/*! Plane splitting. Uses [euclid](https://crates.io/crates/euclid) for the math basis. Introduces new geometrical primitives and associated logic. Automatically splits a given set of 4-point polygons into sub-polygons that don't intersect each other. This is useful for WebRender, to sort the resulting sub-polygons by depth and avoid transparency blending issues. */ #![warn(missing_docs)] mod bsp; mod clip; mod polygon; use euclid::{approxeq::ApproxEq, Point3D, Scale, Vector3D}; use num_traits::{Float, One, Zero}; use std::ops; pub use self::bsp::BspSplitter; pub use self::clip::Clipper; pub use self::polygon::{Intersection, LineProjection, Polygon}; fn is_zero(value: T) -> bool where T: Copy + Zero + ApproxEq + ops::Mul, { //HACK: this is rough, but the original Epsilon is too strict (value * value).approx_eq(&T::zero()) } fn is_zero_vec(vec: Vector3D) -> bool where T: Copy + Zero + ApproxEq + ops::Add + ops::Sub + ops::Mul, { vec.dot(vec).approx_eq(&T::zero()) } /// A generic line. #[derive(Debug)] pub struct Line { /// Arbitrary point on the line. pub origin: Point3D, /// Normalized direction of the line. pub dir: Vector3D, } impl Line where T: Copy + One + Zero + ApproxEq + ops::Add + ops::Sub + ops::Mul, { /// Check if the line has consistent parameters. pub fn is_valid(&self) -> bool { is_zero(self.dir.dot(self.dir) - T::one()) } /// Check if two lines match each other. pub fn matches(&self, other: &Self) -> bool { let diff = self.origin - other.origin; is_zero_vec(self.dir.cross(other.dir)) && is_zero_vec(self.dir.cross(diff)) } /// Intersect an edge given by the end points. /// Returns the fraction of the edge where the intersection occurs. fn intersect_edge(&self, edge: ops::Range>) -> Option where T: ops::Div, { let edge_vec = edge.end - edge.start; let origin_vec = self.origin - edge.start; // edge.start + edge_vec * t = r + k * d // (edge.start, d) + t * (edge_vec, d) - (r, d) = k // edge.start + t * edge_vec = r + t * (edge_vec, d) * d + (start-r, d) * d // t * (edge_vec - (edge_vec, d)*d) = origin_vec - (origin_vec, d) * d let pr = origin_vec - self.dir * self.dir.dot(origin_vec); let pb = edge_vec - self.dir * self.dir.dot(edge_vec); let denom = pb.dot(pb); if denom.approx_eq(&T::zero()) { None } else { Some(pr.dot(pb) / denom) } } } /// An infinite plane in 3D space, defined by equation: /// dot(v, normal) + offset = 0 /// When used for plane splitting, it's defining a hemisphere /// with equation "dot(v, normal) + offset > 0". #[derive(Debug, PartialEq)] pub struct Plane { /// Normalized vector perpendicular to the plane. pub normal: Vector3D, /// Constant offset from the normal plane, specified in the /// direction opposite to the normal. pub offset: T, } impl Clone for Plane { fn clone(&self) -> Self { Plane { normal: self.normal.clone(), offset: self.offset.clone(), } } } /// An error returned when everything would end up projected /// to the negative hemisphere (W <= 0.0); #[derive(Clone, Debug, Hash, PartialEq, PartialOrd)] pub struct NegativeHemisphereError; impl< T: Copy + Zero + One + Float + ApproxEq + ops::Sub + ops::Add + ops::Mul + ops::Div, U, > Plane { /// Construct a new plane from unnormalized equation. pub fn from_unnormalized( normal: Vector3D, offset: T, ) -> Result, NegativeHemisphereError> { let square_len = normal.square_length(); if square_len < T::approx_epsilon() * T::approx_epsilon() { if offset > T::zero() { Ok(None) } else { Err(NegativeHemisphereError) } } else { let kf = T::one() / square_len.sqrt(); Ok(Some(Plane { normal: normal * Scale::new(kf), offset: offset * kf, })) } } /// Check if this plane contains another one. pub fn contains(&self, other: &Self) -> bool { //TODO: actually check for inside/outside self.normal == other.normal && self.offset == other.offset } /// Return the signed distance from this plane to a point. /// The distance is negative if the point is on the other side of the plane /// from the direction of the normal. pub fn signed_distance_to(&self, point: &Point3D) -> T { point.to_vector().dot(self.normal) + self.offset } /// Compute the distance across the line to the plane plane, /// starting from the line origin. pub fn distance_to_line(&self, line: &Line) -> T where T: ops::Neg, { self.signed_distance_to(&line.origin) / -self.normal.dot(line.dir) } /// Compute the sum of signed distances to each of the points /// of another plane. Useful to know the relation of a plane that /// is a product of a split, and we know it doesn't intersect `self`. pub fn signed_distance_sum_to(&self, poly: &Polygon) -> T { poly.points .iter() .fold(T::zero(), |u, p| u + self.signed_distance_to(p)) } /// Check if a convex shape defined by a set of points is completely /// outside of this plane. Merely touching the surface is not /// considered an intersection. pub fn are_outside(&self, points: &[Point3D]) -> bool { let d0 = self.signed_distance_to(&points[0]); points[1..] .iter() .all(|p| self.signed_distance_to(p) * d0 > T::zero()) } //TODO(breaking): turn this into Result /// Compute the line of intersection with another plane. pub fn intersect(&self, other: &Self) -> Option> { // compute any point on the intersection between planes // (n1, v) + d1 = 0 // (n2, v) + d2 = 0 // v = a*n1/w + b*n2/w; w = (n1, n2) // v = (d2*w - d1) / (1 - w*w) * n1 - (d2 - d1*w) / (1 - w*w) * n2 let w = self.normal.dot(other.normal); let divisor = T::one() - w * w; if divisor < T::approx_epsilon() * T::approx_epsilon() { return None; } let origin = Point3D::origin() + self.normal * ((other.offset * w - self.offset) / divisor) - other.normal * ((other.offset - self.offset * w) / divisor); let cross_dir = self.normal.cross(other.normal); // note: the cross product isn't too close to zero // due to the previous check Some(Line { origin, dir: cross_dir.normalize(), }) } } /// Generic plane splitter interface pub trait Splitter { /// Reset the splitter results. fn reset(&mut self); /// Add a new polygon and return a slice of the subdivisions /// that avoid collision with any of the previously added polygons. fn add(&mut self, polygon: Polygon); /// Sort the produced polygon set by the ascending distance across /// the specified view vector. Return the sorted slice. fn sort(&mut self, view: Vector3D) -> &[Polygon]; /// Process a set of polygons at once. fn solve(&mut self, input: &[Polygon], view: Vector3D) -> &[Polygon] where T: Clone, U: Clone, A: Copy, { self.reset(); for p in input { self.add(p.clone()); } self.sort(view) } } /// Helper method used for benchmarks and tests. /// Constructs a 3D grid of polygons. #[doc(hidden)] pub fn make_grid(count: usize) -> Vec> { let mut polys: Vec> = Vec::with_capacity(count * 3); let len = count as f32; polys.extend((0..count).map(|i| Polygon { points: [ Point3D::new(0.0, i as f32, 0.0), Point3D::new(len, i as f32, 0.0), Point3D::new(len, i as f32, len), Point3D::new(0.0, i as f32, len), ], plane: Plane { normal: Vector3D::new(0.0, 1.0, 0.0), offset: -(i as f32), }, anchor: 0, })); polys.extend((0..count).map(|i| Polygon { points: [ Point3D::new(i as f32, 0.0, 0.0), Point3D::new(i as f32, len, 0.0), Point3D::new(i as f32, len, len), Point3D::new(i as f32, 0.0, len), ], plane: Plane { normal: Vector3D::new(1.0, 0.0, 0.0), offset: -(i as f32), }, anchor: 0, })); polys.extend((0..count).map(|i| Polygon { points: [ Point3D::new(0.0, 0.0, i as f32), Point3D::new(len, 0.0, i as f32), Point3D::new(len, len, i as f32), Point3D::new(0.0, len, i as f32), ], plane: Plane { normal: Vector3D::new(0.0, 0.0, 1.0), offset: -(i as f32), }, anchor: 0, })); polys }