use crate::{is_zero, Line, Plane}; use euclid::{approxeq::ApproxEq, default::Point2D, Point3D, Rect, Transform3D, Trig, Vector3D}; use num_traits::{Float, One, Zero}; use std::{fmt, iter, mem, ops}; /// The projection of a `Polygon` on a line. pub struct LineProjection { /// Projected value of each point in the polygon. pub markers: [T; 4], } impl LineProjection where T: Copy + PartialOrd + ops::Sub + ops::Add, { /// Get the min/max of the line projection markers. pub fn get_bounds(&self) -> (T, T) { let (mut a, mut b, mut c, mut d) = ( self.markers[0], self.markers[1], self.markers[2], self.markers[3], ); // bitonic sort of 4 elements // we could not just use `min/max` since they require `Ord` bound //TODO: make it nicer if a > c { mem::swap(&mut a, &mut c); } if b > d { mem::swap(&mut b, &mut d); } if a > b { mem::swap(&mut a, &mut b); } if c > d { mem::swap(&mut c, &mut d); } if b > c { mem::swap(&mut b, &mut c); } debug_assert!(a <= b && b <= c && c <= d); (a, d) } /// Check intersection with another line projection. pub fn intersect(&self, other: &Self) -> bool { // compute the bounds of both line projections let span = self.get_bounds(); let other_span = other.get_bounds(); // compute the total footprint let left = if span.0 < other_span.0 { span.0 } else { other_span.0 }; let right = if span.1 > other_span.1 { span.1 } else { other_span.1 }; // they intersect if the footprint is smaller than the sum right - left < span.1 - span.0 + other_span.1 - other_span.0 } } /// Polygon intersection results. pub enum Intersection { /// Polygons are coplanar, including the case of being on the same plane. Coplanar, /// Polygon planes are intersecting, but polygons are not. Outside, /// Polygons are actually intersecting. Inside(T), } impl Intersection { /// Return true if the intersection is completely outside. pub fn is_outside(&self) -> bool { match *self { Intersection::Outside => true, _ => false, } } /// Return true if the intersection cuts the source polygon. pub fn is_inside(&self) -> bool { match *self { Intersection::Inside(_) => true, _ => false, } } } /// A convex polygon with 4 points lying on a plane. #[derive(Debug, PartialEq)] pub struct Polygon { /// Points making the polygon. pub points: [Point3D; 4], /// A plane describing polygon orientation. pub plane: Plane, /// A simple anchoring index to allow association of the /// produced split polygons with the original one. pub anchor: A, } impl Clone for Polygon { fn clone(&self) -> Self { Polygon { points: [ self.points[0].clone(), self.points[1].clone(), self.points[2].clone(), self.points[3].clone(), ], plane: self.plane.clone(), anchor: self.anchor, } } } impl Polygon where T: Copy + fmt::Debug + ApproxEq + ops::Sub + ops::Add + ops::Mul + ops::Div + Zero + One + Float, U: fmt::Debug, A: Copy, { /// Construct a polygon from points that are already transformed. /// Return None if the polygon doesn't contain any space. pub fn from_points(points: [Point3D; 4], anchor: A) -> Option { let edge1 = points[1] - points[0]; let edge2 = points[2] - points[0]; let edge3 = points[3] - points[0]; let edge4 = points[3] - points[1]; if edge2.square_length() < T::epsilon() || edge4.square_length() < T::epsilon() { return None; } // one of them can be zero for redundant polygons produced by plane splitting //Note: this would be nicer if we used triangles instead of quads in the first place... // see https://github.com/servo/plane-split/issues/17 let normal_rough1 = edge1.cross(edge2); let normal_rough2 = edge2.cross(edge3); let square_length1 = normal_rough1.square_length(); let square_length2 = normal_rough2.square_length(); let normal = if square_length1 > square_length2 { normal_rough1 / square_length1.sqrt() } else { normal_rough2 / square_length2.sqrt() }; let offset = -points[0].to_vector().dot(normal); Some(Polygon { points, plane: Plane { normal, offset }, anchor, }) } /// Construct a polygon from a non-transformed rectangle. pub fn from_rect(rect: Rect, anchor: A) -> Self { let min = rect.min(); let max = rect.max(); let _0 = T::zero(); Polygon { points: [ min.to_3d(), Point3D::new(max.x, min.y, _0), max.to_3d(), Point3D::new(min.x, max.y, _0), ], plane: Plane { normal: Vector3D::new(T::zero(), T::zero(), T::one()), offset: T::zero(), }, anchor, } } /// Construct a polygon from a rectangle with 3D transform. pub fn from_transformed_rect( rect: Rect, transform: Transform3D, anchor: A, ) -> Option where T: Trig + ops::Neg, { let min = rect.min(); let max = rect.max(); let _0 = T::zero(); let points = [ transform.transform_point3d(min.to_3d())?, transform.transform_point3d(Point3D::new(max.x, min.y, _0))?, transform.transform_point3d(max.to_3d())?, transform.transform_point3d(Point3D::new(min.x, max.y, _0))?, ]; Self::from_points(points, anchor) } /// Construct a polygon from a rectangle with an invertible 3D transform. pub fn from_transformed_rect_with_inverse( rect: Rect, transform: &Transform3D, inv_transform: &Transform3D, anchor: A, ) -> Option where T: Trig + ops::Neg, { let min = rect.min(); let max = rect.max(); let _0 = T::zero(); let points = [ transform.transform_point3d(min.to_3d())?, transform.transform_point3d(Point3D::new(max.x, min.y, _0))?, transform.transform_point3d(max.to_3d())?, transform.transform_point3d(Point3D::new(min.x, max.y, _0))?, ]; // Compute the normal directly from the transformation. This guarantees consistent polygons // generated from various local rectanges on the same geometry plane. let normal_raw = Vector3D::new(inv_transform.m13, inv_transform.m23, inv_transform.m33); let normal_sql = normal_raw.square_length(); if normal_sql.approx_eq(&T::zero()) || transform.m44.approx_eq(&T::zero()) { None } else { let normal = normal_raw / normal_sql.sqrt(); let offset = -Vector3D::new(transform.m41, transform.m42, transform.m43).dot(normal) / transform.m44; Some(Polygon { points, plane: Plane { normal, offset }, anchor, }) } } /// Bring a point into the local coordinate space, returning /// the 2D normalized coordinates. pub fn untransform_point(&self, point: Point3D) -> Point2D { //debug_assert!(self.contains(point)); // get axises and target vector let a = self.points[1] - self.points[0]; let b = self.points[3] - self.points[0]; let c = point - self.points[0]; // get pair-wise dot products let a2 = a.dot(a); let ab = a.dot(b); let b2 = b.dot(b); let ca = c.dot(a); let cb = c.dot(b); // compute the final coordinates let denom = ab * ab - a2 * b2; let x = ab * cb - b2 * ca; let y = ab * ca - a2 * cb; Point2D::new(x, y) / denom } /// Transform a polygon by an affine transform (preserving straight lines). pub fn transform(&self, transform: &Transform3D) -> Option> where T: Trig, V: fmt::Debug, { let mut points = [Point3D::origin(); 4]; for (out, point) in points.iter_mut().zip(self.points.iter()) { let mut homo = transform.transform_point3d_homogeneous(*point); homo.w = homo.w.max(T::approx_epsilon()); *out = homo.to_point3d()?; } //Note: this code path could be more efficient if we had inverse-transpose //let n4 = transform.transform_point4d(&Point4D::new(T::zero(), T::zero(), T::one(), T::zero())); //let normal = Point3D::new(n4.x, n4.y, n4.z); Polygon::from_points(points, self.anchor) } /// Check if all the points are indeed placed on the plane defined by /// the normal and offset, and the winding order is consistent. pub fn is_valid(&self) -> bool { let is_planar = self .points .iter() .all(|p| is_zero(self.plane.signed_distance_to(p))); let edges = [ self.points[1] - self.points[0], self.points[2] - self.points[1], self.points[3] - self.points[2], self.points[0] - self.points[3], ]; let anchor = edges[3].cross(edges[0]); let is_winding = edges .iter() .zip(edges[1..].iter()) .all(|(a, &b)| a.cross(b).dot(anchor) >= T::zero()); is_planar && is_winding } /// Check if the polygon doesn't contain any space. This may happen /// after a sequence of splits, and such polygons should be discarded. pub fn is_empty(&self) -> bool { (self.points[0] - self.points[2]).square_length() < T::epsilon() || (self.points[1] - self.points[3]).square_length() < T::epsilon() } /// Check if this polygon contains another one. pub fn contains(&self, other: &Self) -> bool { //TODO: actually check for inside/outside self.plane.contains(&other.plane) } /// Project this polygon onto a 3D vector, returning a line projection. /// Note: we can think of it as a projection to a ray placed at the origin. pub fn project_on(&self, vector: &Vector3D) -> LineProjection { LineProjection { markers: [ vector.dot(self.points[0].to_vector()), vector.dot(self.points[1].to_vector()), vector.dot(self.points[2].to_vector()), vector.dot(self.points[3].to_vector()), ], } } /// Compute the line of intersection with an infinite plane. pub fn intersect_plane(&self, other: &Plane) -> Intersection> { if other.are_outside(&self.points) { log::debug!("\t\tOutside of the plane"); return Intersection::Outside; } match self.plane.intersect(&other) { Some(line) => Intersection::Inside(line), None => { log::debug!("\t\tCoplanar"); Intersection::Coplanar } } } /// Compute the line of intersection with another polygon. pub fn intersect(&self, other: &Self) -> Intersection> { if self.plane.are_outside(&other.points) || other.plane.are_outside(&self.points) { log::debug!("\t\tOne is completely outside of the other"); return Intersection::Outside; } match self.plane.intersect(&other.plane) { Some(line) => { let self_proj = self.project_on(&line.dir); let other_proj = other.project_on(&line.dir); if self_proj.intersect(&other_proj) { Intersection::Inside(line) } else { // projections on the line don't intersect log::debug!("\t\tProjection is outside"); Intersection::Outside } } None => { log::debug!("\t\tCoplanar"); Intersection::Coplanar } } } fn split_impl( &mut self, first: (usize, Point3D), second: (usize, Point3D), ) -> (Option, Option) { //TODO: can be optimized for when the polygon has a redundant 4th vertex //TODO: can be simplified greatly if only working with triangles log::debug!("\t\tReached complex case [{}, {}]", first.0, second.0); let base = first.0; assert!(base < self.points.len()); match second.0 - first.0 { 1 => { // rect between the cut at the diagonal let other1 = Polygon { points: [ first.1, second.1, self.points[(base + 2) & 3], self.points[base], ], ..self.clone() }; // triangle on the near side of the diagonal let other2 = Polygon { points: [ self.points[(base + 2) & 3], self.points[(base + 3) & 3], self.points[base], self.points[base], ], ..self.clone() }; // triangle being cut out self.points = [first.1, self.points[(base + 1) & 3], second.1, second.1]; (Some(other1), Some(other2)) } 2 => { // rect on the far side let other = Polygon { points: [ first.1, self.points[(base + 1) & 3], self.points[(base + 2) & 3], second.1, ], ..self.clone() }; // rect on the near side self.points = [ first.1, second.1, self.points[(base + 3) & 3], self.points[base], ]; (Some(other), None) } 3 => { // rect between the cut at the diagonal let other1 = Polygon { points: [ first.1, self.points[(base + 1) & 3], self.points[(base + 3) & 3], second.1, ], ..self.clone() }; // triangle on the far side of the diagonal let other2 = Polygon { points: [ self.points[(base + 1) & 3], self.points[(base + 2) & 3], self.points[(base + 3) & 3], self.points[(base + 3) & 3], ], ..self.clone() }; // triangle being cut out self.points = [first.1, second.1, self.points[base], self.points[base]]; (Some(other1), Some(other2)) } _ => panic!("Unexpected indices {} {}", first.0, second.0), } } /// Split the polygon along the specified `Line`. /// Will do nothing if the line doesn't belong to the polygon plane. #[deprecated(note = "Use split_with_normal instead")] pub fn split(&mut self, line: &Line) -> (Option, Option) { log::debug!("\tSplitting"); // check if the cut is within the polygon plane first if !is_zero(self.plane.normal.dot(line.dir)) || !is_zero(self.plane.signed_distance_to(&line.origin)) { log::debug!( "\t\tDoes not belong to the plane, normal dot={:?}, origin distance={:?}", self.plane.normal.dot(line.dir), self.plane.signed_distance_to(&line.origin) ); return (None, None); } // compute the intersection points for each edge let mut cuts = [None; 4]; for ((&b, &a), cut) in self .points .iter() .cycle() .skip(1) .zip(self.points.iter()) .zip(cuts.iter_mut()) { if let Some(t) = line.intersect_edge(a..b) { if t >= T::zero() && t < T::one() { *cut = Some(a + (b - a) * t); } } } let first = match cuts.iter().position(|c| c.is_some()) { Some(pos) => pos, None => return (None, None), }; let second = match cuts[first + 1..].iter().position(|c| c.is_some()) { Some(pos) => first + 1 + pos, None => return (None, None), }; self.split_impl( (first, cuts[first].unwrap()), (second, cuts[second].unwrap()), ) } /// Split the polygon along the specified `Line`, with a normal to the split line provided. /// This is useful when called by the plane splitter, since the other plane's normal /// forms the side direction here, and figuring out the actual line of split isn't needed. /// Will do nothing if the line doesn't belong to the polygon plane. pub fn split_with_normal( &mut self, line: &Line, normal: &Vector3D, ) -> (Option, Option) { log::debug!("\tSplitting with normal"); // figure out which side of the split does each point belong to let mut sides = [T::zero(); 4]; let (mut cut_positive, mut cut_negative) = (None, None); for (side, point) in sides.iter_mut().zip(&self.points) { *side = normal.dot(*point - line.origin); } // compute the edge intersection points for (i, ((&side1, point1), (&side0, point0))) in sides[1..] .iter() .chain(iter::once(&sides[0])) .zip(self.points[1..].iter().chain(iter::once(&self.points[0]))) .zip(sides.iter().zip(&self.points)) .enumerate() { // figure out if an edge between 0 and 1 needs to be cut let cut = if side0 < T::zero() && side1 >= T::zero() { &mut cut_positive } else if side0 > T::zero() && side1 <= T::zero() { &mut cut_negative } else { continue; }; // compute the cut point by weighting the opposite distances // // Note: this algorithm is designed to not favor one end of the edge over the other. // The previous approach of calling `intersect_edge` sometimes ended up with "t" ever // slightly outside of [0, 1] range, since it was computing it relative to the first point only. // // Given that we are intersecting two straight lines, the triangles on both // sides of intersection are alike, so distances along the [point0, point1] line // are proportional to the side vector lengths we just computed: (side0, side1). let point = (*point0 * side1.abs() + point1.to_vector() * side0.abs()) / (side0 - side1).abs(); if cut.is_some() { // We don't expect that the direction changes more than once, unless // the polygon is close to redundant, and we hit precision issues when // computing the sides. log::warn!("Splitting failed due to precision issues: {:?}", sides); break; } *cut = Some((i, point)); } // form new polygons if let (Some(first), Some(mut second)) = (cut_positive, cut_negative) { if second.0 < first.0 { second.0 += 4; } self.split_impl(first, second) } else { (None, None) } } } #[test] fn test_split_precision() { // regression test for https://bugzilla.mozilla.org/show_bug.cgi?id=1678454 let mut polygon = Polygon::<_, (), ()> { points: [ Point3D::new(300.0102, 150.00958, 0.0), Point3D::new(606.0, 306.0, 0.0), Point3D::new(300.21954, 150.11946, 0.0), Point3D::new(300.08844, 150.05064, 0.0), ], plane: Plane { normal: Vector3D::zero(), offset: 0.0, }, anchor: (), }; let line = Line { origin: Point3D::new(3.0690663, -5.8472385, 0.0), dir: Vector3D::new(0.8854436, 0.46474677, -0.0), }; let normal = Vector3D::new(0.46474662, -0.8854434, -0.0006389789); polygon.split_with_normal(&line, &normal); }