#!/usr/bin/env python # # Copyright 2011-2015 The Rust Project Developers. See the COPYRIGHT # file at the top-level directory of this distribution and at # http://rust-lang.org/COPYRIGHT. # # Licensed under the Apache License, Version 2.0 or the MIT license # , at your # option. This file may not be copied, modified, or distributed # except according to those terms. # This script uses the following Unicode tables: # - DerivedNormalizationProps.txt # - ReadMe.txt # - UnicodeData.txt # # Since this should not require frequent updates, we just store this # out-of-line and check the unicode.rs file into git. import fileinput, re, os, sys, collections preamble = '''// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. // NOTE: The following code was generated by "scripts/unicode.py", do not edit directly #![allow(missing_docs, non_upper_case_globals, non_snake_case)] ''' # Mapping taken from Table 12 from: # http://www.unicode.org/reports/tr44/#General_Category_Values expanded_categories = { 'Lu': ['LC', 'L'], 'Ll': ['LC', 'L'], 'Lt': ['LC', 'L'], 'Lm': ['L'], 'Lo': ['L'], 'Mn': ['M'], 'Mc': ['M'], 'Me': ['M'], 'Nd': ['N'], 'Nl': ['N'], 'No': ['No'], 'Pc': ['P'], 'Pd': ['P'], 'Ps': ['P'], 'Pe': ['P'], 'Pi': ['P'], 'Pf': ['P'], 'Po': ['P'], 'Sm': ['S'], 'Sc': ['S'], 'Sk': ['S'], 'So': ['S'], 'Zs': ['Z'], 'Zl': ['Z'], 'Zp': ['Z'], 'Cc': ['C'], 'Cf': ['C'], 'Cs': ['C'], 'Co': ['C'], 'Cn': ['C'], } # these are the surrogate codepoints, which are not valid rust characters surrogate_codepoints = (0xd800, 0xdfff) def fetch(f): if not os.path.exists(os.path.basename(f)): os.system("curl -O http://www.unicode.org/Public/UNIDATA/%s" % f) if not os.path.exists(os.path.basename(f)): sys.stderr.write("cannot load %s" % f) exit(1) def is_surrogate(n): return surrogate_codepoints[0] <= n <= surrogate_codepoints[1] def load_unicode_data(f): fetch(f) combines = {} canon_decomp = {} compat_decomp = {} general_category_mark = [] udict = {}; range_start = -1; for line in fileinput.input(f): data = line.split(';'); if len(data) != 15: continue cp = int(data[0], 16); if is_surrogate(cp): continue if range_start >= 0: for i in xrange(range_start, cp): udict[i] = data; range_start = -1; if data[1].endswith(", First>"): range_start = cp; continue; udict[cp] = data; for code in udict: [code_org, name, gencat, combine, bidi, decomp, deci, digit, num, mirror, old, iso, upcase, lowcase, titlecase ] = udict[code]; # store decomposition, if given if decomp != "": if decomp.startswith('<'): seq = [] for i in decomp.split()[1:]: seq.append(int(i, 16)) compat_decomp[code] = seq else: seq = [] for i in decomp.split(): seq.append(int(i, 16)) canon_decomp[code] = seq # record combining class, if any if combine != "0": if combine not in combines: combines[combine] = [] combines[combine].append(code) if 'M' in [gencat] + expanded_categories.get(gencat, []): general_category_mark.append(code) general_category_mark = group_cat(general_category_mark) combines = to_combines(group_cats(combines)) return (canon_decomp, compat_decomp, combines, general_category_mark) def group_cats(cats): cats_out = {} for cat in cats: cats_out[cat] = group_cat(cats[cat]) return cats_out def group_cat(cat): cat_out = [] letters = sorted(set(cat)) cur_start = letters.pop(0) cur_end = cur_start for letter in letters: assert letter > cur_end, \ "cur_end: %s, letter: %s" % (hex(cur_end), hex(letter)) if letter == cur_end + 1: cur_end = letter else: cat_out.append((cur_start, cur_end)) cur_start = cur_end = letter cat_out.append((cur_start, cur_end)) return cat_out def ungroup_cat(cat): cat_out = [] for (lo, hi) in cat: while lo <= hi: cat_out.append(lo) lo += 1 return cat_out def to_combines(combs): combs_out = [] for comb in combs: for (lo, hi) in combs[comb]: combs_out.append((lo, hi, comb)) combs_out.sort(key=lambda comb: comb[0]) return combs_out def format_table_content(f, content, indent): indent = " "*indent for c in content: f.write("%s%s,\n" % (indent, c)) def load_properties(f, interestingprops): fetch(f) props = {} re1 = re.compile("^ *([0-9A-F]+) *; *(\w+)") re2 = re.compile("^ *([0-9A-F]+)\.\.([0-9A-F]+) *; *(\w+)") for line in fileinput.input(os.path.basename(f)): prop = None d_lo = 0 d_hi = 0 m = re1.match(line) if m: d_lo = m.group(1) d_hi = m.group(1) prop = m.group(2) else: m = re2.match(line) if m: d_lo = m.group(1) d_hi = m.group(2) prop = m.group(3) else: continue if interestingprops and prop not in interestingprops: continue d_lo = int(d_lo, 16) d_hi = int(d_hi, 16) if prop not in props: props[prop] = [] props[prop].append((d_lo, d_hi)) # optimize if possible for prop in props: props[prop] = group_cat(ungroup_cat(props[prop])) return props def escape_char(c): return "'\\u{%x}'" % c def emit_table(f, name, t_data, t_type = "&'static [(char, char)]", is_pub=True, pfun=lambda x: "(%s,%s)" % (escape_char(x[0]), escape_char(x[1]))): pub_string = "" if is_pub: pub_string = "pub " f.write(" %sconst %s: %s = &[\n" % (pub_string, name, t_type)) format_table_content(f, [pfun(d) for d in t_data], 8) f.write("\n ];\n\n") def emit_strtab_table(f, name, keys, vfun, is_pub=True, tab_entry_type='char', slice_element_sfun=escape_char): pub_string = "" if is_pub: pub_string = "pub " f.write(" %s const %s: &'static [(char, Slice)] = &[\n" % (pub_string, name)) strtab = collections.OrderedDict() strtab_offset = 0 # TODO: a more sophisticated algorithm here would not only check for the # existence of v in the strtab, but also v in contiguous substrings of # strtab, if that's possible. for k in keys: v = tuple(vfun(k)) if v in strtab: item_slice = strtab[v] else: value_len = len(v) item_slice = (strtab_offset, value_len) strtab[v] = item_slice strtab_offset += value_len f.write("%s(%s, Slice { offset: %d, length: %d }),\n" % (" "*8, escape_char(k), item_slice[0], item_slice[1])) f.write("\n ];\n\n") f.write(" %s const %s_STRTAB: &'static [%s] = &[\n" % (pub_string, name, tab_entry_type)) for (v, _) in strtab.iteritems(): f.write("%s%s,\n" % (" "*8, ', '.join(slice_element_sfun(c) for c in v))) f.write("\n ];\n\n") def emit_norm_module(f, canon, compat, combine, norm_props, general_category_mark): canon_keys = canon.keys() canon_keys.sort() compat_keys = compat.keys() compat_keys.sort() canon_comp = {} comp_exclusions = norm_props["Full_Composition_Exclusion"] for char in canon_keys: if True in map(lambda (lo, hi): lo <= char <= hi, comp_exclusions): continue decomp = canon[char] if len(decomp) == 2: if not canon_comp.has_key(decomp[0]): canon_comp[decomp[0]] = [] canon_comp[decomp[0]].append( (decomp[1], char) ) canon_comp_keys = canon_comp.keys() canon_comp_keys.sort() f.write("pub mod normalization {\n") f.write(""" pub struct Slice { pub offset: u16, pub length: u16, } """) def mkdata_fun(table): def f(char): return table[char] return f # TODO: should the strtab of these two tables be of type &'static str, for # smaller data? f.write(" // Canonical decompositions\n") emit_strtab_table(f, "canonical_table", canon_keys, vfun=mkdata_fun(canon)) f.write(" // Compatibility decompositions\n") emit_strtab_table(f, "compatibility_table", compat_keys, vfun=mkdata_fun(compat)) def comp_vfun(char): return sorted(canon_comp[char], lambda x, y: x[0] - y[0]) f.write(" // Canonical compositions\n") # "&'static [(char, &'static [(char, char)])]", pfun=comp_pfun) emit_strtab_table(f, "composition_table", canon_comp_keys, vfun=comp_vfun, tab_entry_type="(char, char)", slice_element_sfun=lambda pair: "(%s,%s)" % (escape_char(pair[0]), escape_char(pair[1]))) f.write(""" fn bsearch_range_value_table(c: char, r: &'static [(char, char, u8)]) -> u8 { use std::cmp::Ordering::{Equal, Less, Greater}; match r.binary_search_by(|&(lo, hi, _)| { if lo <= c && c <= hi { Equal } else if hi < c { Less } else { Greater } }) { Ok(idx) => { let (_, _, result) = r[idx]; result } Err(_) => 0 } }\n """) emit_table(f, "combining_class_table", combine, "&'static [(char, char, u8)]", is_pub=False, pfun=lambda x: "(%s,%s,%s)" % (escape_char(x[0]), escape_char(x[1]), x[2])) f.write(" pub fn canonical_combining_class(c: char) -> u8 {\n" + " bsearch_range_value_table(c, combining_class_table)\n" + " }\n") f.write(""" fn bsearch_range_table(c: char, r: &'static [(char, char)]) -> bool { use std::cmp::Ordering::{Equal, Less, Greater}; r.binary_search_by(|&(lo, hi)| { if lo <= c && c <= hi { Equal } else if hi < c { Less } else { Greater } }) .is_ok() } /// Return whether the given character is a combining mark (`General_Category=Mark`) pub fn is_combining_mark(c: char) -> bool { bsearch_range_table(c, general_category_mark) } """) emit_table(f, "general_category_mark", general_category_mark, "&'static [(char, char)]", is_pub=False, pfun=lambda x: "(%s,%s)" % (escape_char(x[0]), escape_char(x[1]))) f.write(""" } """) if __name__ == "__main__": r = "tables.rs" if os.path.exists(r): os.remove(r) with open(r, "w") as rf: # write the file's preamble rf.write(preamble) # download and parse all the data fetch("ReadMe.txt") with open("ReadMe.txt") as readme: pattern = "for Version (\d+)\.(\d+)\.(\d+) of the Unicode" unicode_version = re.search(pattern, readme.read()).groups() rf.write(""" /// The version of [Unicode](http://www.unicode.org/) /// that this version of unicode-normalization is based on. pub const UNICODE_VERSION: (u64, u64, u64) = (%s, %s, %s); """ % unicode_version) (canon_decomp, compat_decomp, combines, general_category_mark) = \ load_unicode_data("UnicodeData.txt") norm_props = load_properties("DerivedNormalizationProps.txt", ["Full_Composition_Exclusion"]) # normalizations and conversions module emit_norm_module(rf, canon_decomp, compat_decomp, combines, norm_props, general_category_mark)