//! As of Rust 1.30, the language supports user-defined function-like procedural //! macros. However these can only be invoked in item position, not in //! statements or expressions. //! //! This crate implements an alternative type of procedural macro that can be //! invoked in statement or expression position. //! //! # Defining procedural macros //! //! Two crates are required to define a procedural macro. //! //! ## The implementation crate //! //! This crate must contain nothing but procedural macros. Private helper //! functions and private modules are fine but nothing can be public. //! //! [> example of an implementation crate][demo-hack-impl] //! //! Just like you would use a #\[proc_macro\] attribute to define a natively //! supported procedural macro, use proc-macro-hack's #\[proc_macro_hack\] //! attribute to define a procedural macro that works in expression position. //! The function signature is the same as for ordinary function-like procedural //! macros. //! //! ``` //! extern crate proc_macro; //! //! use proc_macro::TokenStream; //! use proc_macro_hack::proc_macro_hack; //! use quote::quote; //! use syn::{parse_macro_input, Expr}; //! //! # const IGNORE: &str = stringify! { //! #[proc_macro_hack] //! # }; //! pub fn add_one(input: TokenStream) -> TokenStream { //! let expr = parse_macro_input!(input as Expr); //! TokenStream::from(quote! { //! 1 + (#expr) //! }) //! } //! # //! # fn main() {} //! ``` //! //! ## The declaration crate //! //! This crate is allowed to contain other public things if you need, for //! example traits or functions or ordinary macros. //! //! [> example of a declaration crate][demo-hack] //! //! Within the declaration crate there needs to be a re-export of your //! procedural macro from the implementation crate. The re-export also carries a //! \#\[proc_macro_hack\] attribute. //! //! ``` //! use proc_macro_hack::proc_macro_hack; //! //! /// Add one to an expression. //! /// //! /// (Documentation goes here on the re-export, not in the other crate.) //! #[proc_macro_hack] //! pub use demo_hack_impl::add_one; //! # //! # fn main() {} //! ``` //! //! Both crates depend on `proc-macro-hack`: //! //! ```toml //! [dependencies] //! proc-macro-hack = "0.5" //! ``` //! //! Additionally, your implementation crate (but not your declaration crate) is //! a proc macro crate: //! //! ```toml //! [lib] //! proc-macro = true //! ``` //! //! # Using procedural macros //! //! Users of your crate depend on your declaration crate (not your //! implementation crate), then use your procedural macros as usual. //! //! [> example of a downstream crate][example] //! //! ``` //! use demo_hack::add_one; //! //! fn main() { //! let two = 2; //! let nine = add_one!(two) + add_one!(2 + 3); //! println!("nine = {}", nine); //! } //! ``` //! //! [demo-hack-impl]: https://github.com/dtolnay/proc-macro-hack/tree/master/demo-hack-impl //! [demo-hack]: https://github.com/dtolnay/proc-macro-hack/tree/master/demo-hack //! [example]: https://github.com/dtolnay/proc-macro-hack/tree/master/example //! //! # Limitations //! //! - Only proc macros in expression position are supported. Proc macros in type //! position ([#10]) or pattern position ([#20]) are not supported. //! //! - By default, nested invocations are not supported i.e. the code emitted by //! a proc-macro-hack macro invocation cannot contain recursive calls to the //! same proc-macro-hack macro nor calls to any other proc-macro-hack macros. //! Use [`proc-macro-nested`] if you require support for nested invocations. //! //! - By default, hygiene is structured such that the expanded code can't refer //! to local variables other than those passed by name somewhere in the macro //! input. If your macro must refer to *local* variables that don't get named //! in the macro input, use `#[proc_macro_hack(fake_call_site)]` on the //! re-export in your declaration crate. *Most macros won't need this.* //! //! [#10]: https://github.com/dtolnay/proc-macro-hack/issues/10 //! [#20]: https://github.com/dtolnay/proc-macro-hack/issues/20 //! [`proc-macro-nested`]: https://docs.rs/proc-macro-nested #![recursion_limit = "512"] #![cfg_attr(feature = "cargo-clippy", allow(renamed_and_removed_lints))] #![cfg_attr(feature = "cargo-clippy", allow(needless_pass_by_value))] extern crate proc_macro; use proc_macro2::{Span, TokenStream, TokenTree}; use quote::{format_ident, quote, ToTokens}; use std::fmt::Write; use syn::ext::IdentExt; use syn::parse::{Parse, ParseStream, Result}; use syn::{braced, bracketed, parenthesized, parse_macro_input, token, Ident, LitInt, Token}; type Visibility = Option; enum Input { Export(Export), Define(Define), } // pub use demo_hack_impl::{m1, m2 as qrst}; struct Export { attrs: TokenStream, vis: Visibility, from: Ident, macros: Vec, } // pub fn m1(input: TokenStream) -> TokenStream { ... } struct Define { attrs: TokenStream, name: Ident, body: TokenStream, } struct Macro { name: Ident, export_as: Ident, } impl Parse for Input { fn parse(input: ParseStream) -> Result { let ahead = input.fork(); parse_attributes(&ahead)?; ahead.parse::()?; if ahead.peek(Token![use]) { input.parse().map(Input::Export) } else if ahead.peek(Token![fn]) { input.parse().map(Input::Define) } else { Err(input.error("unexpected input to #[proc_macro_hack]")) } } } impl Parse for Export { fn parse(input: ParseStream) -> Result { let attrs = input.call(parse_attributes)?; let vis: Visibility = input.parse()?; input.parse::()?; input.parse::>()?; let from: Ident = input.parse()?; input.parse::()?; let mut macros = Vec::new(); if input.peek(token::Brace) { let content; braced!(content in input); loop { macros.push(content.parse()?); if content.is_empty() { break; } content.parse::()?; if content.is_empty() { break; } } } else { macros.push(input.parse()?); } input.parse::()?; Ok(Export { attrs, vis, from, macros, }) } } impl Parse for Define { fn parse(input: ParseStream) -> Result { let attrs = input.call(parse_attributes)?; let vis: Visibility = input.parse()?; if vis.is_none() { return Err(input.error("functions tagged with `#[proc_macro_hack]` must be `pub`")); } input.parse::()?; let name: Ident = input.parse()?; let body: TokenStream = input.parse()?; Ok(Define { attrs, name, body }) } } impl Parse for Macro { fn parse(input: ParseStream) -> Result { let name: Ident = input.parse()?; let renamed: Option = input.parse()?; let export_as = if renamed.is_some() { input.parse()? } else { name.clone() }; Ok(Macro { name, export_as }) } } fn parse_attributes(input: ParseStream) -> Result { let mut attrs = TokenStream::new(); while input.peek(Token![#]) { let pound: Token![#] = input.parse()?; pound.to_tokens(&mut attrs); let content; let bracket_token = bracketed!(content in input); let content: TokenStream = content.parse()?; bracket_token.surround(&mut attrs, |tokens| content.to_tokens(tokens)); } Ok(attrs) } #[proc_macro_attribute] pub fn proc_macro_hack( args: proc_macro::TokenStream, input: proc_macro::TokenStream, ) -> proc_macro::TokenStream { proc_macro::TokenStream::from(match parse_macro_input!(input) { Input::Export(export) => { let args = parse_macro_input!(args as ExportArgs); expand_export(export, args) } Input::Define(define) => { parse_macro_input!(args as DefineArgs); expand_define(define) } }) } mod kw { syn::custom_keyword!(derive); syn::custom_keyword!(fake_call_site); syn::custom_keyword!(internal_macro_calls); syn::custom_keyword!(support_nested); } struct ExportArgs { support_nested: bool, internal_macro_calls: u16, fake_call_site: bool, } impl Parse for ExportArgs { fn parse(input: ParseStream) -> Result { let mut args = ExportArgs { support_nested: false, internal_macro_calls: 0, fake_call_site: false, }; while !input.is_empty() { let ahead = input.lookahead1(); if ahead.peek(kw::support_nested) { input.parse::()?; args.support_nested = true; } else if ahead.peek(kw::internal_macro_calls) { input.parse::()?; input.parse::()?; let calls = input.parse::()?.base10_parse()?; args.internal_macro_calls = calls; } else if ahead.peek(kw::fake_call_site) { input.parse::()?; args.fake_call_site = true; } else { return Err(ahead.error()); } if input.is_empty() { break; } input.parse::()?; } Ok(args) } } struct DefineArgs; impl Parse for DefineArgs { fn parse(_input: ParseStream) -> Result { Ok(DefineArgs) } } struct EnumHack { token_stream: TokenStream, } impl Parse for EnumHack { fn parse(input: ParseStream) -> Result { input.parse::()?; input.parse::()?; let braces; braced!(braces in input); braces.parse::()?; braces.parse::()?; let parens; parenthesized!(parens in braces); parens.parse::()?; parens.parse::()?; let inner; braced!(inner in parens); let token_stream: TokenStream = inner.parse()?; parens.parse::()?; parens.parse::()?; braces.parse::()?; braces.parse::()?; braces.parse::()?; Ok(EnumHack { token_stream }) } } #[doc(hidden)] #[proc_macro_derive(ProcMacroHack)] pub fn enum_hack(input: proc_macro::TokenStream) -> proc_macro::TokenStream { let inner = parse_macro_input!(input as EnumHack); proc_macro::TokenStream::from(inner.token_stream) } struct FakeCallSite { derive: Ident, rest: TokenStream, } impl Parse for FakeCallSite { fn parse(input: ParseStream) -> Result { input.parse::()?; let attr; bracketed!(attr in input); attr.parse::()?; let path; parenthesized!(path in attr); Ok(FakeCallSite { derive: path.parse()?, rest: input.parse()?, }) } } #[doc(hidden)] #[proc_macro_attribute] pub fn fake_call_site( args: proc_macro::TokenStream, input: proc_macro::TokenStream, ) -> proc_macro::TokenStream { let args = TokenStream::from(args); let span = match args.into_iter().next() { Some(token) => token.span(), None => return input, }; let input = parse_macro_input!(input as FakeCallSite); let mut derive = input.derive; derive.set_span(span); let rest = input.rest; let expanded = quote! { #[derive(#derive)] #rest }; proc_macro::TokenStream::from(expanded) } fn expand_export(export: Export, args: ExportArgs) -> TokenStream { let dummy = dummy_name_for_export(&export); let attrs = export.attrs; let vis = export.vis; let macro_export = match vis { Some(_) => quote!(#[macro_export]), None => quote!(), }; let crate_prefix = vis.map(|_| quote!($crate::)); let enum_variant = if args.support_nested { if args.internal_macro_calls == 0 { quote!(Nested) } else { format_ident!("Nested{}", args.internal_macro_calls).to_token_stream() } } else { quote!(Value) }; let from = export.from; let rules = export .macros .into_iter() .map(|Macro { name, export_as }| { let actual_name = actual_proc_macro_name(&name); let dispatch = dispatch_macro_name(&name); let call_site = call_site_macro_name(&name); let export_dispatch = if args.support_nested { quote! { #[doc(hidden)] #vis use proc_macro_nested::dispatch as #dispatch; } } else { quote!() }; let proc_macro_call = if args.support_nested { let extra_bangs = (0..args.internal_macro_calls).map(|_| quote!(!)); quote! { #crate_prefix #dispatch! { ($($proc_macro)*) #(#extra_bangs)* } } } else { quote! { proc_macro_call!() } }; let export_call_site = if args.fake_call_site { quote! { #[doc(hidden)] #vis use proc_macro_hack::fake_call_site as #call_site; } } else { quote!() }; let do_derive = if !args.fake_call_site { quote! { #[derive(#crate_prefix #actual_name)] } } else if crate_prefix.is_some() { quote! { use #crate_prefix #actual_name; #[#crate_prefix #call_site ($($proc_macro)*)] #[derive(#actual_name)] } } else { quote! { #[#call_site ($($proc_macro)*)] #[derive(#actual_name)] } }; quote! { #[doc(hidden)] #vis use #from::#actual_name; #export_dispatch #export_call_site #attrs #macro_export macro_rules! #export_as { ($($proc_macro:tt)*) => {{ #do_derive enum ProcMacroHack { #enum_variant = (stringify! { $($proc_macro)* }, 0).1, } #proc_macro_call }}; } } }) .collect(); wrap_in_enum_hack(dummy, rules) } fn expand_define(define: Define) -> TokenStream { let attrs = define.attrs; let name = define.name; let dummy = actual_proc_macro_name(&name); let body = define.body; quote! { mod #dummy { extern crate proc_macro; pub use self::proc_macro::*; } #attrs #[proc_macro_derive(#dummy)] pub fn #dummy(input: #dummy::TokenStream) -> #dummy::TokenStream { use std::iter::FromIterator; let mut iter = input.into_iter(); iter.next().unwrap(); // `enum` iter.next().unwrap(); // `ProcMacroHack` let mut braces = match iter.next().unwrap() { #dummy::TokenTree::Group(group) => group.stream().into_iter(), _ => unimplemented!(), }; let variant = braces.next().unwrap(); // `Value` or `Nested` let varname = variant.to_string(); let support_nested = varname.starts_with("Nested"); braces.next().unwrap(); // `=` let mut parens = match braces.next().unwrap() { #dummy::TokenTree::Group(group) => group.stream().into_iter(), _ => unimplemented!(), }; parens.next().unwrap(); // `stringify` parens.next().unwrap(); // `!` let inner = match parens.next().unwrap() { #dummy::TokenTree::Group(group) => group.stream(), _ => unimplemented!(), }; let output: #dummy::TokenStream = #name(inner.clone()); fn count_bangs(input: #dummy::TokenStream) -> usize { let mut count = 0; for token in input { match token { #dummy::TokenTree::Punct(punct) => { if punct.as_char() == '!' { count += 1; } } #dummy::TokenTree::Group(group) => { count += count_bangs(group.stream()); } _ => {} } } count } // macro_rules! proc_macro_call { // () => { #output } // } #dummy::TokenStream::from_iter(vec![ #dummy::TokenTree::Ident( #dummy::Ident::new("macro_rules", #dummy::Span::call_site()), ), #dummy::TokenTree::Punct( #dummy::Punct::new('!', #dummy::Spacing::Alone), ), #dummy::TokenTree::Ident( #dummy::Ident::new( &if support_nested { let extra_bangs = if varname == "Nested" { 0 } else { varname["Nested".len()..].parse().unwrap() }; format!("proc_macro_call_{}", extra_bangs + count_bangs(inner)) } else { String::from("proc_macro_call") }, #dummy::Span::call_site(), ), ), #dummy::TokenTree::Group( #dummy::Group::new(#dummy::Delimiter::Brace, #dummy::TokenStream::from_iter(vec![ #dummy::TokenTree::Group( #dummy::Group::new(#dummy::Delimiter::Parenthesis, #dummy::TokenStream::new()), ), #dummy::TokenTree::Punct( #dummy::Punct::new('=', #dummy::Spacing::Joint), ), #dummy::TokenTree::Punct( #dummy::Punct::new('>', #dummy::Spacing::Alone), ), #dummy::TokenTree::Group( #dummy::Group::new(#dummy::Delimiter::Brace, output), ), ])), ), ]) } fn #name #body } } fn actual_proc_macro_name(conceptual: &Ident) -> Ident { format_ident!("proc_macro_hack_{}", conceptual) } fn dispatch_macro_name(conceptual: &Ident) -> Ident { format_ident!("proc_macro_call_{}", conceptual) } fn call_site_macro_name(conceptual: &Ident) -> Ident { format_ident!("proc_macro_fake_call_site_{}", conceptual) } fn dummy_name_for_export(export: &Export) -> String { let mut dummy = String::new(); let from = export.from.unraw().to_string(); write!(dummy, "_{}{}", from.len(), from).unwrap(); for m in &export.macros { let name = m.name.unraw().to_string(); write!(dummy, "_{}{}", name.len(), name).unwrap(); } dummy } fn wrap_in_enum_hack(dummy: String, inner: TokenStream) -> TokenStream { let dummy = Ident::new(&dummy, Span::call_site()); quote! { #[derive(proc_macro_hack::ProcMacroHack)] enum #dummy { Value = (stringify! { #inner }, 0).1, } } }