 = 27 + 94*159 + 2*(159^2) /// ``` #[inline] pub fn to_radix_le(&self, radix: u32) -> (Sign, Vec) { (self.sign, self.data.to_radix_le(radix)) } /// Returns the sign of the `BigInt` as a `Sign`. /// /// # Examples /// /// ``` /// use num_bigint::{ToBigInt, Sign}; /// /// assert_eq!(ToBigInt::to_bigint(&1234).unwrap().sign(), Sign::Plus); /// assert_eq!(ToBigInt::to_bigint(&-4321).unwrap().sign(), Sign::Minus); /// assert_eq!(ToBigInt::to_bigint(&0).unwrap().sign(), Sign::NoSign); /// ``` #[inline] pub fn sign(&self) -> Sign { self.sign } /// Determines the fewest bits necessary to express the `BigInt`, /// not including the sign. #[inline] pub fn bits(&self) -> usize { self.data.bits() } /// Converts this `BigInt` into a `BigUint`, if it's not negative. #[inline] pub fn to_biguint(&self) -> Option { match self.sign { Plus => Some(self.data.clone()), NoSign => Some(Zero::zero()), Minus => None, } } #[inline] pub fn checked_add(&self, v: &BigInt) -> Option { return Some(self.add(v)); } #[inline] pub fn checked_sub(&self, v: &BigInt) -> Option { return Some(self.sub(v)); } #[inline] pub fn checked_mul(&self, v: &BigInt) -> Option { return Some(self.mul(v)); } #[inline] pub fn checked_div(&self, v: &BigInt) -> Option { if v.is_zero() { return None; } return Some(self.div(v)); } /// Returns `(self ^ exponent) mod modulus` /// /// Note that this rounds like `mod_floor`, not like the `%` operator, /// which makes a difference when given a negative `self` or `modulus`. /// The result will be in the interval `[0, modulus)` for `modulus > 0`, /// or in the interval `(modulus, 0]` for `modulus < 0` /// /// Panics if the exponent is negative or the modulus is zero. pub fn modpow(&self, exponent: &Self, modulus: &Self) -> Self { assert!( !exponent.is_negative(), "negative exponentiation is not supported!" ); assert!(!modulus.is_zero(), "divide by zero!"); let result = self.data.modpow(&exponent.data, &modulus.data); if result.is_zero() { return BigInt::zero(); } // The sign of the result follows the modulus, like `mod_floor`. let (sign, mag) = match (self.is_negative(), modulus.is_negative()) { (false, false) => (Plus, result), (true, false) => (Plus, &modulus.data - result), (false, true) => (Minus, &modulus.data - result), (true, true) => (Minus, result), }; BigInt::from_biguint(sign, mag) } /// Returns the truncated principal square root of `self` -- /// see [Roots::sqrt](https://docs.rs/num-integer/0.1/num_integer/trait.Roots.html#method.sqrt). pub fn sqrt(&self) -> Self { Roots::sqrt(self) } /// Returns the truncated principal cube root of `self` -- /// see [Roots::cbrt](https://docs.rs/num-integer/0.1/num_integer/trait.Roots.html#method.cbrt). pub fn cbrt(&self) -> Self { Roots::cbrt(self) } /// Returns the truncated principal `n`th root of `self` -- /// See [Roots::nth_root](https://docs.rs/num-integer/0.1/num_integer/trait.Roots.html#tymethod.nth_root). pub fn nth_root(&self, n: u32) -> Self { Roots::nth_root(self, n) } } impl_sum_iter_type!(BigInt); impl_product_iter_type!(BigInt); /// Perform in-place two's complement of the given binary representation, /// in little-endian byte order. #[inline] fn twos_complement_le(digits: &mut [u8]) { twos_complement(digits) } /// Perform in-place two's complement of the given binary representation /// in big-endian byte order. #[inline] fn twos_complement_be(digits: &mut [u8]) { twos_complement(digits.iter_mut().rev()) } /// Perform in-place two's complement of the given digit iterator /// starting from the least significant byte. #[inline] fn twos_complement<'a, I>(digits: I) where I: IntoIterator, { let mut carry = true; for d in digits { *d = d.not(); if carry { *d = d.wrapping_add(1); carry = d.is_zero(); } } } #[test] fn test_from_biguint() { fn check(inp_s: Sign, inp_n: usize, ans_s: Sign, ans_n: usize) { let inp = BigInt::from_biguint(inp_s, FromPrimitive::from_usize(inp_n).unwrap()); let ans = BigInt { sign: ans_s, data: FromPrimitive::from_usize(ans_n).unwrap(), }; assert_eq!(inp, ans); } check(Plus, 1, Plus, 1); check(Plus, 0, NoSign, 0); check(Minus, 1, Minus, 1); check(NoSign, 1, NoSign, 0); } #[test] fn test_from_slice() { fn check(inp_s: Sign, inp_n: u32, ans_s: Sign, ans_n: u32) { let inp = BigInt::from_slice(inp_s, &[inp_n]); let ans = BigInt { sign: ans_s, data: FromPrimitive::from_u32(ans_n).unwrap(), }; assert_eq!(inp, ans); } check(Plus, 1, Plus, 1); check(Plus, 0, NoSign, 0); check(Minus, 1, Minus, 1); check(NoSign, 1, NoSign, 0); } #[test] fn test_assign_from_slice() { fn check(inp_s: Sign, inp_n: u32, ans_s: Sign, ans_n: u32) { let mut inp = BigInt::from_slice(Minus, &[2627_u32, 0_u32, 9182_u32, 42_u32]); inp.assign_from_slice(inp_s, &[inp_n]); let ans = BigInt { sign: ans_s, data: FromPrimitive::from_u32(ans_n).unwrap(), }; assert_eq!(inp, ans); } check(Plus, 1, Plus, 1); check(Plus, 0, NoSign, 0); check(Minus, 1, Minus, 1); check(NoSign, 1, NoSign, 0); }