//===- FuzzerLoop.cpp - Fuzzer's main loop --------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // Fuzzer's main loop. //===----------------------------------------------------------------------===// #include "FuzzerCorpus.h" #include "FuzzerIO.h" #include "FuzzerInternal.h" #include "FuzzerMutate.h" #include "FuzzerPlatform.h" #include "FuzzerRandom.h" #include "FuzzerTracePC.h" #include #include #include #include #include #if defined(__has_include) #if __has_include() #include #endif #endif #define NO_SANITIZE_MEMORY #if defined(__has_feature) #if __has_feature(memory_sanitizer) #undef NO_SANITIZE_MEMORY #define NO_SANITIZE_MEMORY __attribute__((no_sanitize_memory)) #endif #endif namespace fuzzer { static const size_t kMaxUnitSizeToPrint = 256; thread_local bool Fuzzer::IsMyThread; bool RunningUserCallback = false; // Only one Fuzzer per process. static Fuzzer *F; // Leak detection is expensive, so we first check if there were more mallocs // than frees (using the sanitizer malloc hooks) and only then try to call lsan. struct MallocFreeTracer { void Start(int TraceLevel) { this->TraceLevel = TraceLevel; if (TraceLevel) Printf("MallocFreeTracer: START\n"); Mallocs = 0; Frees = 0; } // Returns true if there were more mallocs than frees. bool Stop() { if (TraceLevel) Printf("MallocFreeTracer: STOP %zd %zd (%s)\n", Mallocs.load(), Frees.load(), Mallocs == Frees ? "same" : "DIFFERENT"); bool Result = Mallocs > Frees; Mallocs = 0; Frees = 0; TraceLevel = 0; return Result; } std::atomic Mallocs; std::atomic Frees; int TraceLevel = 0; std::recursive_mutex TraceMutex; bool TraceDisabled = false; }; static MallocFreeTracer AllocTracer; // Locks printing and avoids nested hooks triggered from mallocs/frees in // sanitizer. class TraceLock { public: TraceLock() : Lock(AllocTracer.TraceMutex) { AllocTracer.TraceDisabled = !AllocTracer.TraceDisabled; } ~TraceLock() { AllocTracer.TraceDisabled = !AllocTracer.TraceDisabled; } bool IsDisabled() const { // This is already inverted value. return !AllocTracer.TraceDisabled; } private: std::lock_guard Lock; }; ATTRIBUTE_NO_SANITIZE_MEMORY void MallocHook(const volatile void *ptr, size_t size) { size_t N = AllocTracer.Mallocs++; F->HandleMalloc(size); if (int TraceLevel = AllocTracer.TraceLevel) { TraceLock Lock; if (Lock.IsDisabled()) return; Printf("MALLOC[%zd] %p %zd\n", N, ptr, size); if (TraceLevel >= 2 && EF) PrintStackTrace(); } } ATTRIBUTE_NO_SANITIZE_MEMORY void FreeHook(const volatile void *ptr) { size_t N = AllocTracer.Frees++; if (int TraceLevel = AllocTracer.TraceLevel) { TraceLock Lock; if (Lock.IsDisabled()) return; Printf("FREE[%zd] %p\n", N, ptr); if (TraceLevel >= 2 && EF) PrintStackTrace(); } } // Crash on a single malloc that exceeds the rss limit. void Fuzzer::HandleMalloc(size_t Size) { if (!Options.MallocLimitMb || (Size >> 20) < (size_t)Options.MallocLimitMb) return; Printf("==%d== ERROR: libFuzzer: out-of-memory (malloc(%zd))\n", GetPid(), Size); Printf(" To change the out-of-memory limit use -rss_limit_mb=\n\n"); PrintStackTrace(); DumpCurrentUnit("oom-"); Printf("SUMMARY: libFuzzer: out-of-memory\n"); PrintFinalStats(); _Exit(Options.OOMExitCode); // Stop right now. } Fuzzer::Fuzzer(UserCallback CB, InputCorpus &Corpus, MutationDispatcher &MD, FuzzingOptions Options) : CB(CB), Corpus(Corpus), MD(MD), Options(Options) { if (EF->__sanitizer_set_death_callback) EF->__sanitizer_set_death_callback(StaticDeathCallback); assert(!F); F = this; TPC.ResetMaps(); IsMyThread = true; if (Options.DetectLeaks && EF->__sanitizer_install_malloc_and_free_hooks) EF->__sanitizer_install_malloc_and_free_hooks(MallocHook, FreeHook); TPC.SetUseCounters(Options.UseCounters); TPC.SetUseValueProfileMask(Options.UseValueProfile); if (Options.Verbosity) TPC.PrintModuleInfo(); if (!Options.OutputCorpus.empty() && Options.ReloadIntervalSec) EpochOfLastReadOfOutputCorpus = GetEpoch(Options.OutputCorpus); MaxInputLen = MaxMutationLen = Options.MaxLen; TmpMaxMutationLen = 0; // Will be set once we load the corpus. AllocateCurrentUnitData(); CurrentUnitSize = 0; memset(BaseSha1, 0, sizeof(BaseSha1)); } Fuzzer::~Fuzzer() {} void Fuzzer::AllocateCurrentUnitData() { if (CurrentUnitData || MaxInputLen == 0) return; CurrentUnitData = new uint8_t[MaxInputLen]; } void Fuzzer::StaticDeathCallback() { assert(F); F->DeathCallback(); } void Fuzzer::DumpCurrentUnit(const char *Prefix) { if (!CurrentUnitData) return; // Happens when running individual inputs. ScopedDisableMsanInterceptorChecks S; MD.PrintMutationSequence(); Printf("; base unit: %s\n", Sha1ToString(BaseSha1).c_str()); size_t UnitSize = CurrentUnitSize; if (UnitSize <= kMaxUnitSizeToPrint) { PrintHexArray(CurrentUnitData, UnitSize, "\n"); PrintASCII(CurrentUnitData, UnitSize, "\n"); } WriteUnitToFileWithPrefix({CurrentUnitData, CurrentUnitData + UnitSize}, Prefix); } NO_SANITIZE_MEMORY void Fuzzer::DeathCallback() { DumpCurrentUnit("crash-"); PrintFinalStats(); } void Fuzzer::StaticAlarmCallback() { assert(F); F->AlarmCallback(); } void Fuzzer::StaticCrashSignalCallback() { assert(F); F->CrashCallback(); } void Fuzzer::StaticExitCallback() { assert(F); F->ExitCallback(); } void Fuzzer::StaticInterruptCallback() { assert(F); F->InterruptCallback(); } void Fuzzer::StaticGracefulExitCallback() { assert(F); F->GracefulExitRequested = true; Printf("INFO: signal received, trying to exit gracefully\n"); } void Fuzzer::StaticFileSizeExceedCallback() { Printf("==%lu== ERROR: libFuzzer: file size exceeded\n", GetPid()); exit(1); } void Fuzzer::CrashCallback() { if (EF->__sanitizer_acquire_crash_state && !EF->__sanitizer_acquire_crash_state()) return; Printf("==%lu== ERROR: libFuzzer: deadly signal\n", GetPid()); PrintStackTrace(); Printf("NOTE: libFuzzer has rudimentary signal handlers.\n" " Combine libFuzzer with AddressSanitizer or similar for better " "crash reports.\n"); Printf("SUMMARY: libFuzzer: deadly signal\n"); DumpCurrentUnit("crash-"); PrintFinalStats(); _Exit(Options.ErrorExitCode); // Stop right now. } void Fuzzer::ExitCallback() { if (!RunningUserCallback) return; // This exit did not come from the user callback if (EF->__sanitizer_acquire_crash_state && !EF->__sanitizer_acquire_crash_state()) return; Printf("==%lu== ERROR: libFuzzer: fuzz target exited\n", GetPid()); PrintStackTrace(); Printf("SUMMARY: libFuzzer: fuzz target exited\n"); DumpCurrentUnit("crash-"); PrintFinalStats(); _Exit(Options.ErrorExitCode); } void Fuzzer::MaybeExitGracefully() { if (!F->GracefulExitRequested) return; Printf("==%lu== INFO: libFuzzer: exiting as requested\n", GetPid()); RmDirRecursive(TempPath("FuzzWithFork", ".dir")); F->PrintFinalStats(); _Exit(0); } void Fuzzer::InterruptCallback() { Printf("==%lu== libFuzzer: run interrupted; exiting\n", GetPid()); PrintFinalStats(); ScopedDisableMsanInterceptorChecks S; // RmDirRecursive may call opendir(). RmDirRecursive(TempPath("FuzzWithFork", ".dir")); // Stop right now, don't perform any at-exit actions. _Exit(Options.InterruptExitCode); } NO_SANITIZE_MEMORY void Fuzzer::AlarmCallback() { assert(Options.UnitTimeoutSec > 0); // In Windows and Fuchsia, Alarm callback is executed by a different thread. // NetBSD's current behavior needs this change too. #if !LIBFUZZER_WINDOWS && !LIBFUZZER_NETBSD && !LIBFUZZER_FUCHSIA if (!InFuzzingThread()) return; #endif if (!RunningUserCallback) return; // We have not started running units yet. size_t Seconds = duration_cast(system_clock::now() - UnitStartTime).count(); if (Seconds == 0) return; if (Options.Verbosity >= 2) Printf("AlarmCallback %zd\n", Seconds); if (Seconds >= (size_t)Options.UnitTimeoutSec) { if (EF->__sanitizer_acquire_crash_state && !EF->__sanitizer_acquire_crash_state()) return; Printf("ALARM: working on the last Unit for %zd seconds\n", Seconds); Printf(" and the timeout value is %d (use -timeout=N to change)\n", Options.UnitTimeoutSec); DumpCurrentUnit("timeout-"); Printf("==%lu== ERROR: libFuzzer: timeout after %d seconds\n", GetPid(), Seconds); PrintStackTrace(); Printf("SUMMARY: libFuzzer: timeout\n"); PrintFinalStats(); _Exit(Options.TimeoutExitCode); // Stop right now. } } void Fuzzer::RssLimitCallback() { if (EF->__sanitizer_acquire_crash_state && !EF->__sanitizer_acquire_crash_state()) return; Printf( "==%lu== ERROR: libFuzzer: out-of-memory (used: %zdMb; limit: %zdMb)\n", GetPid(), GetPeakRSSMb(), Options.RssLimitMb); Printf(" To change the out-of-memory limit use -rss_limit_mb=\n\n"); PrintMemoryProfile(); DumpCurrentUnit("oom-"); Printf("SUMMARY: libFuzzer: out-of-memory\n"); PrintFinalStats(); _Exit(Options.OOMExitCode); // Stop right now. } void Fuzzer::PrintStats(const char *Where, const char *End, size_t Units, size_t Features) { size_t ExecPerSec = execPerSec(); if (!Options.Verbosity) return; Printf("#%zd\t%s", TotalNumberOfRuns, Where); if (size_t N = TPC.GetTotalPCCoverage()) Printf(" cov: %zd", N); if (size_t N = Features ? Features : Corpus.NumFeatures()) Printf(" ft: %zd", N); if (!Corpus.empty()) { Printf(" corp: %zd", Corpus.NumActiveUnits()); if (size_t N = Corpus.SizeInBytes()) { if (N < (1 << 14)) Printf("/%zdb", N); else if (N < (1 << 24)) Printf("/%zdKb", N >> 10); else Printf("/%zdMb", N >> 20); } if (size_t FF = Corpus.NumInputsThatTouchFocusFunction()) Printf(" focus: %zd", FF); } if (TmpMaxMutationLen) Printf(" lim: %zd", TmpMaxMutationLen); if (Units) Printf(" units: %zd", Units); Printf(" exec/s: %zd", ExecPerSec); Printf(" rss: %zdMb", GetPeakRSSMb()); Printf("%s", End); } void Fuzzer::PrintFinalStats() { if (Options.PrintCoverage) TPC.PrintCoverage(); if (Options.PrintCorpusStats) Corpus.PrintStats(); if (!Options.PrintFinalStats) return; size_t ExecPerSec = execPerSec(); Printf("stat::number_of_executed_units: %zd\n", TotalNumberOfRuns); Printf("stat::average_exec_per_sec: %zd\n", ExecPerSec); Printf("stat::new_units_added: %zd\n", NumberOfNewUnitsAdded); Printf("stat::slowest_unit_time_sec: %zd\n", TimeOfLongestUnitInSeconds); Printf("stat::peak_rss_mb: %zd\n", GetPeakRSSMb()); } void Fuzzer::SetMaxInputLen(size_t MaxInputLen) { assert(this->MaxInputLen == 0); // Can only reset MaxInputLen from 0 to non-0. assert(MaxInputLen); this->MaxInputLen = MaxInputLen; this->MaxMutationLen = MaxInputLen; AllocateCurrentUnitData(); Printf("INFO: -max_len is not provided; " "libFuzzer will not generate inputs larger than %zd bytes\n", MaxInputLen); } void Fuzzer::SetMaxMutationLen(size_t MaxMutationLen) { assert(MaxMutationLen && MaxMutationLen <= MaxInputLen); this->MaxMutationLen = MaxMutationLen; } void Fuzzer::CheckExitOnSrcPosOrItem() { if (!Options.ExitOnSrcPos.empty()) { static auto *PCsSet = new Set; auto HandlePC = [&](const TracePC::PCTableEntry *TE) { if (!PCsSet->insert(TE->PC).second) return; std::string Descr = DescribePC("%F %L", TE->PC + 1); if (Descr.find(Options.ExitOnSrcPos) != std::string::npos) { Printf("INFO: found line matching '%s', exiting.\n", Options.ExitOnSrcPos.c_str()); _Exit(0); } }; TPC.ForEachObservedPC(HandlePC); } if (!Options.ExitOnItem.empty()) { if (Corpus.HasUnit(Options.ExitOnItem)) { Printf("INFO: found item with checksum '%s', exiting.\n", Options.ExitOnItem.c_str()); _Exit(0); } } } void Fuzzer::RereadOutputCorpus(size_t MaxSize) { if (Options.OutputCorpus.empty() || !Options.ReloadIntervalSec) return; Vector AdditionalCorpus; ReadDirToVectorOfUnits(Options.OutputCorpus.c_str(), &AdditionalCorpus, &EpochOfLastReadOfOutputCorpus, MaxSize, /*ExitOnError*/ false); if (Options.Verbosity >= 2) Printf("Reload: read %zd new units.\n", AdditionalCorpus.size()); bool Reloaded = false; for (auto &U : AdditionalCorpus) { if (U.size() > MaxSize) U.resize(MaxSize); if (!Corpus.HasUnit(U)) { if (RunOne(U.data(), U.size())) { CheckExitOnSrcPosOrItem(); Reloaded = true; } } } if (Reloaded) PrintStats("RELOAD"); } void Fuzzer::PrintPulseAndReportSlowInput(const uint8_t *Data, size_t Size) { auto TimeOfUnit = duration_cast(UnitStopTime - UnitStartTime).count(); if (!(TotalNumberOfRuns & (TotalNumberOfRuns - 1)) && secondsSinceProcessStartUp() >= 2) PrintStats("pulse "); if (TimeOfUnit > TimeOfLongestUnitInSeconds * 1.1 && TimeOfUnit >= Options.ReportSlowUnits) { TimeOfLongestUnitInSeconds = TimeOfUnit; Printf("Slowest unit: %zd s:\n", TimeOfLongestUnitInSeconds); WriteUnitToFileWithPrefix({Data, Data + Size}, "slow-unit-"); } } static void WriteFeatureSetToFile(const std::string &FeaturesDir, const std::string &FileName, const Vector &FeatureSet) { if (FeaturesDir.empty() || FeatureSet.empty()) return; WriteToFile(reinterpret_cast(FeatureSet.data()), FeatureSet.size() * sizeof(FeatureSet[0]), DirPlusFile(FeaturesDir, FileName)); } static void RenameFeatureSetFile(const std::string &FeaturesDir, const std::string &OldFile, const std::string &NewFile) { if (FeaturesDir.empty()) return; RenameFile(DirPlusFile(FeaturesDir, OldFile), DirPlusFile(FeaturesDir, NewFile)); } bool Fuzzer::RunOne(const uint8_t *Data, size_t Size, bool MayDeleteFile, InputInfo *II, bool *FoundUniqFeatures) { if (!Size) return false; if (ExecuteCallback(Data, Size) > 0) { return false; } UniqFeatureSetTmp.clear(); size_t FoundUniqFeaturesOfII = 0; size_t NumUpdatesBefore = Corpus.NumFeatureUpdates(); TPC.CollectFeatures([&](size_t Feature) { if (Corpus.AddFeature(Feature, Size, Options.Shrink)) UniqFeatureSetTmp.push_back(Feature); if (Options.Entropic) Corpus.UpdateFeatureFrequency(II, Feature); if (Options.ReduceInputs && II) if (std::binary_search(II->UniqFeatureSet.begin(), II->UniqFeatureSet.end(), Feature)) FoundUniqFeaturesOfII++; }); if (FoundUniqFeatures) *FoundUniqFeatures = FoundUniqFeaturesOfII; PrintPulseAndReportSlowInput(Data, Size); size_t NumNewFeatures = Corpus.NumFeatureUpdates() - NumUpdatesBefore; if (NumNewFeatures) { TPC.UpdateObservedPCs(); auto NewII = Corpus.AddToCorpus({Data, Data + Size}, NumNewFeatures, MayDeleteFile, TPC.ObservedFocusFunction(), UniqFeatureSetTmp, DFT, II); WriteFeatureSetToFile(Options.FeaturesDir, Sha1ToString(NewII->Sha1), NewII->UniqFeatureSet); return true; } if (II && FoundUniqFeaturesOfII && II->DataFlowTraceForFocusFunction.empty() && FoundUniqFeaturesOfII == II->UniqFeatureSet.size() && II->U.size() > Size) { auto OldFeaturesFile = Sha1ToString(II->Sha1); Corpus.Replace(II, {Data, Data + Size}); RenameFeatureSetFile(Options.FeaturesDir, OldFeaturesFile, Sha1ToString(II->Sha1)); return true; } return false; } size_t Fuzzer::GetCurrentUnitInFuzzingThead(const uint8_t **Data) const { assert(InFuzzingThread()); *Data = CurrentUnitData; return CurrentUnitSize; } void Fuzzer::CrashOnOverwrittenData() { Printf("==%d== ERROR: libFuzzer: fuzz target overwrites its const input\n", GetPid()); PrintStackTrace(); Printf("SUMMARY: libFuzzer: overwrites-const-input\n"); DumpCurrentUnit("crash-"); PrintFinalStats(); _Exit(Options.ErrorExitCode); // Stop right now. } // Compare two arrays, but not all bytes if the arrays are large. static bool LooseMemeq(const uint8_t *A, const uint8_t *B, size_t Size) { const size_t Limit = 64; if (Size <= 64) return !memcmp(A, B, Size); // Compare first and last Limit/2 bytes. return !memcmp(A, B, Limit / 2) && !memcmp(A + Size - Limit / 2, B + Size - Limit / 2, Limit / 2); } int Fuzzer::ExecuteCallback(const uint8_t *Data, size_t Size) { TPC.RecordInitialStack(); TotalNumberOfRuns++; assert(InFuzzingThread()); // We copy the contents of Unit into a separate heap buffer // so that we reliably find buffer overflows in it. uint8_t *DataCopy = new uint8_t[Size]; memcpy(DataCopy, Data, Size); if (EF->__msan_unpoison) EF->__msan_unpoison(DataCopy, Size); if (EF->__msan_unpoison_param) EF->__msan_unpoison_param(2); if (CurrentUnitData && CurrentUnitData != Data) memcpy(CurrentUnitData, Data, Size); CurrentUnitSize = Size; int Res = 0; { ScopedEnableMsanInterceptorChecks S; AllocTracer.Start(Options.TraceMalloc); UnitStartTime = system_clock::now(); TPC.ResetMaps(); RunningUserCallback = true; Res = CB(DataCopy, Size); RunningUserCallback = false; UnitStopTime = system_clock::now(); assert(Res >= 0); HasMoreMallocsThanFrees = AllocTracer.Stop(); } if (!LooseMemeq(DataCopy, Data, Size)) CrashOnOverwrittenData(); CurrentUnitSize = 0; delete[] DataCopy; return Res; } std::string Fuzzer::WriteToOutputCorpus(const Unit &U) { if (Options.OnlyASCII) assert(IsASCII(U)); if (Options.OutputCorpus.empty()) return ""; std::string Path = DirPlusFile(Options.OutputCorpus, Hash(U)); WriteToFile(U, Path); if (Options.Verbosity >= 2) Printf("Written %zd bytes to %s\n", U.size(), Path.c_str()); return Path; } void Fuzzer::WriteUnitToFileWithPrefix(const Unit &U, const char *Prefix) { if (!Options.SaveArtifacts) return; std::string Path = Options.ArtifactPrefix + Prefix + Hash(U); if (!Options.ExactArtifactPath.empty()) Path = Options.ExactArtifactPath; // Overrides ArtifactPrefix. WriteToFile(U, Path); Printf("artifact_prefix='%s'; Test unit written to %s\n", Options.ArtifactPrefix.c_str(), Path.c_str()); if (U.size() <= kMaxUnitSizeToPrint) Printf("Base64: %s\n", Base64(U).c_str()); } void Fuzzer::PrintStatusForNewUnit(const Unit &U, const char *Text) { if (!Options.PrintNEW) return; PrintStats(Text, ""); if (Options.Verbosity) { Printf(" L: %zd/%zd ", U.size(), Corpus.MaxInputSize()); MD.PrintMutationSequence(); Printf("\n"); } } void Fuzzer::ReportNewCoverage(InputInfo *II, const Unit &U) { II->NumSuccessfullMutations++; MD.RecordSuccessfulMutationSequence(); PrintStatusForNewUnit(U, II->Reduced ? "REDUCE" : "NEW "); WriteToOutputCorpus(U); NumberOfNewUnitsAdded++; CheckExitOnSrcPosOrItem(); // Check only after the unit is saved to corpus. LastCorpusUpdateRun = TotalNumberOfRuns; } // Tries detecting a memory leak on the particular input that we have just // executed before calling this function. void Fuzzer::TryDetectingAMemoryLeak(const uint8_t *Data, size_t Size, bool DuringInitialCorpusExecution) { if (!HasMoreMallocsThanFrees) return; // mallocs==frees, a leak is unlikely. if (!Options.DetectLeaks) return; if (!DuringInitialCorpusExecution && TotalNumberOfRuns >= Options.MaxNumberOfRuns) return; if (!&(EF->__lsan_enable) || !&(EF->__lsan_disable) || !(EF->__lsan_do_recoverable_leak_check)) return; // No lsan. // Run the target once again, but with lsan disabled so that if there is // a real leak we do not report it twice. EF->__lsan_disable(); ExecuteCallback(Data, Size); EF->__lsan_enable(); if (!HasMoreMallocsThanFrees) return; // a leak is unlikely. if (NumberOfLeakDetectionAttempts++ > 1000) { Options.DetectLeaks = false; Printf("INFO: libFuzzer disabled leak detection after every mutation.\n" " Most likely the target function accumulates allocated\n" " memory in a global state w/o actually leaking it.\n" " You may try running this binary with -trace_malloc=[12]" " to get a trace of mallocs and frees.\n" " If LeakSanitizer is enabled in this process it will still\n" " run on the process shutdown.\n"); return; } // Now perform the actual lsan pass. This is expensive and we must ensure // we don't call it too often. if (EF->__lsan_do_recoverable_leak_check()) { // Leak is found, report it. if (DuringInitialCorpusExecution) Printf("\nINFO: a leak has been found in the initial corpus.\n\n"); Printf("INFO: to ignore leaks on libFuzzer side use -detect_leaks=0.\n\n"); CurrentUnitSize = Size; DumpCurrentUnit("leak-"); PrintFinalStats(); _Exit(Options.ErrorExitCode); // not exit() to disable lsan further on. } } void Fuzzer::MutateAndTestOne() { MD.StartMutationSequence(); auto &II = Corpus.ChooseUnitToMutate(MD.GetRand()); if (Options.DoCrossOver) MD.SetCrossOverWith(&Corpus.ChooseUnitToMutate(MD.GetRand()).U); const auto &U = II.U; memcpy(BaseSha1, II.Sha1, sizeof(BaseSha1)); assert(CurrentUnitData); size_t Size = U.size(); assert(Size <= MaxInputLen && "Oversized Unit"); memcpy(CurrentUnitData, U.data(), Size); assert(MaxMutationLen > 0); size_t CurrentMaxMutationLen = Min(MaxMutationLen, Max(U.size(), TmpMaxMutationLen)); assert(CurrentMaxMutationLen > 0); for (int i = 0; i < Options.MutateDepth; i++) { if (TotalNumberOfRuns >= Options.MaxNumberOfRuns) break; MaybeExitGracefully(); size_t NewSize = 0; if (II.HasFocusFunction && !II.DataFlowTraceForFocusFunction.empty() && Size <= CurrentMaxMutationLen) NewSize = MD.MutateWithMask(CurrentUnitData, Size, Size, II.DataFlowTraceForFocusFunction); // If MutateWithMask either failed or wasn't called, call default Mutate. if (!NewSize) NewSize = MD.Mutate(CurrentUnitData, Size, CurrentMaxMutationLen); if (!NewSize) continue; assert(NewSize > 0 && "Mutator returned empty unit"); assert(NewSize <= CurrentMaxMutationLen && "Mutator return oversized unit"); Size = NewSize; II.NumExecutedMutations++; Corpus.IncrementNumExecutedMutations(); bool FoundUniqFeatures = false; bool NewCov = RunOne(CurrentUnitData, Size, /*MayDeleteFile=*/true, &II, &FoundUniqFeatures); TryDetectingAMemoryLeak(CurrentUnitData, Size, /*DuringInitialCorpusExecution*/ false); if (NewCov) { ReportNewCoverage(&II, {CurrentUnitData, CurrentUnitData + Size}); break; // We will mutate this input more in the next rounds. } if (Options.ReduceDepth && !FoundUniqFeatures) break; } II.NeedsEnergyUpdate = true; } void Fuzzer::PurgeAllocator() { if (Options.PurgeAllocatorIntervalSec < 0 || !EF->__sanitizer_purge_allocator) return; if (duration_cast(system_clock::now() - LastAllocatorPurgeAttemptTime) .count() < Options.PurgeAllocatorIntervalSec) return; if (Options.RssLimitMb <= 0 || GetPeakRSSMb() > static_cast(Options.RssLimitMb) / 2) EF->__sanitizer_purge_allocator(); LastAllocatorPurgeAttemptTime = system_clock::now(); } void Fuzzer::ReadAndExecuteSeedCorpora(Vector &CorporaFiles) { const size_t kMaxSaneLen = 1 << 20; const size_t kMinDefaultLen = 4096; size_t MaxSize = 0; size_t MinSize = -1; size_t TotalSize = 0; for (auto &File : CorporaFiles) { MaxSize = Max(File.Size, MaxSize); MinSize = Min(File.Size, MinSize); TotalSize += File.Size; } if (Options.MaxLen == 0) SetMaxInputLen(std::min(std::max(kMinDefaultLen, MaxSize), kMaxSaneLen)); assert(MaxInputLen > 0); // Test the callback with empty input and never try it again. uint8_t dummy = 0; ExecuteCallback(&dummy, 0); if (CorporaFiles.empty()) { Printf("INFO: A corpus is not provided, starting from an empty corpus\n"); Unit U({'\n'}); // Valid ASCII input. RunOne(U.data(), U.size()); } else { Printf("INFO: seed corpus: files: %zd min: %zdb max: %zdb total: %zdb" " rss: %zdMb\n", CorporaFiles.size(), MinSize, MaxSize, TotalSize, GetPeakRSSMb()); if (Options.ShuffleAtStartUp) std::shuffle(CorporaFiles.begin(), CorporaFiles.end(), MD.GetRand()); if (Options.PreferSmall) { std::stable_sort(CorporaFiles.begin(), CorporaFiles.end()); assert(CorporaFiles.front().Size <= CorporaFiles.back().Size); } // Load and execute inputs one by one. for (auto &SF : CorporaFiles) { auto U = FileToVector(SF.File, MaxInputLen, /*ExitOnError=*/false); assert(U.size() <= MaxInputLen); RunOne(U.data(), U.size()); CheckExitOnSrcPosOrItem(); TryDetectingAMemoryLeak(U.data(), U.size(), /*DuringInitialCorpusExecution*/ true); } } PrintStats("INITED"); if (!Options.FocusFunction.empty()) { Printf("INFO: %zd/%zd inputs touch the focus function\n", Corpus.NumInputsThatTouchFocusFunction(), Corpus.size()); if (!Options.DataFlowTrace.empty()) Printf("INFO: %zd/%zd inputs have the Data Flow Trace\n", Corpus.NumInputsWithDataFlowTrace(), Corpus.NumInputsThatTouchFocusFunction()); } if (Corpus.empty() && Options.MaxNumberOfRuns) { Printf("ERROR: no interesting inputs were found. " "Is the code instrumented for coverage? Exiting.\n"); exit(1); } } void Fuzzer::Loop(Vector &CorporaFiles) { auto FocusFunctionOrAuto = Options.FocusFunction; DFT.Init(Options.DataFlowTrace, &FocusFunctionOrAuto, CorporaFiles, MD.GetRand()); TPC.SetFocusFunction(FocusFunctionOrAuto); ReadAndExecuteSeedCorpora(CorporaFiles); DFT.Clear(); // No need for DFT any more. TPC.SetPrintNewPCs(Options.PrintNewCovPcs); TPC.SetPrintNewFuncs(Options.PrintNewCovFuncs); system_clock::time_point LastCorpusReload = system_clock::now(); TmpMaxMutationLen = Min(MaxMutationLen, Max(size_t(4), Corpus.MaxInputSize())); while (true) { auto Now = system_clock::now(); if (!Options.StopFile.empty() && !FileToVector(Options.StopFile, 1, false).empty()) break; if (duration_cast(Now - LastCorpusReload).count() >= Options.ReloadIntervalSec) { RereadOutputCorpus(MaxInputLen); LastCorpusReload = system_clock::now(); } if (TotalNumberOfRuns >= Options.MaxNumberOfRuns) break; if (TimedOut()) break; // Update TmpMaxMutationLen if (Options.LenControl) { if (TmpMaxMutationLen < MaxMutationLen && TotalNumberOfRuns - LastCorpusUpdateRun > Options.LenControl * Log(TmpMaxMutationLen)) { TmpMaxMutationLen = Min(MaxMutationLen, TmpMaxMutationLen + Log(TmpMaxMutationLen)); LastCorpusUpdateRun = TotalNumberOfRuns; } } else { TmpMaxMutationLen = MaxMutationLen; } // Perform several mutations and runs. MutateAndTestOne(); PurgeAllocator(); } PrintStats("DONE ", "\n"); MD.PrintRecommendedDictionary(); } void Fuzzer::MinimizeCrashLoop(const Unit &U) { if (U.size() <= 1) return; while (!TimedOut() && TotalNumberOfRuns < Options.MaxNumberOfRuns) { MD.StartMutationSequence(); memcpy(CurrentUnitData, U.data(), U.size()); for (int i = 0; i < Options.MutateDepth; i++) { size_t NewSize = MD.Mutate(CurrentUnitData, U.size(), MaxMutationLen); assert(NewSize <= MaxMutationLen); if (!NewSize) continue; ExecuteCallback(CurrentUnitData, NewSize); PrintPulseAndReportSlowInput(CurrentUnitData, NewSize); TryDetectingAMemoryLeak(CurrentUnitData, NewSize, /*DuringInitialCorpusExecution*/ false); } } } } // namespace fuzzer extern "C" { ATTRIBUTE_INTERFACE size_t LLVMFuzzerMutate(uint8_t *Data, size_t Size, size_t MaxSize) { assert(fuzzer::F); return fuzzer::F->GetMD().DefaultMutate(Data, Size, MaxSize); } } // extern "C"