// Translated from C to Rust. The original C code can be found at // https://github.com/ulfjack/ryu and carries the following license: // // Copyright 2018 Ulf Adams // // The contents of this file may be used under the terms of the Apache License, // Version 2.0. // // (See accompanying file LICENSE-Apache or copy at // http://www.apache.org/licenses/LICENSE-2.0) // // Alternatively, the contents of this file may be used under the terms of // the Boost Software License, Version 1.0. // (See accompanying file LICENSE-Boost or copy at // https://www.boost.org/LICENSE_1_0.txt) // // Unless required by applicable law or agreed to in writing, this software // is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, either express or implied. use common::*; pub const FLOAT_MANTISSA_BITS: u32 = 23; pub const FLOAT_EXPONENT_BITS: u32 = 8; const FLOAT_BIAS: i32 = 127; const FLOAT_POW5_INV_BITCOUNT: i32 = 59; const FLOAT_POW5_BITCOUNT: i32 = 61; // This table is generated by PrintFloatLookupTable. static FLOAT_POW5_INV_SPLIT: [u64; 32] = [ 576460752303423489, 461168601842738791, 368934881474191033, 295147905179352826, 472236648286964522, 377789318629571618, 302231454903657294, 483570327845851670, 386856262276681336, 309485009821345069, 495176015714152110, 396140812571321688, 316912650057057351, 507060240091291761, 405648192073033409, 324518553658426727, 519229685853482763, 415383748682786211, 332306998946228969, 531691198313966350, 425352958651173080, 340282366920938464, 544451787073501542, 435561429658801234, 348449143727040987, 557518629963265579, 446014903970612463, 356811923176489971, 570899077082383953, 456719261665907162, 365375409332725730, 1 << 63, ]; static FLOAT_POW5_SPLIT: [u64; 47] = [ 1152921504606846976, 1441151880758558720, 1801439850948198400, 2251799813685248000, 1407374883553280000, 1759218604441600000, 2199023255552000000, 1374389534720000000, 1717986918400000000, 2147483648000000000, 1342177280000000000, 1677721600000000000, 2097152000000000000, 1310720000000000000, 1638400000000000000, 2048000000000000000, 1280000000000000000, 1600000000000000000, 2000000000000000000, 1250000000000000000, 1562500000000000000, 1953125000000000000, 1220703125000000000, 1525878906250000000, 1907348632812500000, 1192092895507812500, 1490116119384765625, 1862645149230957031, 1164153218269348144, 1455191522836685180, 1818989403545856475, 2273736754432320594, 1421085471520200371, 1776356839400250464, 2220446049250313080, 1387778780781445675, 1734723475976807094, 2168404344971008868, 1355252715606880542, 1694065894508600678, 2117582368135750847, 1323488980084844279, 1654361225106055349, 2067951531382569187, 1292469707114105741, 1615587133892632177, 2019483917365790221, ]; #[cfg_attr(feature = "no-panic", inline)] fn pow5_factor(mut value: u32) -> u32 { let mut count = 0u32; loop { debug_assert!(value != 0); let q = value / 5; let r = value % 5; if r != 0 { break; } value = q; count += 1; } count } // Returns true if value is divisible by 5^p. #[cfg_attr(feature = "no-panic", inline)] fn multiple_of_power_of_5(value: u32, p: u32) -> bool { pow5_factor(value) >= p } // Returns true if value is divisible by 2^p. #[cfg_attr(feature = "no-panic", inline)] fn multiple_of_power_of_2(value: u32, p: u32) -> bool { // return __builtin_ctz(value) >= p; (value & ((1u32 << p) - 1)) == 0 } // It seems to be slightly faster to avoid uint128_t here, although the // generated code for uint128_t looks slightly nicer. #[cfg_attr(feature = "no-panic", inline)] fn mul_shift(m: u32, factor: u64, shift: i32) -> u32 { debug_assert!(shift > 32); // The casts here help MSVC to avoid calls to the __allmul library // function. let factor_lo = factor as u32; let factor_hi = (factor >> 32) as u32; let bits0 = m as u64 * factor_lo as u64; let bits1 = m as u64 * factor_hi as u64; let sum = (bits0 >> 32) + bits1; let shifted_sum = sum >> (shift - 32); debug_assert!(shifted_sum <= u32::max_value() as u64); shifted_sum as u32 } #[cfg_attr(feature = "no-panic", inline)] fn mul_pow5_inv_div_pow2(m: u32, q: u32, j: i32) -> u32 { debug_assert!(q < FLOAT_POW5_INV_SPLIT.len() as u32); unsafe { mul_shift(m, *FLOAT_POW5_INV_SPLIT.get_unchecked(q as usize), j) } } #[cfg_attr(feature = "no-panic", inline)] fn mul_pow5_div_pow2(m: u32, i: u32, j: i32) -> u32 { debug_assert!(i < FLOAT_POW5_SPLIT.len() as u32); unsafe { mul_shift(m, *FLOAT_POW5_SPLIT.get_unchecked(i as usize), j) } } // A floating decimal representing m * 10^e. pub struct FloatingDecimal32 { pub mantissa: u32, // Decimal exponent's range is -45 to 38 // inclusive, and can fit in i16 if needed. pub exponent: i32, } #[cfg_attr(feature = "no-panic", inline)] pub fn f2d(ieee_mantissa: u32, ieee_exponent: u32) -> FloatingDecimal32 { let (e2, m2) = if ieee_exponent == 0 { ( // We subtract 2 so that the bounds computation has 2 additional bits. 1 - FLOAT_BIAS - FLOAT_MANTISSA_BITS as i32 - 2, ieee_mantissa, ) } else { ( ieee_exponent as i32 - FLOAT_BIAS - FLOAT_MANTISSA_BITS as i32 - 2, (1u32 << FLOAT_MANTISSA_BITS) | ieee_mantissa, ) }; let even = (m2 & 1) == 0; let accept_bounds = even; // Step 2: Determine the interval of valid decimal representations. let mv = 4 * m2; let mp = 4 * m2 + 2; // Implicit bool -> int conversion. True is 1, false is 0. let mm_shift = (ieee_mantissa != 0 || ieee_exponent <= 1) as u32; let mm = 4 * m2 - 1 - mm_shift; // Step 3: Convert to a decimal power base using 64-bit arithmetic. let mut vr: u32; let mut vp: u32; let mut vm: u32; let e10: i32; let mut vm_is_trailing_zeros = false; let mut vr_is_trailing_zeros = false; let mut last_removed_digit = 0u8; if e2 >= 0 { let q = log10_pow2(e2); e10 = q as i32; let k = FLOAT_POW5_INV_BITCOUNT + pow5bits(q as i32) - 1; let i = -e2 + q as i32 + k; vr = mul_pow5_inv_div_pow2(mv, q, i); vp = mul_pow5_inv_div_pow2(mp, q, i); vm = mul_pow5_inv_div_pow2(mm, q, i); if q != 0 && (vp - 1) / 10 <= vm / 10 { // We need to know one removed digit even if we are not going to loop below. We could use // q = X - 1 above, except that would require 33 bits for the result, and we've found that // 32-bit arithmetic is faster even on 64-bit machines. let l = FLOAT_POW5_INV_BITCOUNT + pow5bits(q as i32 - 1) - 1; last_removed_digit = (mul_pow5_inv_div_pow2(mv, q - 1, -e2 + q as i32 - 1 + l) % 10) as u8; } if q <= 9 { // The largest power of 5 that fits in 24 bits is 5^10, but q <= 9 seems to be safe as well. // Only one of mp, mv, and mm can be a multiple of 5, if any. if mv % 5 == 0 { vr_is_trailing_zeros = multiple_of_power_of_5(mv, q); } else if accept_bounds { vm_is_trailing_zeros = multiple_of_power_of_5(mm, q); } else { vp -= multiple_of_power_of_5(mp, q) as u32; } } } else { let q = log10_pow5(-e2); e10 = q as i32 + e2; let i = -e2 - q as i32; let k = pow5bits(i) - FLOAT_POW5_BITCOUNT; let mut j = q as i32 - k; vr = mul_pow5_div_pow2(mv, i as u32, j); vp = mul_pow5_div_pow2(mp, i as u32, j); vm = mul_pow5_div_pow2(mm, i as u32, j); if q != 0 && (vp - 1) / 10 <= vm / 10 { j = q as i32 - 1 - (pow5bits(i + 1) - FLOAT_POW5_BITCOUNT); last_removed_digit = (mul_pow5_div_pow2(mv, (i + 1) as u32, j) % 10) as u8; } if q <= 1 { // {vr,vp,vm} is trailing zeros if {mv,mp,mm} has at least q trailing 0 bits. // mv = 4 * m2, so it always has at least two trailing 0 bits. vr_is_trailing_zeros = true; if accept_bounds { // mm = mv - 1 - mm_shift, so it has 1 trailing 0 bit iff mm_shift == 1. vm_is_trailing_zeros = mm_shift == 1; } else { // mp = mv + 2, so it always has at least one trailing 0 bit. vp -= 1; } } else if q < 31 { // TODO(ulfjack): Use a tighter bound here. vr_is_trailing_zeros = multiple_of_power_of_2(mv, q - 1); } } // Step 4: Find the shortest decimal representation in the interval of valid representations. let mut removed = 0i32; let output = if vm_is_trailing_zeros || vr_is_trailing_zeros { // General case, which happens rarely (~4.0%). while vp / 10 > vm / 10 { vm_is_trailing_zeros &= vm - (vm / 10) * 10 == 0; vr_is_trailing_zeros &= last_removed_digit == 0; last_removed_digit = (vr % 10) as u8; vr /= 10; vp /= 10; vm /= 10; removed += 1; } if vm_is_trailing_zeros { while vm % 10 == 0 { vr_is_trailing_zeros &= last_removed_digit == 0; last_removed_digit = (vr % 10) as u8; vr /= 10; vp /= 10; vm /= 10; removed += 1; } } if vr_is_trailing_zeros && last_removed_digit == 5 && vr % 2 == 0 { // Round even if the exact number is .....50..0. last_removed_digit = 4; } // We need to take vr + 1 if vr is outside bounds or we need to round up. vr + ((vr == vm && (!accept_bounds || !vm_is_trailing_zeros)) || last_removed_digit >= 5) as u32 } else { // Specialized for the common case (~96.0%). Percentages below are relative to this. // Loop iterations below (approximately): // 0: 13.6%, 1: 70.7%, 2: 14.1%, 3: 1.39%, 4: 0.14%, 5+: 0.01% while vp / 10 > vm / 10 { last_removed_digit = (vr % 10) as u8; vr /= 10; vp /= 10; vm /= 10; removed += 1; } // We need to take vr + 1 if vr is outside bounds or we need to round up. vr + (vr == vm || last_removed_digit >= 5) as u32 }; let exp = e10 + removed; FloatingDecimal32 { exponent: exp, mantissa: output, } }