/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "gtest/gtest.h" #include "gmock/gmock.h" #include "LulCommonExt.h" #include "LulDwarfExt.h" #include "LulDwarfInt.h" #include "LulTestInfrastructure.h" using lul_test::CFISection; using lul_test::test_assembler::kBigEndian; using lul_test::test_assembler::kLittleEndian; using lul_test::test_assembler::Label; using testing::_; using testing::InSequence; using testing::Return; using testing::Sequence; using testing::Test; #define PERHAPS_WRITE_DEBUG_FRAME_FILE(name, section) /**/ #define PERHAPS_WRITE_EH_FRAME_FILE(name, section) /**/ // Set this to 0 to make LUL be completely silent during tests. // Set it to 1 to get logging output from LUL, presumably for // the purpose of debugging it. #define DEBUG_LUL_TEST_DWARF 0 // LUL needs a callback for its logging sink. static void gtest_logging_sink_for_LulTestDwarf(const char* str) { if (DEBUG_LUL_TEST_DWARF == 0) { return; } // Ignore any trailing \n, since LOG will add one anyway. size_t n = strlen(str); if (n > 0 && str[n - 1] == '\n') { char* tmp = strdup(str); tmp[n - 1] = 0; fprintf(stderr, "LUL-in-gtest: %s\n", tmp); free(tmp); } else { fprintf(stderr, "LUL-in-gtest: %s\n", str); } } namespace lul { class MockCallFrameInfoHandler : public CallFrameInfo::Handler { public: MOCK_METHOD6(Entry, bool(size_t offset, uint64 address, uint64 length, uint8 version, const std::string& augmentation, unsigned return_address)); MOCK_METHOD2(UndefinedRule, bool(uint64 address, int reg)); MOCK_METHOD2(SameValueRule, bool(uint64 address, int reg)); MOCK_METHOD4(OffsetRule, bool(uint64 address, int reg, int base_register, long offset)); MOCK_METHOD4(ValOffsetRule, bool(uint64 address, int reg, int base_register, long offset)); MOCK_METHOD3(RegisterRule, bool(uint64 address, int reg, int base_register)); MOCK_METHOD3(ExpressionRule, bool(uint64 address, int reg, const std::string& expression)); MOCK_METHOD3(ValExpressionRule, bool(uint64 address, int reg, const std::string& expression)); MOCK_METHOD0(End, bool()); MOCK_METHOD2(PersonalityRoutine, bool(uint64 address, bool indirect)); MOCK_METHOD2(LanguageSpecificDataArea, bool(uint64 address, bool indirect)); MOCK_METHOD0(SignalHandler, bool()); }; class MockCallFrameErrorReporter : public CallFrameInfo::Reporter { public: MockCallFrameErrorReporter() : Reporter(gtest_logging_sink_for_LulTestDwarf, "mock filename", "mock section") {} MOCK_METHOD2(Incomplete, void(uint64, CallFrameInfo::EntryKind)); MOCK_METHOD1(EarlyEHTerminator, void(uint64)); MOCK_METHOD2(CIEPointerOutOfRange, void(uint64, uint64)); MOCK_METHOD2(BadCIEId, void(uint64, uint64)); MOCK_METHOD2(UnrecognizedVersion, void(uint64, int version)); MOCK_METHOD2(UnrecognizedAugmentation, void(uint64, const string&)); MOCK_METHOD2(InvalidPointerEncoding, void(uint64, uint8)); MOCK_METHOD2(UnusablePointerEncoding, void(uint64, uint8)); MOCK_METHOD2(RestoreInCIE, void(uint64, uint64)); MOCK_METHOD3(BadInstruction, void(uint64, CallFrameInfo::EntryKind, uint64)); MOCK_METHOD3(NoCFARule, void(uint64, CallFrameInfo::EntryKind, uint64)); MOCK_METHOD3(EmptyStateStack, void(uint64, CallFrameInfo::EntryKind, uint64)); MOCK_METHOD3(ClearingCFARule, void(uint64, CallFrameInfo::EntryKind, uint64)); }; struct CFIFixture { enum { kCFARegister = CallFrameInfo::Handler::kCFARegister }; CFIFixture() { // Default expectations for the data handler. // // - Leave Entry and End without expectations, as it's probably a // good idea to set those explicitly in each test. // // - Expect the *Rule functions to not be called, // so that each test can simply list the calls they expect. // // I gather I could use StrictMock for this, but the manual seems // to suggest using that only as a last resort, and this isn't so // bad. EXPECT_CALL(handler, UndefinedRule(_, _)).Times(0); EXPECT_CALL(handler, SameValueRule(_, _)).Times(0); EXPECT_CALL(handler, OffsetRule(_, _, _, _)).Times(0); EXPECT_CALL(handler, ValOffsetRule(_, _, _, _)).Times(0); EXPECT_CALL(handler, RegisterRule(_, _, _)).Times(0); EXPECT_CALL(handler, ExpressionRule(_, _, _)).Times(0); EXPECT_CALL(handler, ValExpressionRule(_, _, _)).Times(0); EXPECT_CALL(handler, PersonalityRoutine(_, _)).Times(0); EXPECT_CALL(handler, LanguageSpecificDataArea(_, _)).Times(0); EXPECT_CALL(handler, SignalHandler()).Times(0); // Default expectations for the error/warning reporer. EXPECT_CALL(reporter, Incomplete(_, _)).Times(0); EXPECT_CALL(reporter, EarlyEHTerminator(_)).Times(0); EXPECT_CALL(reporter, CIEPointerOutOfRange(_, _)).Times(0); EXPECT_CALL(reporter, BadCIEId(_, _)).Times(0); EXPECT_CALL(reporter, UnrecognizedVersion(_, _)).Times(0); EXPECT_CALL(reporter, UnrecognizedAugmentation(_, _)).Times(0); EXPECT_CALL(reporter, InvalidPointerEncoding(_, _)).Times(0); EXPECT_CALL(reporter, UnusablePointerEncoding(_, _)).Times(0); EXPECT_CALL(reporter, RestoreInCIE(_, _)).Times(0); EXPECT_CALL(reporter, BadInstruction(_, _, _)).Times(0); EXPECT_CALL(reporter, NoCFARule(_, _, _)).Times(0); EXPECT_CALL(reporter, EmptyStateStack(_, _, _)).Times(0); EXPECT_CALL(reporter, ClearingCFARule(_, _, _)).Times(0); } MockCallFrameInfoHandler handler; MockCallFrameErrorReporter reporter; }; class LulDwarfCFI : public CFIFixture, public Test {}; TEST_F(LulDwarfCFI, EmptyRegion) { EXPECT_CALL(handler, Entry(_, _, _, _, _, _)).Times(0); EXPECT_CALL(handler, End()).Times(0); static const char data[1] = {42}; ByteReader reader(ENDIANNESS_BIG); CallFrameInfo parser(data, 0, &reader, &handler, &reporter); EXPECT_TRUE(parser.Start()); } TEST_F(LulDwarfCFI, IncompleteLength32) { CFISection section(kBigEndian, 8); section // Not even long enough for an initial length. .D16(0xa0f) // Padding to keep valgrind happy. We subtract these off when we // construct the parser. .D16(0); EXPECT_CALL(handler, Entry(_, _, _, _, _, _)).Times(0); EXPECT_CALL(handler, End()).Times(0); EXPECT_CALL(reporter, Incomplete(_, CallFrameInfo::kUnknown)) .WillOnce(Return()); string contents; ASSERT_TRUE(section.GetContents(&contents)); ByteReader reader(ENDIANNESS_BIG); reader.SetAddressSize(8); CallFrameInfo parser(contents.data(), contents.size() - 2, &reader, &handler, &reporter); EXPECT_FALSE(parser.Start()); } TEST_F(LulDwarfCFI, IncompleteLength64) { CFISection section(kLittleEndian, 4); section // An incomplete 64-bit DWARF initial length. .D32(0xffffffff) .D32(0x71fbaec2) // Padding to keep valgrind happy. We subtract these off when we // construct the parser. .D32(0); EXPECT_CALL(handler, Entry(_, _, _, _, _, _)).Times(0); EXPECT_CALL(handler, End()).Times(0); EXPECT_CALL(reporter, Incomplete(_, CallFrameInfo::kUnknown)) .WillOnce(Return()); string contents; ASSERT_TRUE(section.GetContents(&contents)); ByteReader reader(ENDIANNESS_LITTLE); reader.SetAddressSize(4); CallFrameInfo parser(contents.data(), contents.size() - 4, &reader, &handler, &reporter); EXPECT_FALSE(parser.Start()); } TEST_F(LulDwarfCFI, IncompleteId32) { CFISection section(kBigEndian, 8); section .D32(3) // Initial length, not long enough for id .D8(0xd7) .D8(0xe5) .D8(0xf1) // incomplete id .CIEHeader(8727, 3983, 8889, 3, "") .FinishEntry(); EXPECT_CALL(handler, Entry(_, _, _, _, _, _)).Times(0); EXPECT_CALL(handler, End()).Times(0); EXPECT_CALL(reporter, Incomplete(_, CallFrameInfo::kUnknown)) .WillOnce(Return()); string contents; ASSERT_TRUE(section.GetContents(&contents)); ByteReader reader(ENDIANNESS_BIG); reader.SetAddressSize(8); CallFrameInfo parser(contents.data(), contents.size(), &reader, &handler, &reporter); EXPECT_FALSE(parser.Start()); } TEST_F(LulDwarfCFI, BadId32) { CFISection section(kBigEndian, 8); section .D32(0x100) // Initial length .D32(0xe802fade) // bogus ID .Append(0x100 - 4, 0x42); // make the length true section.CIEHeader(1672, 9872, 8529, 3, "").FinishEntry(); EXPECT_CALL(handler, Entry(_, _, _, _, _, _)).Times(0); EXPECT_CALL(handler, End()).Times(0); EXPECT_CALL(reporter, CIEPointerOutOfRange(_, 0xe802fade)).WillOnce(Return()); string contents; ASSERT_TRUE(section.GetContents(&contents)); ByteReader reader(ENDIANNESS_BIG); reader.SetAddressSize(8); CallFrameInfo parser(contents.data(), contents.size(), &reader, &handler, &reporter); EXPECT_FALSE(parser.Start()); } // A lone CIE shouldn't cause any handler calls. TEST_F(LulDwarfCFI, SingleCIE) { CFISection section(kLittleEndian, 4); section.CIEHeader(0xffe799a8, 0x3398dcdd, 0x6e9683de, 3, ""); section.Append(10, lul::DW_CFA_nop); section.FinishEntry(); PERHAPS_WRITE_DEBUG_FRAME_FILE("SingleCIE", section); EXPECT_CALL(handler, Entry(_, _, _, _, _, _)).Times(0); EXPECT_CALL(handler, End()).Times(0); string contents; EXPECT_TRUE(section.GetContents(&contents)); ByteReader reader(ENDIANNESS_LITTLE); reader.SetAddressSize(4); CallFrameInfo parser(contents.data(), contents.size(), &reader, &handler, &reporter); EXPECT_TRUE(parser.Start()); } // One FDE, one CIE. TEST_F(LulDwarfCFI, OneFDE) { CFISection section(kBigEndian, 4); Label cie; section.Mark(&cie) .CIEHeader(0x4be22f75, 0x2492236e, 0x6b6efb87, 3, "") .FinishEntry() .FDEHeader(cie, 0x7714740d, 0x3d5a10cd) .FinishEntry(); PERHAPS_WRITE_DEBUG_FRAME_FILE("OneFDE", section); { InSequence s; EXPECT_CALL(handler, Entry(_, 0x7714740d, 0x3d5a10cd, 3, "", 0x6b6efb87)) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).WillOnce(Return(true)); } string contents; EXPECT_TRUE(section.GetContents(&contents)); ByteReader reader(ENDIANNESS_BIG); reader.SetAddressSize(4); CallFrameInfo parser(contents.data(), contents.size(), &reader, &handler, &reporter); EXPECT_TRUE(parser.Start()); } // Two FDEs share a CIE. TEST_F(LulDwarfCFI, TwoFDEsOneCIE) { CFISection section(kBigEndian, 4); Label cie; section // First FDE. readelf complains about this one because it makes // a forward reference to its CIE. .FDEHeader(cie, 0xa42744df, 0xa3b42121) .FinishEntry() // CIE. .Mark(&cie) .CIEHeader(0x04f7dc7b, 0x3d00c05f, 0xbd43cb59, 3, "") .FinishEntry() // Second FDE. .FDEHeader(cie, 0x6057d391, 0x700f608d) .FinishEntry(); PERHAPS_WRITE_DEBUG_FRAME_FILE("TwoFDEsOneCIE", section); { InSequence s; EXPECT_CALL(handler, Entry(_, 0xa42744df, 0xa3b42121, 3, "", 0xbd43cb59)) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).WillOnce(Return(true)); } { InSequence s; EXPECT_CALL(handler, Entry(_, 0x6057d391, 0x700f608d, 3, "", 0xbd43cb59)) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).WillOnce(Return(true)); } string contents; EXPECT_TRUE(section.GetContents(&contents)); ByteReader reader(ENDIANNESS_BIG); reader.SetAddressSize(4); CallFrameInfo parser(contents.data(), contents.size(), &reader, &handler, &reporter); EXPECT_TRUE(parser.Start()); } // Two FDEs, two CIEs. TEST_F(LulDwarfCFI, TwoFDEsTwoCIEs) { CFISection section(kLittleEndian, 8); Label cie1, cie2; section // First CIE. .Mark(&cie1) .CIEHeader(0x694d5d45, 0x4233221b, 0xbf45e65a, 3, "") .FinishEntry() // First FDE which cites second CIE. readelf complains about // this one because it makes a forward reference to its CIE. .FDEHeader(cie2, 0x778b27dfe5871f05ULL, 0x324ace3448070926ULL) .FinishEntry() // Second FDE, which cites first CIE. .FDEHeader(cie1, 0xf6054ca18b10bf5fULL, 0x45fdb970d8bca342ULL) .FinishEntry() // Second CIE. .Mark(&cie2) .CIEHeader(0xfba3fad7, 0x6287e1fd, 0x61d2c581, 2, "") .FinishEntry(); PERHAPS_WRITE_DEBUG_FRAME_FILE("TwoFDEsTwoCIEs", section); { InSequence s; EXPECT_CALL(handler, Entry(_, 0x778b27dfe5871f05ULL, 0x324ace3448070926ULL, 2, "", 0x61d2c581)) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).WillOnce(Return(true)); } { InSequence s; EXPECT_CALL(handler, Entry(_, 0xf6054ca18b10bf5fULL, 0x45fdb970d8bca342ULL, 3, "", 0xbf45e65a)) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).WillOnce(Return(true)); } string contents; EXPECT_TRUE(section.GetContents(&contents)); ByteReader reader(ENDIANNESS_LITTLE); reader.SetAddressSize(8); CallFrameInfo parser(contents.data(), contents.size(), &reader, &handler, &reporter); EXPECT_TRUE(parser.Start()); } // An FDE whose CIE specifies a version we don't recognize. TEST_F(LulDwarfCFI, BadVersion) { CFISection section(kBigEndian, 4); Label cie1, cie2; section.Mark(&cie1) .CIEHeader(0xca878cf0, 0x7698ec04, 0x7b616f54, 0x52, "") .FinishEntry() // We should skip this entry, as its CIE specifies a version we // don't recognize. .FDEHeader(cie1, 0x08852292, 0x2204004a) .FinishEntry() // Despite the above, we should visit this entry. .Mark(&cie2) .CIEHeader(0x7c3ae7c9, 0xb9b9a512, 0x96cb3264, 3, "") .FinishEntry() .FDEHeader(cie2, 0x2094735a, 0x6e875501) .FinishEntry(); PERHAPS_WRITE_DEBUG_FRAME_FILE("BadVersion", section); EXPECT_CALL(reporter, UnrecognizedVersion(_, 0x52)).WillOnce(Return()); { InSequence s; // We should see no mention of the first FDE, but we should get // a call to Entry for the second. EXPECT_CALL(handler, Entry(_, 0x2094735a, 0x6e875501, 3, "", 0x96cb3264)) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).WillOnce(Return(true)); } string contents; EXPECT_TRUE(section.GetContents(&contents)); ByteReader reader(ENDIANNESS_BIG); reader.SetAddressSize(4); CallFrameInfo parser(contents.data(), contents.size(), &reader, &handler, &reporter); EXPECT_FALSE(parser.Start()); } // An FDE whose CIE specifies an augmentation we don't recognize. TEST_F(LulDwarfCFI, BadAugmentation) { CFISection section(kBigEndian, 4); Label cie1, cie2; section.Mark(&cie1) .CIEHeader(0x4be22f75, 0x2492236e, 0x6b6efb87, 3, "spaniels!") .FinishEntry() // We should skip this entry, as its CIE specifies an // augmentation we don't recognize. .FDEHeader(cie1, 0x7714740d, 0x3d5a10cd) .FinishEntry() // Despite the above, we should visit this entry. .Mark(&cie2) .CIEHeader(0xf8bc4399, 0x8cf09931, 0xf2f519b2, 3, "") .FinishEntry() .FDEHeader(cie2, 0x7bf0fda0, 0xcbcd28d8) .FinishEntry(); PERHAPS_WRITE_DEBUG_FRAME_FILE("BadAugmentation", section); EXPECT_CALL(reporter, UnrecognizedAugmentation(_, "spaniels!")) .WillOnce(Return()); { InSequence s; // We should see no mention of the first FDE, but we should get // a call to Entry for the second. EXPECT_CALL(handler, Entry(_, 0x7bf0fda0, 0xcbcd28d8, 3, "", 0xf2f519b2)) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).WillOnce(Return(true)); } string contents; EXPECT_TRUE(section.GetContents(&contents)); ByteReader reader(ENDIANNESS_BIG); reader.SetAddressSize(4); CallFrameInfo parser(contents.data(), contents.size(), &reader, &handler, &reporter); EXPECT_FALSE(parser.Start()); } // The return address column field is a byte in CFI version 1 // (DWARF2), but a ULEB128 value in version 3 (DWARF3). TEST_F(LulDwarfCFI, CIEVersion1ReturnColumn) { CFISection section(kBigEndian, 4); Label cie; section // CIE, using the version 1 format: return column is a ubyte. .Mark(&cie) // Use a value for the return column that is parsed differently // as a ubyte and as a ULEB128. .CIEHeader(0xbcdea24f, 0x5be28286, 0x9f, 1, "") .FinishEntry() // FDE, citing that CIE. .FDEHeader(cie, 0xb8d347b5, 0x825e55dc) .FinishEntry(); PERHAPS_WRITE_DEBUG_FRAME_FILE("CIEVersion1ReturnColumn", section); { InSequence s; EXPECT_CALL(handler, Entry(_, 0xb8d347b5, 0x825e55dc, 1, "", 0x9f)) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).WillOnce(Return(true)); } string contents; EXPECT_TRUE(section.GetContents(&contents)); ByteReader reader(ENDIANNESS_BIG); reader.SetAddressSize(4); CallFrameInfo parser(contents.data(), contents.size(), &reader, &handler, &reporter); EXPECT_TRUE(parser.Start()); } // The return address column field is a byte in CFI version 1 // (DWARF2), but a ULEB128 value in version 3 (DWARF3). TEST_F(LulDwarfCFI, CIEVersion3ReturnColumn) { CFISection section(kBigEndian, 4); Label cie; section // CIE, using the version 3 format: return column is a ULEB128. .Mark(&cie) // Use a value for the return column that is parsed differently // as a ubyte and as a ULEB128. .CIEHeader(0x0ab4758d, 0xc010fdf7, 0x89, 3, "") .FinishEntry() // FDE, citing that CIE. .FDEHeader(cie, 0x86763f2b, 0x2a66dc23) .FinishEntry(); PERHAPS_WRITE_DEBUG_FRAME_FILE("CIEVersion3ReturnColumn", section); { InSequence s; EXPECT_CALL(handler, Entry(_, 0x86763f2b, 0x2a66dc23, 3, "", 0x89)) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).WillOnce(Return(true)); } string contents; EXPECT_TRUE(section.GetContents(&contents)); ByteReader reader(ENDIANNESS_BIG); reader.SetAddressSize(4); CallFrameInfo parser(contents.data(), contents.size(), &reader, &handler, &reporter); EXPECT_TRUE(parser.Start()); } struct CFIInsnFixture : public CFIFixture { CFIInsnFixture() : CFIFixture() { data_factor = 0xb6f; return_register = 0x9be1ed9f; version = 3; cfa_base_register = 0x383a3aa; cfa_offset = 0xf748; } // Prepare SECTION to receive FDE instructions. // // - Append a stock CIE header that establishes the fixture's // code_factor, data_factor, return_register, version, and // augmentation values. // - Have the CIE set up a CFA rule using cfa_base_register and // cfa_offset. // - Append a stock FDE header, referring to the above CIE, for the // fde_size bytes at fde_start. Choose fde_start and fde_size // appropriately for the section's address size. // - Set appropriate expectations on handler in sequence s for the // frame description entry and the CIE's CFA rule. // // On return, SECTION is ready to have FDE instructions appended to // it, and its FinishEntry member called. void StockCIEAndFDE(CFISection* section) { // Choose appropriate constants for our address size. if (section->AddressSize() == 4) { fde_start = 0xc628ecfbU; fde_size = 0x5dee04a2; code_factor = 0x60b; } else { assert(section->AddressSize() == 8); fde_start = 0x0005c57ce7806bd3ULL; fde_size = 0x2699521b5e333100ULL; code_factor = 0x01008e32855274a8ULL; } // Create the CIE. (*section) .Mark(&cie_label) .CIEHeader(code_factor, data_factor, return_register, version, "") .D8(lul::DW_CFA_def_cfa) .ULEB128(cfa_base_register) .ULEB128(cfa_offset) .FinishEntry(); // Create the FDE. section->FDEHeader(cie_label, fde_start, fde_size); // Expect an Entry call for the FDE and a ValOffsetRule call for the // CIE's CFA rule. EXPECT_CALL(handler, Entry(_, fde_start, fde_size, version, "", return_register)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, ValOffsetRule(fde_start, kCFARegister, cfa_base_register, cfa_offset)) .InSequence(s) .WillOnce(Return(true)); } // Run the contents of SECTION through a CallFrameInfo parser, // expecting parser.Start to return SUCCEEDS. Caller may optionally // supply, via READER, its own ByteReader. If that's absent, a // local one is used. void ParseSection(CFISection* section, bool succeeds = true, ByteReader* reader = nullptr) { string contents; EXPECT_TRUE(section->GetContents(&contents)); lul::Endianness endianness; if (section->endianness() == kBigEndian) endianness = ENDIANNESS_BIG; else { assert(section->endianness() == kLittleEndian); endianness = ENDIANNESS_LITTLE; } ByteReader local_reader(endianness); ByteReader* reader_to_use = reader ? reader : &local_reader; reader_to_use->SetAddressSize(section->AddressSize()); CallFrameInfo parser(contents.data(), contents.size(), reader_to_use, &handler, &reporter); if (succeeds) EXPECT_TRUE(parser.Start()); else EXPECT_FALSE(parser.Start()); } Label cie_label; Sequence s; uint64 code_factor; int data_factor; unsigned return_register; unsigned version; unsigned cfa_base_register; int cfa_offset; uint64 fde_start, fde_size; }; class LulDwarfCFIInsn : public CFIInsnFixture, public Test {}; TEST_F(LulDwarfCFIInsn, DW_CFA_set_loc) { CFISection section(kBigEndian, 4); StockCIEAndFDE(§ion); section.D8(lul::DW_CFA_set_loc) .D32(0xb1ee3e7a) // Use DW_CFA_def_cfa to force a handler call that we can use to // check the effect of the DW_CFA_set_loc. .D8(lul::DW_CFA_def_cfa) .ULEB128(0x4defb431) .ULEB128(0x6d17b0ee) .FinishEntry(); PERHAPS_WRITE_DEBUG_FRAME_FILE("DW_CFA_set_loc", section); EXPECT_CALL(handler, ValOffsetRule(0xb1ee3e7a, kCFARegister, 0x4defb431, 0x6d17b0ee)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true)); ParseSection(§ion); } TEST_F(LulDwarfCFIInsn, DW_CFA_advance_loc) { CFISection section(kBigEndian, 8); StockCIEAndFDE(§ion); section .D8(lul::DW_CFA_advance_loc | 0x2a) // Use DW_CFA_def_cfa to force a handler call that we can use to // check the effect of the DW_CFA_advance_loc. .D8(lul::DW_CFA_def_cfa) .ULEB128(0x5bbb3715) .ULEB128(0x0186c7bf) .FinishEntry(); PERHAPS_WRITE_DEBUG_FRAME_FILE("DW_CFA_advance_loc", section); EXPECT_CALL(handler, ValOffsetRule(fde_start + 0x2a * code_factor, kCFARegister, 0x5bbb3715, 0x0186c7bf)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true)); ParseSection(§ion); } TEST_F(LulDwarfCFIInsn, DW_CFA_advance_loc1) { CFISection section(kLittleEndian, 8); StockCIEAndFDE(§ion); section.D8(lul::DW_CFA_advance_loc1) .D8(0xd8) .D8(lul::DW_CFA_def_cfa) .ULEB128(0x69d5696a) .ULEB128(0x1eb7fc93) .FinishEntry(); PERHAPS_WRITE_DEBUG_FRAME_FILE("DW_CFA_advance_loc1", section); EXPECT_CALL(handler, ValOffsetRule((fde_start + 0xd8 * code_factor), kCFARegister, 0x69d5696a, 0x1eb7fc93)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true)); ParseSection(§ion); } TEST_F(LulDwarfCFIInsn, DW_CFA_advance_loc2) { CFISection section(kLittleEndian, 4); StockCIEAndFDE(§ion); section.D8(lul::DW_CFA_advance_loc2) .D16(0x3adb) .D8(lul::DW_CFA_def_cfa) .ULEB128(0x3a368bed) .ULEB128(0x3194ee37) .FinishEntry(); PERHAPS_WRITE_DEBUG_FRAME_FILE("DW_CFA_advance_loc2", section); EXPECT_CALL(handler, ValOffsetRule((fde_start + 0x3adb * code_factor), kCFARegister, 0x3a368bed, 0x3194ee37)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true)); ParseSection(§ion); } TEST_F(LulDwarfCFIInsn, DW_CFA_advance_loc4) { CFISection section(kBigEndian, 8); StockCIEAndFDE(§ion); section.D8(lul::DW_CFA_advance_loc4) .D32(0x15813c88) .D8(lul::DW_CFA_def_cfa) .ULEB128(0x135270c5) .ULEB128(0x24bad7cb) .FinishEntry(); PERHAPS_WRITE_DEBUG_FRAME_FILE("DW_CFA_advance_loc4", section); EXPECT_CALL(handler, ValOffsetRule((fde_start + 0x15813c88ULL * code_factor), kCFARegister, 0x135270c5, 0x24bad7cb)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true)); ParseSection(§ion); } TEST_F(LulDwarfCFIInsn, DW_CFA_MIPS_advance_loc8) { code_factor = 0x2d; CFISection section(kBigEndian, 8); StockCIEAndFDE(§ion); section.D8(lul::DW_CFA_MIPS_advance_loc8) .D64(0x3c4f3945b92c14ULL) .D8(lul::DW_CFA_def_cfa) .ULEB128(0xe17ed602) .ULEB128(0x3d162e7f) .FinishEntry(); PERHAPS_WRITE_DEBUG_FRAME_FILE("DW_CFA_advance_loc8", section); EXPECT_CALL(handler, ValOffsetRule((fde_start + 0x3c4f3945b92c14ULL * code_factor), kCFARegister, 0xe17ed602, 0x3d162e7f)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true)); ParseSection(§ion); } TEST_F(LulDwarfCFIInsn, DW_CFA_def_cfa) { CFISection section(kLittleEndian, 4); StockCIEAndFDE(§ion); section.D8(lul::DW_CFA_def_cfa) .ULEB128(0x4e363a85) .ULEB128(0x815f9aa7) .FinishEntry(); PERHAPS_WRITE_DEBUG_FRAME_FILE("DW_CFA_def_cfa", section); EXPECT_CALL(handler, ValOffsetRule(fde_start, kCFARegister, 0x4e363a85, 0x815f9aa7)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true)); ParseSection(§ion); } TEST_F(LulDwarfCFIInsn, DW_CFA_def_cfa_sf) { CFISection section(kBigEndian, 4); StockCIEAndFDE(§ion); section.D8(lul::DW_CFA_def_cfa_sf) .ULEB128(0x8ccb32b7) .LEB128(0x9ea) .D8(lul::DW_CFA_def_cfa_sf) .ULEB128(0x9b40f5da) .LEB128(-0x40a2) .FinishEntry(); EXPECT_CALL(handler, ValOffsetRule(fde_start, kCFARegister, 0x8ccb32b7, 0x9ea * data_factor)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, ValOffsetRule(fde_start, kCFARegister, 0x9b40f5da, -0x40a2 * data_factor)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true)); ParseSection(§ion); } TEST_F(LulDwarfCFIInsn, DW_CFA_def_cfa_register) { CFISection section(kLittleEndian, 8); StockCIEAndFDE(§ion); section.D8(lul::DW_CFA_def_cfa_register).ULEB128(0x3e7e9363).FinishEntry(); EXPECT_CALL(handler, ValOffsetRule(fde_start, kCFARegister, 0x3e7e9363, cfa_offset)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true)); ParseSection(§ion); } // DW_CFA_def_cfa_register should have no effect when applied to a // non-base/offset rule. TEST_F(LulDwarfCFIInsn, DW_CFA_def_cfa_registerBadRule) { ByteReader reader(ENDIANNESS_BIG); CFISection section(kBigEndian, 4); StockCIEAndFDE(§ion); section.D8(lul::DW_CFA_def_cfa_expression) .Block("needle in a haystack") .D8(lul::DW_CFA_def_cfa_register) .ULEB128(0xf1b49e49) .FinishEntry(); EXPECT_CALL(handler, ValExpressionRule(fde_start, kCFARegister, "needle in a haystack")) .WillRepeatedly(Return(true)); EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true)); ParseSection(§ion, true, &reader); } TEST_F(LulDwarfCFIInsn, DW_CFA_def_cfa_offset) { CFISection section(kBigEndian, 4); StockCIEAndFDE(§ion); section.D8(lul::DW_CFA_def_cfa_offset).ULEB128(0x1e8e3b9b).FinishEntry(); EXPECT_CALL(handler, ValOffsetRule(fde_start, kCFARegister, cfa_base_register, 0x1e8e3b9b)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true)); ParseSection(§ion); } TEST_F(LulDwarfCFIInsn, DW_CFA_def_cfa_offset_sf) { CFISection section(kLittleEndian, 4); StockCIEAndFDE(§ion); section.D8(lul::DW_CFA_def_cfa_offset_sf) .LEB128(0x970) .D8(lul::DW_CFA_def_cfa_offset_sf) .LEB128(-0x2cd) .FinishEntry(); EXPECT_CALL(handler, ValOffsetRule(fde_start, kCFARegister, cfa_base_register, 0x970 * data_factor)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, ValOffsetRule(fde_start, kCFARegister, cfa_base_register, -0x2cd * data_factor)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true)); ParseSection(§ion); } // DW_CFA_def_cfa_offset should have no effect when applied to a // non-base/offset rule. TEST_F(LulDwarfCFIInsn, DW_CFA_def_cfa_offsetBadRule) { ByteReader reader(ENDIANNESS_BIG); CFISection section(kBigEndian, 4); StockCIEAndFDE(§ion); section.D8(lul::DW_CFA_def_cfa_expression) .Block("six ways to Sunday") .D8(lul::DW_CFA_def_cfa_offset) .ULEB128(0x1e8e3b9b) .FinishEntry(); EXPECT_CALL(handler, ValExpressionRule(fde_start, kCFARegister, "six ways to Sunday")) .WillRepeatedly(Return(true)); EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true)); ParseSection(§ion, true, &reader); } TEST_F(LulDwarfCFIInsn, DW_CFA_def_cfa_expression) { ByteReader reader(ENDIANNESS_LITTLE); CFISection section(kLittleEndian, 8); StockCIEAndFDE(§ion); section.D8(lul::DW_CFA_def_cfa_expression).Block("eating crow").FinishEntry(); EXPECT_CALL(handler, ValExpressionRule(fde_start, kCFARegister, "eating crow")) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true)); ParseSection(§ion, true, &reader); } TEST_F(LulDwarfCFIInsn, DW_CFA_undefined) { CFISection section(kLittleEndian, 4); StockCIEAndFDE(§ion); section.D8(lul::DW_CFA_undefined).ULEB128(0x300ce45d).FinishEntry(); EXPECT_CALL(handler, UndefinedRule(fde_start, 0x300ce45d)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true)); ParseSection(§ion); } TEST_F(LulDwarfCFIInsn, DW_CFA_same_value) { CFISection section(kLittleEndian, 4); StockCIEAndFDE(§ion); section.D8(lul::DW_CFA_same_value).ULEB128(0x3865a760).FinishEntry(); EXPECT_CALL(handler, SameValueRule(fde_start, 0x3865a760)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true)); ParseSection(§ion); } TEST_F(LulDwarfCFIInsn, DW_CFA_offset) { CFISection section(kBigEndian, 4); StockCIEAndFDE(§ion); section.D8(lul::DW_CFA_offset | 0x2c).ULEB128(0x9f6).FinishEntry(); EXPECT_CALL(handler, OffsetRule(fde_start, 0x2c, kCFARegister, 0x9f6 * data_factor)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true)); ParseSection(§ion); } TEST_F(LulDwarfCFIInsn, DW_CFA_offset_extended) { CFISection section(kBigEndian, 4); StockCIEAndFDE(§ion); section.D8(lul::DW_CFA_offset_extended) .ULEB128(0x402b) .ULEB128(0xb48) .FinishEntry(); EXPECT_CALL(handler, OffsetRule(fde_start, 0x402b, kCFARegister, 0xb48 * data_factor)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true)); ParseSection(§ion); } TEST_F(LulDwarfCFIInsn, DW_CFA_offset_extended_sf) { CFISection section(kBigEndian, 8); StockCIEAndFDE(§ion); section.D8(lul::DW_CFA_offset_extended_sf) .ULEB128(0x997c23ee) .LEB128(0x2d00) .D8(lul::DW_CFA_offset_extended_sf) .ULEB128(0x9519eb82) .LEB128(-0xa77) .FinishEntry(); EXPECT_CALL(handler, OffsetRule(fde_start, 0x997c23ee, kCFARegister, 0x2d00 * data_factor)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, OffsetRule(fde_start, 0x9519eb82, kCFARegister, -0xa77 * data_factor)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true)); ParseSection(§ion); } TEST_F(LulDwarfCFIInsn, DW_CFA_val_offset) { CFISection section(kBigEndian, 4); StockCIEAndFDE(§ion); section.D8(lul::DW_CFA_val_offset) .ULEB128(0x623562fe) .ULEB128(0x673) .FinishEntry(); EXPECT_CALL(handler, ValOffsetRule(fde_start, 0x623562fe, kCFARegister, 0x673 * data_factor)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true)); ParseSection(§ion); } TEST_F(LulDwarfCFIInsn, DW_CFA_val_offset_sf) { CFISection section(kBigEndian, 4); StockCIEAndFDE(§ion); section.D8(lul::DW_CFA_val_offset_sf) .ULEB128(0x6f4f) .LEB128(0xaab) .D8(lul::DW_CFA_val_offset_sf) .ULEB128(0x2483) .LEB128(-0x8a2) .FinishEntry(); EXPECT_CALL(handler, ValOffsetRule(fde_start, 0x6f4f, kCFARegister, 0xaab * data_factor)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, ValOffsetRule(fde_start, 0x2483, kCFARegister, -0x8a2 * data_factor)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true)); ParseSection(§ion); } TEST_F(LulDwarfCFIInsn, DW_CFA_register) { CFISection section(kLittleEndian, 8); StockCIEAndFDE(§ion); section.D8(lul::DW_CFA_register) .ULEB128(0x278d18f9) .ULEB128(0x1a684414) .FinishEntry(); EXPECT_CALL(handler, RegisterRule(fde_start, 0x278d18f9, 0x1a684414)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true)); ParseSection(§ion); } TEST_F(LulDwarfCFIInsn, DW_CFA_expression) { ByteReader reader(ENDIANNESS_BIG); CFISection section(kBigEndian, 8); StockCIEAndFDE(§ion); section.D8(lul::DW_CFA_expression) .ULEB128(0xa1619fb2) .Block("plus ça change, plus c'est la même chose") .FinishEntry(); EXPECT_CALL(handler, ExpressionRule(fde_start, 0xa1619fb2, "plus ça change, plus c'est la même chose")) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true)); ParseSection(§ion, true, &reader); } TEST_F(LulDwarfCFIInsn, DW_CFA_val_expression) { ByteReader reader(ENDIANNESS_BIG); CFISection section(kBigEndian, 4); StockCIEAndFDE(§ion); section.D8(lul::DW_CFA_val_expression) .ULEB128(0xc5e4a9e3) .Block("he who has the gold makes the rules") .FinishEntry(); EXPECT_CALL(handler, ValExpressionRule(fde_start, 0xc5e4a9e3, "he who has the gold makes the rules")) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true)); ParseSection(§ion, true, &reader); } TEST_F(LulDwarfCFIInsn, DW_CFA_restore) { CFISection section(kLittleEndian, 8); code_factor = 0x01bd188a9b1fa083ULL; data_factor = -0x1ac8; return_register = 0x8c35b049; version = 2; fde_start = 0x2d70fe998298bbb1ULL; fde_size = 0x46ccc2e63cf0b108ULL; Label cie; section.Mark(&cie) .CIEHeader(code_factor, data_factor, return_register, version, "") // Provide a CFA rule, because register rules require them. .D8(lul::DW_CFA_def_cfa) .ULEB128(0x6ca1d50e) .ULEB128(0x372e38e8) // Provide an offset(N) rule for register 0x3c. .D8(lul::DW_CFA_offset | 0x3c) .ULEB128(0xb348) .FinishEntry() // In the FDE... .FDEHeader(cie, fde_start, fde_size) // At a second address, provide a new offset(N) rule for register 0x3c. .D8(lul::DW_CFA_advance_loc | 0x13) .D8(lul::DW_CFA_offset | 0x3c) .ULEB128(0x9a50) // At a third address, restore the original rule for register 0x3c. .D8(lul::DW_CFA_advance_loc | 0x01) .D8(lul::DW_CFA_restore | 0x3c) .FinishEntry(); { InSequence s; EXPECT_CALL(handler, Entry(_, fde_start, fde_size, version, "", return_register)) .WillOnce(Return(true)); // CIE's CFA rule. EXPECT_CALL(handler, ValOffsetRule(fde_start, kCFARegister, 0x6ca1d50e, 0x372e38e8)) .WillOnce(Return(true)); // CIE's rule for register 0x3c. EXPECT_CALL(handler, OffsetRule(fde_start, 0x3c, kCFARegister, 0xb348 * data_factor)) .WillOnce(Return(true)); // FDE's rule for register 0x3c. EXPECT_CALL(handler, OffsetRule(fde_start + 0x13 * code_factor, 0x3c, kCFARegister, 0x9a50 * data_factor)) .WillOnce(Return(true)); // Restore CIE's rule for register 0x3c. EXPECT_CALL(handler, OffsetRule(fde_start + (0x13 + 0x01) * code_factor, 0x3c, kCFARegister, 0xb348 * data_factor)) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).WillOnce(Return(true)); } ParseSection(§ion); } TEST_F(LulDwarfCFIInsn, DW_CFA_restoreNoRule) { CFISection section(kBigEndian, 4); code_factor = 0x005f78143c1c3b82ULL; data_factor = 0x25d0; return_register = 0xe8; version = 1; fde_start = 0x4062e30f; fde_size = 0x5302a389; Label cie; section.Mark(&cie) .CIEHeader(code_factor, data_factor, return_register, version, "") // Provide a CFA rule, because register rules require them. .D8(lul::DW_CFA_def_cfa) .ULEB128(0x470aa334) .ULEB128(0x099ef127) .FinishEntry() // In the FDE... .FDEHeader(cie, fde_start, fde_size) // At a second address, provide an offset(N) rule for register 0x2c. .D8(lul::DW_CFA_advance_loc | 0x7) .D8(lul::DW_CFA_offset | 0x2c) .ULEB128(0x1f47) // At a third address, restore the (missing) CIE rule for register 0x2c. .D8(lul::DW_CFA_advance_loc | 0xb) .D8(lul::DW_CFA_restore | 0x2c) .FinishEntry(); { InSequence s; EXPECT_CALL(handler, Entry(_, fde_start, fde_size, version, "", return_register)) .WillOnce(Return(true)); // CIE's CFA rule. EXPECT_CALL(handler, ValOffsetRule(fde_start, kCFARegister, 0x470aa334, 0x099ef127)) .WillOnce(Return(true)); // FDE's rule for register 0x2c. EXPECT_CALL(handler, OffsetRule(fde_start + 0x7 * code_factor, 0x2c, kCFARegister, 0x1f47 * data_factor)) .WillOnce(Return(true)); // Restore CIE's (missing) rule for register 0x2c. EXPECT_CALL(handler, SameValueRule(fde_start + (0x7 + 0xb) * code_factor, 0x2c)) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).WillOnce(Return(true)); } ParseSection(§ion); } TEST_F(LulDwarfCFIInsn, DW_CFA_restore_extended) { CFISection section(kBigEndian, 4); code_factor = 0x126e; data_factor = -0xd8b; return_register = 0x77711787; version = 3; fde_start = 0x01f55a45; fde_size = 0x452adb80; Label cie; section.Mark(&cie) .CIEHeader(code_factor, data_factor, return_register, version, "", true /* dwarf64 */) // Provide a CFA rule, because register rules require them. .D8(lul::DW_CFA_def_cfa) .ULEB128(0x56fa0edd) .ULEB128(0x097f78a5) // Provide an offset(N) rule for register 0x0f9b8a1c. .D8(lul::DW_CFA_offset_extended) .ULEB128(0x0f9b8a1c) .ULEB128(0xc979) .FinishEntry() // In the FDE... .FDEHeader(cie, fde_start, fde_size) // At a second address, provide a new offset(N) rule for reg 0x0f9b8a1c. .D8(lul::DW_CFA_advance_loc | 0x3) .D8(lul::DW_CFA_offset_extended) .ULEB128(0x0f9b8a1c) .ULEB128(0x3b7b) // At a third address, restore the original rule for register 0x0f9b8a1c. .D8(lul::DW_CFA_advance_loc | 0x04) .D8(lul::DW_CFA_restore_extended) .ULEB128(0x0f9b8a1c) .FinishEntry(); { InSequence s; EXPECT_CALL(handler, Entry(_, fde_start, fde_size, version, "", return_register)) .WillOnce(Return(true)); // CIE's CFA rule. EXPECT_CALL(handler, ValOffsetRule(fde_start, kCFARegister, 0x56fa0edd, 0x097f78a5)) .WillOnce(Return(true)); // CIE's rule for register 0x0f9b8a1c. EXPECT_CALL(handler, OffsetRule(fde_start, 0x0f9b8a1c, kCFARegister, 0xc979 * data_factor)) .WillOnce(Return(true)); // FDE's rule for register 0x0f9b8a1c. EXPECT_CALL(handler, OffsetRule(fde_start + 0x3 * code_factor, 0x0f9b8a1c, kCFARegister, 0x3b7b * data_factor)) .WillOnce(Return(true)); // Restore CIE's rule for register 0x0f9b8a1c. EXPECT_CALL(handler, OffsetRule(fde_start + (0x3 + 0x4) * code_factor, 0x0f9b8a1c, kCFARegister, 0xc979 * data_factor)) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).WillOnce(Return(true)); } ParseSection(§ion); } TEST_F(LulDwarfCFIInsn, DW_CFA_remember_and_restore_state) { CFISection section(kLittleEndian, 8); StockCIEAndFDE(§ion); // We create a state, save it, modify it, and then restore. We // refer to the state that is overridden the restore as the // "outgoing" state, and the restored state the "incoming" state. // // Register outgoing incoming expect // 1 offset(N) no rule new "same value" rule // 2 register(R) offset(N) report changed rule // 3 offset(N) offset(M) report changed offset // 4 offset(N) offset(N) no report // 5 offset(N) no rule new "same value" rule section // Create the "incoming" state, which we will save and later restore. .D8(lul::DW_CFA_offset | 2) .ULEB128(0x9806) .D8(lul::DW_CFA_offset | 3) .ULEB128(0x995d) .D8(lul::DW_CFA_offset | 4) .ULEB128(0x7055) .D8(lul::DW_CFA_remember_state) // Advance to a new instruction; an implementation could legitimately // ignore all but the final rule for a given register at a given address. .D8(lul::DW_CFA_advance_loc | 1) // Create the "outgoing" state, which we will discard. .D8(lul::DW_CFA_offset | 1) .ULEB128(0xea1a) .D8(lul::DW_CFA_register) .ULEB128(2) .ULEB128(0x1d2a3767) .D8(lul::DW_CFA_offset | 3) .ULEB128(0xdd29) .D8(lul::DW_CFA_offset | 5) .ULEB128(0xf1ce) // At a third address, restore the incoming state. .D8(lul::DW_CFA_advance_loc | 1) .D8(lul::DW_CFA_restore_state) .FinishEntry(); uint64 addr = fde_start; // Expect the incoming rules to be reported. EXPECT_CALL(handler, OffsetRule(addr, 2, kCFARegister, 0x9806 * data_factor)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, OffsetRule(addr, 3, kCFARegister, 0x995d * data_factor)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, OffsetRule(addr, 4, kCFARegister, 0x7055 * data_factor)) .InSequence(s) .WillOnce(Return(true)); addr += code_factor; // After the save, we establish the outgoing rule set. EXPECT_CALL(handler, OffsetRule(addr, 1, kCFARegister, 0xea1a * data_factor)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, RegisterRule(addr, 2, 0x1d2a3767)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, OffsetRule(addr, 3, kCFARegister, 0xdd29 * data_factor)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, OffsetRule(addr, 5, kCFARegister, 0xf1ce * data_factor)) .InSequence(s) .WillOnce(Return(true)); addr += code_factor; // Finally, after the restore, expect to see the differences from // the outgoing to the incoming rules reported. EXPECT_CALL(handler, SameValueRule(addr, 1)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, OffsetRule(addr, 2, kCFARegister, 0x9806 * data_factor)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, OffsetRule(addr, 3, kCFARegister, 0x995d * data_factor)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, SameValueRule(addr, 5)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).WillOnce(Return(true)); ParseSection(§ion); } // Check that restoring a rule set reports changes to the CFA rule. TEST_F(LulDwarfCFIInsn, DW_CFA_remember_and_restore_stateCFA) { CFISection section(kBigEndian, 4); StockCIEAndFDE(§ion); section.D8(lul::DW_CFA_remember_state) .D8(lul::DW_CFA_advance_loc | 1) .D8(lul::DW_CFA_def_cfa_offset) .ULEB128(0x90481102) .D8(lul::DW_CFA_advance_loc | 1) .D8(lul::DW_CFA_restore_state) .FinishEntry(); EXPECT_CALL(handler, ValOffsetRule(fde_start + code_factor, kCFARegister, cfa_base_register, 0x90481102)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, ValOffsetRule(fde_start + code_factor * 2, kCFARegister, cfa_base_register, cfa_offset)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).WillOnce(Return(true)); ParseSection(§ion); } TEST_F(LulDwarfCFIInsn, DW_CFA_nop) { CFISection section(kLittleEndian, 4); StockCIEAndFDE(§ion); section.D8(lul::DW_CFA_nop) .D8(lul::DW_CFA_def_cfa) .ULEB128(0x3fb8d4f1) .ULEB128(0x078dc67b) .D8(lul::DW_CFA_nop) .FinishEntry(); EXPECT_CALL(handler, ValOffsetRule(fde_start, kCFARegister, 0x3fb8d4f1, 0x078dc67b)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true)); ParseSection(§ion); } TEST_F(LulDwarfCFIInsn, DW_CFA_GNU_window_save) { CFISection section(kBigEndian, 4); StockCIEAndFDE(§ion); section.D8(lul::DW_CFA_GNU_window_save).FinishEntry(); // Don't include all the rules in any particular sequence. // The caller's %o0-%o7 have become the callee's %i0-%i7. This is // the GCC register numbering. for (int i = 8; i < 16; i++) EXPECT_CALL(handler, RegisterRule(fde_start, i, i + 16)) .WillOnce(Return(true)); // The caller's %l0-%l7 and %i0-%i7 have been saved at the top of // its frame. for (int i = 16; i < 32; i++) EXPECT_CALL(handler, OffsetRule(fde_start, i, kCFARegister, (i - 16) * 4)) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true)); ParseSection(§ion); } TEST_F(LulDwarfCFIInsn, DW_CFA_GNU_args_size) { CFISection section(kLittleEndian, 8); StockCIEAndFDE(§ion); section.D8(lul::DW_CFA_GNU_args_size) .ULEB128(0xeddfa520) // Verify that we see this, meaning we parsed the above properly. .D8(lul::DW_CFA_offset | 0x23) .ULEB128(0x269) .FinishEntry(); EXPECT_CALL(handler, OffsetRule(fde_start, 0x23, kCFARegister, 0x269 * data_factor)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true)); ParseSection(§ion); } TEST_F(LulDwarfCFIInsn, DW_CFA_GNU_negative_offset_extended) { CFISection section(kLittleEndian, 4); StockCIEAndFDE(§ion); section.D8(lul::DW_CFA_GNU_negative_offset_extended) .ULEB128(0x430cc87a) .ULEB128(0x613) .FinishEntry(); EXPECT_CALL(handler, OffsetRule(fde_start, 0x430cc87a, kCFARegister, -0x613 * data_factor)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true)); ParseSection(§ion); } // Three FDEs: skip the second TEST_F(LulDwarfCFIInsn, SkipFDE) { CFISection section(kBigEndian, 4); Label cie; section // CIE, used by all FDEs. .Mark(&cie) .CIEHeader(0x010269f2, 0x9177, 0xedca5849, 2, "") .D8(lul::DW_CFA_def_cfa) .ULEB128(0x42ed390b) .ULEB128(0x98f43aad) .FinishEntry() // First FDE. .FDEHeader(cie, 0xa870ebdd, 0x60f6aa4) .D8(lul::DW_CFA_register) .ULEB128(0x3a860351) .ULEB128(0x6c9a6bcf) .FinishEntry() // Second FDE. .FDEHeader(cie, 0xc534f7c0, 0xf6552e9, true /* dwarf64 */) .D8(lul::DW_CFA_register) .ULEB128(0x1b62c234) .ULEB128(0x26586b18) .FinishEntry() // Third FDE. .FDEHeader(cie, 0xf681cfc8, 0x7e4594e) .D8(lul::DW_CFA_register) .ULEB128(0x26c53934) .ULEB128(0x18eeb8a4) .FinishEntry(); { InSequence s; // Process the first FDE. EXPECT_CALL(handler, Entry(_, 0xa870ebdd, 0x60f6aa4, 2, "", 0xedca5849)) .WillOnce(Return(true)); EXPECT_CALL(handler, ValOffsetRule(0xa870ebdd, kCFARegister, 0x42ed390b, 0x98f43aad)) .WillOnce(Return(true)); EXPECT_CALL(handler, RegisterRule(0xa870ebdd, 0x3a860351, 0x6c9a6bcf)) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).WillOnce(Return(true)); // Skip the second FDE. EXPECT_CALL(handler, Entry(_, 0xc534f7c0, 0xf6552e9, 2, "", 0xedca5849)) .WillOnce(Return(false)); // Process the third FDE. EXPECT_CALL(handler, Entry(_, 0xf681cfc8, 0x7e4594e, 2, "", 0xedca5849)) .WillOnce(Return(true)); EXPECT_CALL(handler, ValOffsetRule(0xf681cfc8, kCFARegister, 0x42ed390b, 0x98f43aad)) .WillOnce(Return(true)); EXPECT_CALL(handler, RegisterRule(0xf681cfc8, 0x26c53934, 0x18eeb8a4)) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).WillOnce(Return(true)); } ParseSection(§ion); } // Quit processing in the middle of an entry's instructions. TEST_F(LulDwarfCFIInsn, QuitMidentry) { CFISection section(kLittleEndian, 8); StockCIEAndFDE(§ion); section.D8(lul::DW_CFA_register) .ULEB128(0xe0cf850d) .ULEB128(0x15aab431) .D8(lul::DW_CFA_expression) .ULEB128(0x46750aa5) .Block("meat") .FinishEntry(); EXPECT_CALL(handler, RegisterRule(fde_start, 0xe0cf850d, 0x15aab431)) .InSequence(s) .WillOnce(Return(false)); EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true)); ParseSection(§ion, false); } class LulDwarfCFIRestore : public CFIInsnFixture, public Test {}; TEST_F(LulDwarfCFIRestore, RestoreUndefinedRuleUnchanged) { CFISection section(kLittleEndian, 4); StockCIEAndFDE(§ion); section.D8(lul::DW_CFA_undefined) .ULEB128(0x0bac878e) .D8(lul::DW_CFA_remember_state) .D8(lul::DW_CFA_advance_loc | 1) .D8(lul::DW_CFA_restore_state) .FinishEntry(); EXPECT_CALL(handler, UndefinedRule(fde_start, 0x0bac878e)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).WillOnce(Return(true)); ParseSection(§ion); } TEST_F(LulDwarfCFIRestore, RestoreUndefinedRuleChanged) { CFISection section(kLittleEndian, 4); StockCIEAndFDE(§ion); section.D8(lul::DW_CFA_undefined) .ULEB128(0x7dedff5f) .D8(lul::DW_CFA_remember_state) .D8(lul::DW_CFA_advance_loc | 1) .D8(lul::DW_CFA_same_value) .ULEB128(0x7dedff5f) .D8(lul::DW_CFA_advance_loc | 1) .D8(lul::DW_CFA_restore_state) .FinishEntry(); EXPECT_CALL(handler, UndefinedRule(fde_start, 0x7dedff5f)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, SameValueRule(fde_start + code_factor, 0x7dedff5f)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, UndefinedRule(fde_start + 2 * code_factor, 0x7dedff5f)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).WillOnce(Return(true)); ParseSection(§ion); } TEST_F(LulDwarfCFIRestore, RestoreSameValueRuleUnchanged) { CFISection section(kLittleEndian, 4); StockCIEAndFDE(§ion); section.D8(lul::DW_CFA_same_value) .ULEB128(0xadbc9b3a) .D8(lul::DW_CFA_remember_state) .D8(lul::DW_CFA_advance_loc | 1) .D8(lul::DW_CFA_restore_state) .FinishEntry(); EXPECT_CALL(handler, SameValueRule(fde_start, 0xadbc9b3a)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).WillOnce(Return(true)); ParseSection(§ion); } TEST_F(LulDwarfCFIRestore, RestoreSameValueRuleChanged) { CFISection section(kLittleEndian, 4); StockCIEAndFDE(§ion); section.D8(lul::DW_CFA_same_value) .ULEB128(0x3d90dcb5) .D8(lul::DW_CFA_remember_state) .D8(lul::DW_CFA_advance_loc | 1) .D8(lul::DW_CFA_undefined) .ULEB128(0x3d90dcb5) .D8(lul::DW_CFA_advance_loc | 1) .D8(lul::DW_CFA_restore_state) .FinishEntry(); EXPECT_CALL(handler, SameValueRule(fde_start, 0x3d90dcb5)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, UndefinedRule(fde_start + code_factor, 0x3d90dcb5)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, SameValueRule(fde_start + 2 * code_factor, 0x3d90dcb5)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).WillOnce(Return(true)); ParseSection(§ion); } TEST_F(LulDwarfCFIRestore, RestoreOffsetRuleUnchanged) { CFISection section(kLittleEndian, 4); StockCIEAndFDE(§ion); section.D8(lul::DW_CFA_offset | 0x14) .ULEB128(0xb6f) .D8(lul::DW_CFA_remember_state) .D8(lul::DW_CFA_advance_loc | 1) .D8(lul::DW_CFA_restore_state) .FinishEntry(); EXPECT_CALL(handler, OffsetRule(fde_start, 0x14, kCFARegister, 0xb6f * data_factor)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).WillOnce(Return(true)); ParseSection(§ion); } TEST_F(LulDwarfCFIRestore, RestoreOffsetRuleChanged) { CFISection section(kLittleEndian, 4); StockCIEAndFDE(§ion); section.D8(lul::DW_CFA_offset | 0x21) .ULEB128(0xeb7) .D8(lul::DW_CFA_remember_state) .D8(lul::DW_CFA_advance_loc | 1) .D8(lul::DW_CFA_undefined) .ULEB128(0x21) .D8(lul::DW_CFA_advance_loc | 1) .D8(lul::DW_CFA_restore_state) .FinishEntry(); EXPECT_CALL(handler, OffsetRule(fde_start, 0x21, kCFARegister, 0xeb7 * data_factor)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, UndefinedRule(fde_start + code_factor, 0x21)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, OffsetRule(fde_start + 2 * code_factor, 0x21, kCFARegister, 0xeb7 * data_factor)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).WillOnce(Return(true)); ParseSection(§ion); } TEST_F(LulDwarfCFIRestore, RestoreOffsetRuleChangedOffset) { CFISection section(kLittleEndian, 4); StockCIEAndFDE(§ion); section.D8(lul::DW_CFA_offset | 0x21) .ULEB128(0x134) .D8(lul::DW_CFA_remember_state) .D8(lul::DW_CFA_advance_loc | 1) .D8(lul::DW_CFA_offset | 0x21) .ULEB128(0xf4f) .D8(lul::DW_CFA_advance_loc | 1) .D8(lul::DW_CFA_restore_state) .FinishEntry(); EXPECT_CALL(handler, OffsetRule(fde_start, 0x21, kCFARegister, 0x134 * data_factor)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, OffsetRule(fde_start + code_factor, 0x21, kCFARegister, 0xf4f * data_factor)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, OffsetRule(fde_start + 2 * code_factor, 0x21, kCFARegister, 0x134 * data_factor)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).WillOnce(Return(true)); ParseSection(§ion); } TEST_F(LulDwarfCFIRestore, RestoreValOffsetRuleUnchanged) { CFISection section(kLittleEndian, 4); StockCIEAndFDE(§ion); section.D8(lul::DW_CFA_val_offset) .ULEB128(0x829caee6) .ULEB128(0xe4c) .D8(lul::DW_CFA_remember_state) .D8(lul::DW_CFA_advance_loc | 1) .D8(lul::DW_CFA_restore_state) .FinishEntry(); EXPECT_CALL(handler, ValOffsetRule(fde_start, 0x829caee6, kCFARegister, 0xe4c * data_factor)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).WillOnce(Return(true)); ParseSection(§ion); } TEST_F(LulDwarfCFIRestore, RestoreValOffsetRuleChanged) { CFISection section(kLittleEndian, 4); StockCIEAndFDE(§ion); section.D8(lul::DW_CFA_val_offset) .ULEB128(0xf17c36d6) .ULEB128(0xeb7) .D8(lul::DW_CFA_remember_state) .D8(lul::DW_CFA_advance_loc | 1) .D8(lul::DW_CFA_undefined) .ULEB128(0xf17c36d6) .D8(lul::DW_CFA_advance_loc | 1) .D8(lul::DW_CFA_restore_state) .FinishEntry(); EXPECT_CALL(handler, ValOffsetRule(fde_start, 0xf17c36d6, kCFARegister, 0xeb7 * data_factor)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, UndefinedRule(fde_start + code_factor, 0xf17c36d6)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, ValOffsetRule(fde_start + 2 * code_factor, 0xf17c36d6, kCFARegister, 0xeb7 * data_factor)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).WillOnce(Return(true)); ParseSection(§ion); } TEST_F(LulDwarfCFIRestore, RestoreValOffsetRuleChangedValOffset) { CFISection section(kLittleEndian, 4); StockCIEAndFDE(§ion); section.D8(lul::DW_CFA_val_offset) .ULEB128(0x2cf0ab1b) .ULEB128(0x562) .D8(lul::DW_CFA_remember_state) .D8(lul::DW_CFA_advance_loc | 1) .D8(lul::DW_CFA_val_offset) .ULEB128(0x2cf0ab1b) .ULEB128(0xe88) .D8(lul::DW_CFA_advance_loc | 1) .D8(lul::DW_CFA_restore_state) .FinishEntry(); EXPECT_CALL(handler, ValOffsetRule(fde_start, 0x2cf0ab1b, kCFARegister, 0x562 * data_factor)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, ValOffsetRule(fde_start + code_factor, 0x2cf0ab1b, kCFARegister, 0xe88 * data_factor)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, ValOffsetRule(fde_start + 2 * code_factor, 0x2cf0ab1b, kCFARegister, 0x562 * data_factor)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).WillOnce(Return(true)); ParseSection(§ion); } TEST_F(LulDwarfCFIRestore, RestoreRegisterRuleUnchanged) { CFISection section(kLittleEndian, 4); StockCIEAndFDE(§ion); section.D8(lul::DW_CFA_register) .ULEB128(0x77514acc) .ULEB128(0x464de4ce) .D8(lul::DW_CFA_remember_state) .D8(lul::DW_CFA_advance_loc | 1) .D8(lul::DW_CFA_restore_state) .FinishEntry(); EXPECT_CALL(handler, RegisterRule(fde_start, 0x77514acc, 0x464de4ce)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).WillOnce(Return(true)); ParseSection(§ion); } TEST_F(LulDwarfCFIRestore, RestoreRegisterRuleChanged) { CFISection section(kLittleEndian, 4); StockCIEAndFDE(§ion); section.D8(lul::DW_CFA_register) .ULEB128(0xe39acce5) .ULEB128(0x095f1559) .D8(lul::DW_CFA_remember_state) .D8(lul::DW_CFA_advance_loc | 1) .D8(lul::DW_CFA_undefined) .ULEB128(0xe39acce5) .D8(lul::DW_CFA_advance_loc | 1) .D8(lul::DW_CFA_restore_state) .FinishEntry(); EXPECT_CALL(handler, RegisterRule(fde_start, 0xe39acce5, 0x095f1559)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, UndefinedRule(fde_start + code_factor, 0xe39acce5)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, RegisterRule(fde_start + 2 * code_factor, 0xe39acce5, 0x095f1559)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).WillOnce(Return(true)); ParseSection(§ion); } TEST_F(LulDwarfCFIRestore, RestoreRegisterRuleChangedRegister) { CFISection section(kLittleEndian, 4); StockCIEAndFDE(§ion); section.D8(lul::DW_CFA_register) .ULEB128(0xd40e21b1) .ULEB128(0x16607d6a) .D8(lul::DW_CFA_remember_state) .D8(lul::DW_CFA_advance_loc | 1) .D8(lul::DW_CFA_register) .ULEB128(0xd40e21b1) .ULEB128(0xbabb4742) .D8(lul::DW_CFA_advance_loc | 1) .D8(lul::DW_CFA_restore_state) .FinishEntry(); EXPECT_CALL(handler, RegisterRule(fde_start, 0xd40e21b1, 0x16607d6a)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, RegisterRule(fde_start + code_factor, 0xd40e21b1, 0xbabb4742)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, RegisterRule(fde_start + 2 * code_factor, 0xd40e21b1, 0x16607d6a)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).WillOnce(Return(true)); ParseSection(§ion); } TEST_F(LulDwarfCFIRestore, RestoreExpressionRuleUnchanged) { ByteReader reader(ENDIANNESS_LITTLE); CFISection section(kLittleEndian, 4); StockCIEAndFDE(§ion); section.D8(lul::DW_CFA_expression) .ULEB128(0x666ae152) .Block("dwarf") .D8(lul::DW_CFA_remember_state) .D8(lul::DW_CFA_advance_loc | 1) .D8(lul::DW_CFA_restore_state) .FinishEntry(); EXPECT_CALL(handler, ExpressionRule(fde_start, 0x666ae152, "dwarf")) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).WillOnce(Return(true)); ParseSection(§ion, true, &reader); } TEST_F(LulDwarfCFIRestore, RestoreExpressionRuleChanged) { ByteReader reader(ENDIANNESS_LITTLE); CFISection section(kLittleEndian, 4); StockCIEAndFDE(§ion); section.D8(lul::DW_CFA_expression) .ULEB128(0xb5ca5c46) .Block("elf") .D8(lul::DW_CFA_remember_state) .D8(lul::DW_CFA_advance_loc | 1) .D8(lul::DW_CFA_undefined) .ULEB128(0xb5ca5c46) .D8(lul::DW_CFA_advance_loc | 1) .D8(lul::DW_CFA_restore_state) .FinishEntry(); EXPECT_CALL(handler, ExpressionRule(fde_start, 0xb5ca5c46, "elf")) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, UndefinedRule(fde_start + code_factor, 0xb5ca5c46)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, ExpressionRule(fde_start + 2 * code_factor, 0xb5ca5c46, "elf")) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).WillOnce(Return(true)); ParseSection(§ion, true, &reader); } TEST_F(LulDwarfCFIRestore, RestoreExpressionRuleChangedExpression) { ByteReader reader(ENDIANNESS_LITTLE); CFISection section(kLittleEndian, 4); StockCIEAndFDE(§ion); section.D8(lul::DW_CFA_expression) .ULEB128(0x500f5739) .Block("smurf") .D8(lul::DW_CFA_remember_state) .D8(lul::DW_CFA_advance_loc | 1) .D8(lul::DW_CFA_expression) .ULEB128(0x500f5739) .Block("orc") .D8(lul::DW_CFA_advance_loc | 1) .D8(lul::DW_CFA_restore_state) .FinishEntry(); EXPECT_CALL(handler, ExpressionRule(fde_start, 0x500f5739, "smurf")) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, ExpressionRule(fde_start + code_factor, 0x500f5739, "orc")) .InSequence(s) .WillOnce(Return(true)); // Expectations are not wishes. EXPECT_CALL(handler, ExpressionRule(fde_start + 2 * code_factor, 0x500f5739, "smurf")) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).WillOnce(Return(true)); ParseSection(§ion, true, &reader); } TEST_F(LulDwarfCFIRestore, RestoreValExpressionRuleUnchanged) { ByteReader reader(ENDIANNESS_LITTLE); CFISection section(kLittleEndian, 4); StockCIEAndFDE(§ion); section.D8(lul::DW_CFA_val_expression) .ULEB128(0x666ae152) .Block("hideous") .D8(lul::DW_CFA_remember_state) .D8(lul::DW_CFA_advance_loc | 1) .D8(lul::DW_CFA_restore_state) .FinishEntry(); EXPECT_CALL(handler, ValExpressionRule(fde_start, 0x666ae152, "hideous")) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).WillOnce(Return(true)); ParseSection(§ion, true, &reader); } TEST_F(LulDwarfCFIRestore, RestoreValExpressionRuleChanged) { ByteReader reader(ENDIANNESS_LITTLE); CFISection section(kLittleEndian, 4); StockCIEAndFDE(§ion); section.D8(lul::DW_CFA_val_expression) .ULEB128(0xb5ca5c46) .Block("revolting") .D8(lul::DW_CFA_remember_state) .D8(lul::DW_CFA_advance_loc | 1) .D8(lul::DW_CFA_undefined) .ULEB128(0xb5ca5c46) .D8(lul::DW_CFA_advance_loc | 1) .D8(lul::DW_CFA_restore_state) .FinishEntry(); PERHAPS_WRITE_DEBUG_FRAME_FILE("RestoreValExpressionRuleChanged", section); EXPECT_CALL(handler, ValExpressionRule(fde_start, 0xb5ca5c46, "revolting")) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, UndefinedRule(fde_start + code_factor, 0xb5ca5c46)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, ValExpressionRule(fde_start + 2 * code_factor, 0xb5ca5c46, "revolting")) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).WillOnce(Return(true)); ParseSection(§ion, true, &reader); } TEST_F(LulDwarfCFIRestore, RestoreValExpressionRuleChangedValExpression) { ByteReader reader(ENDIANNESS_LITTLE); CFISection section(kLittleEndian, 4); StockCIEAndFDE(§ion); section.D8(lul::DW_CFA_val_expression) .ULEB128(0x500f5739) .Block("repulsive") .D8(lul::DW_CFA_remember_state) .D8(lul::DW_CFA_advance_loc | 1) .D8(lul::DW_CFA_val_expression) .ULEB128(0x500f5739) .Block("nauseous") .D8(lul::DW_CFA_advance_loc | 1) .D8(lul::DW_CFA_restore_state) .FinishEntry(); PERHAPS_WRITE_DEBUG_FRAME_FILE("RestoreValExpressionRuleChangedValExpression", section); EXPECT_CALL(handler, ValExpressionRule(fde_start, 0x500f5739, "repulsive")) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, ValExpressionRule(fde_start + code_factor, 0x500f5739, "nauseous")) .InSequence(s) .WillOnce(Return(true)); // Expectations are not wishes. EXPECT_CALL(handler, ValExpressionRule(fde_start + 2 * code_factor, 0x500f5739, "repulsive")) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).WillOnce(Return(true)); ParseSection(§ion, true, &reader); } struct EHFrameFixture : public CFIInsnFixture { EHFrameFixture() : CFIInsnFixture(), section(kBigEndian, 4, true) { encoded_pointer_bases.cfi = 0x7f496cb2; encoded_pointer_bases.text = 0x540f67b6; encoded_pointer_bases.data = 0xe3eab768; section.SetEncodedPointerBases(encoded_pointer_bases); } CFISection section; CFISection::EncodedPointerBases encoded_pointer_bases; // Parse CFIInsnFixture::ParseSection, but parse the section as // .eh_frame data, supplying stock base addresses. void ParseEHFrameSection(CFISection* section, bool succeeds = true) { EXPECT_TRUE(section->ContainsEHFrame()); string contents; EXPECT_TRUE(section->GetContents(&contents)); lul::Endianness endianness; if (section->endianness() == kBigEndian) endianness = ENDIANNESS_BIG; else { assert(section->endianness() == kLittleEndian); endianness = ENDIANNESS_LITTLE; } ByteReader reader(endianness); reader.SetAddressSize(section->AddressSize()); reader.SetCFIDataBase(encoded_pointer_bases.cfi, contents.data()); reader.SetTextBase(encoded_pointer_bases.text); reader.SetDataBase(encoded_pointer_bases.data); CallFrameInfo parser(contents.data(), contents.size(), &reader, &handler, &reporter, true); if (succeeds) EXPECT_TRUE(parser.Start()); else EXPECT_FALSE(parser.Start()); } }; class LulDwarfEHFrame : public EHFrameFixture, public Test {}; // A simple CIE, an FDE, and a terminator. TEST_F(LulDwarfEHFrame, Terminator) { Label cie; section.Mark(&cie) .CIEHeader(9968, 2466, 67, 1, "") .D8(lul::DW_CFA_def_cfa) .ULEB128(3772) .ULEB128(1372) .FinishEntry() .FDEHeader(cie, 0x848037a1, 0x7b30475e) .D8(lul::DW_CFA_set_loc) .D32(0x17713850) .D8(lul::DW_CFA_undefined) .ULEB128(5721) .FinishEntry() .D32(0) // Terminate the sequence. // This FDE should be ignored. .FDEHeader(cie, 0xf19629fe, 0x439fb09b) .FinishEntry(); PERHAPS_WRITE_EH_FRAME_FILE("EHFrame.Terminator", section); EXPECT_CALL(handler, Entry(_, 0x848037a1, 0x7b30475e, 1, "", 67)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, ValOffsetRule(0x848037a1, kCFARegister, 3772, 1372)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, UndefinedRule(0x17713850, 5721)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true)); EXPECT_CALL(reporter, EarlyEHTerminator(_)).InSequence(s).WillOnce(Return()); ParseEHFrameSection(§ion); } // The parser should recognize the Linux Standards Base 'z' augmentations. TEST_F(LulDwarfEHFrame, SimpleFDE) { lul::DwarfPointerEncoding lsda_encoding = lul::DwarfPointerEncoding( lul::DW_EH_PE_indirect | lul::DW_EH_PE_datarel | lul::DW_EH_PE_sdata2); lul::DwarfPointerEncoding fde_encoding = lul::DwarfPointerEncoding(lul::DW_EH_PE_textrel | lul::DW_EH_PE_udata2); section.SetPointerEncoding(fde_encoding); section.SetEncodedPointerBases(encoded_pointer_bases); Label cie; section.Mark(&cie) .CIEHeader(4873, 7012, 100, 1, "zSLPR") .ULEB128(7) // Augmentation data length .D8(lsda_encoding) // LSDA pointer format .D8(lul::DW_EH_PE_pcrel) // personality pointer format .EncodedPointer(0x97baa00, lul::DW_EH_PE_pcrel) // and value .D8(fde_encoding) // FDE pointer format .D8(lul::DW_CFA_def_cfa) .ULEB128(6706) .ULEB128(31) .FinishEntry() .FDEHeader(cie, 0x540f6b56, 0xf686) .ULEB128(2) // Augmentation data length .EncodedPointer(0xe3eab475, lsda_encoding) // LSDA pointer, signed .D8(lul::DW_CFA_set_loc) .EncodedPointer(0x540fa4ce, fde_encoding) .D8(lul::DW_CFA_undefined) .ULEB128(0x675e) .FinishEntry() .D32(0); // terminator PERHAPS_WRITE_EH_FRAME_FILE("EHFrame.SimpleFDE", section); EXPECT_CALL(handler, Entry(_, 0x540f6b56, 0xf686, 1, "zSLPR", 100)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, PersonalityRoutine(0x97baa00, false)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, LanguageSpecificDataArea(0xe3eab475, true)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, SignalHandler()).InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, ValOffsetRule(0x540f6b56, kCFARegister, 6706, 31)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, UndefinedRule(0x540fa4ce, 0x675e)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true)); ParseEHFrameSection(§ion); } // Check that we can handle an empty 'z' augmentation. TEST_F(LulDwarfEHFrame, EmptyZ) { Label cie; section.Mark(&cie) .CIEHeader(5955, 5805, 228, 1, "z") .ULEB128(0) // Augmentation data length .D8(lul::DW_CFA_def_cfa) .ULEB128(3629) .ULEB128(247) .FinishEntry() .FDEHeader(cie, 0xda007738, 0xfb55c641) .ULEB128(0) // Augmentation data length .D8(lul::DW_CFA_advance_loc1) .D8(11) .D8(lul::DW_CFA_undefined) .ULEB128(3769) .FinishEntry(); PERHAPS_WRITE_EH_FRAME_FILE("EHFrame.EmptyZ", section); EXPECT_CALL(handler, Entry(_, 0xda007738, 0xfb55c641, 1, "z", 228)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, ValOffsetRule(0xda007738, kCFARegister, 3629, 247)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, UndefinedRule(0xda007738 + 11 * 5955, 3769)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true)); ParseEHFrameSection(§ion); } // Check that we recognize bad 'z' augmentation characters. TEST_F(LulDwarfEHFrame, BadZ) { Label cie; section.Mark(&cie) .CIEHeader(6937, 1045, 142, 1, "zQ") .ULEB128(0) // Augmentation data length .D8(lul::DW_CFA_def_cfa) .ULEB128(9006) .ULEB128(7725) .FinishEntry() .FDEHeader(cie, 0x1293efa8, 0x236f53f2) .ULEB128(0) // Augmentation data length .D8(lul::DW_CFA_advance_loc | 12) .D8(lul::DW_CFA_register) .ULEB128(5667) .ULEB128(3462) .FinishEntry(); PERHAPS_WRITE_EH_FRAME_FILE("EHFrame.BadZ", section); EXPECT_CALL(reporter, UnrecognizedAugmentation(_, "zQ")).WillOnce(Return()); ParseEHFrameSection(§ion, false); } TEST_F(LulDwarfEHFrame, zL) { Label cie; lul::DwarfPointerEncoding lsda_encoding = lul::DwarfPointerEncoding(lul::DW_EH_PE_funcrel | lul::DW_EH_PE_udata2); section.Mark(&cie) .CIEHeader(9285, 9959, 54, 1, "zL") .ULEB128(1) // Augmentation data length .D8(lsda_encoding) // encoding for LSDA pointer in FDE .FinishEntry() .FDEHeader(cie, 0xd40091aa, 0x9aa6e746) .ULEB128(2) // Augmentation data length .EncodedPointer(0xd40099cd, lsda_encoding) // LSDA pointer .FinishEntry() .D32(0); // terminator PERHAPS_WRITE_EH_FRAME_FILE("EHFrame.zL", section); EXPECT_CALL(handler, Entry(_, 0xd40091aa, 0x9aa6e746, 1, "zL", 54)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, LanguageSpecificDataArea(0xd40099cd, false)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true)); ParseEHFrameSection(§ion); } TEST_F(LulDwarfEHFrame, zP) { Label cie; lul::DwarfPointerEncoding personality_encoding = lul::DwarfPointerEncoding(lul::DW_EH_PE_datarel | lul::DW_EH_PE_udata2); section.Mark(&cie) .CIEHeader(1097, 6313, 17, 1, "zP") .ULEB128(3) // Augmentation data length .D8(personality_encoding) // encoding for personality routine .EncodedPointer(0xe3eaccac, personality_encoding) // value .FinishEntry() .FDEHeader(cie, 0x0c8350c9, 0xbef11087) .ULEB128(0) // Augmentation data length .FinishEntry() .D32(0); // terminator PERHAPS_WRITE_EH_FRAME_FILE("EHFrame.zP", section); EXPECT_CALL(handler, Entry(_, 0x0c8350c9, 0xbef11087, 1, "zP", 17)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, PersonalityRoutine(0xe3eaccac, false)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true)); ParseEHFrameSection(§ion); } TEST_F(LulDwarfEHFrame, zR) { Label cie; lul::DwarfPointerEncoding pointer_encoding = lul::DwarfPointerEncoding(lul::DW_EH_PE_textrel | lul::DW_EH_PE_sdata2); section.SetPointerEncoding(pointer_encoding); section.Mark(&cie) .CIEHeader(8011, 5496, 75, 1, "zR") .ULEB128(1) // Augmentation data length .D8(pointer_encoding) // encoding for FDE addresses .FinishEntry() .FDEHeader(cie, 0x540f9431, 0xbd0) .ULEB128(0) // Augmentation data length .FinishEntry() .D32(0); // terminator PERHAPS_WRITE_EH_FRAME_FILE("EHFrame.zR", section); EXPECT_CALL(handler, Entry(_, 0x540f9431, 0xbd0, 1, "zR", 75)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true)); ParseEHFrameSection(§ion); } TEST_F(LulDwarfEHFrame, zS) { Label cie; section.Mark(&cie) .CIEHeader(9217, 7694, 57, 1, "zS") .ULEB128(0) // Augmentation data length .FinishEntry() .FDEHeader(cie, 0xd40091aa, 0x9aa6e746) .ULEB128(0) // Augmentation data length .FinishEntry() .D32(0); // terminator PERHAPS_WRITE_EH_FRAME_FILE("EHFrame.zS", section); EXPECT_CALL(handler, Entry(_, 0xd40091aa, 0x9aa6e746, 1, "zS", 57)) .InSequence(s) .WillOnce(Return(true)); EXPECT_CALL(handler, SignalHandler()).InSequence(s).WillOnce(Return(true)); EXPECT_CALL(handler, End()).InSequence(s).WillOnce(Return(true)); ParseEHFrameSection(§ion); } // These tests require manual inspection of the test output. struct CFIReporterFixture { CFIReporterFixture() : reporter(gtest_logging_sink_for_LulTestDwarf, "test file name", "test section name") {} CallFrameInfo::Reporter reporter; }; class LulDwarfCFIReporter : public CFIReporterFixture, public Test {}; TEST_F(LulDwarfCFIReporter, Incomplete) { reporter.Incomplete(0x0102030405060708ULL, CallFrameInfo::kUnknown); } TEST_F(LulDwarfCFIReporter, EarlyEHTerminator) { reporter.EarlyEHTerminator(0x0102030405060708ULL); } TEST_F(LulDwarfCFIReporter, CIEPointerOutOfRange) { reporter.CIEPointerOutOfRange(0x0123456789abcdefULL, 0xfedcba9876543210ULL); } TEST_F(LulDwarfCFIReporter, BadCIEId) { reporter.BadCIEId(0x0123456789abcdefULL, 0xfedcba9876543210ULL); } TEST_F(LulDwarfCFIReporter, UnrecognizedVersion) { reporter.UnrecognizedVersion(0x0123456789abcdefULL, 43); } TEST_F(LulDwarfCFIReporter, UnrecognizedAugmentation) { reporter.UnrecognizedAugmentation(0x0123456789abcdefULL, "poodles"); } TEST_F(LulDwarfCFIReporter, InvalidPointerEncoding) { reporter.InvalidPointerEncoding(0x0123456789abcdefULL, 0x42); } TEST_F(LulDwarfCFIReporter, UnusablePointerEncoding) { reporter.UnusablePointerEncoding(0x0123456789abcdefULL, 0x42); } TEST_F(LulDwarfCFIReporter, RestoreInCIE) { reporter.RestoreInCIE(0x0123456789abcdefULL, 0xfedcba9876543210ULL); } TEST_F(LulDwarfCFIReporter, BadInstruction) { reporter.BadInstruction(0x0123456789abcdefULL, CallFrameInfo::kFDE, 0xfedcba9876543210ULL); } TEST_F(LulDwarfCFIReporter, NoCFARule) { reporter.NoCFARule(0x0123456789abcdefULL, CallFrameInfo::kCIE, 0xfedcba9876543210ULL); } TEST_F(LulDwarfCFIReporter, EmptyStateStack) { reporter.EmptyStateStack(0x0123456789abcdefULL, CallFrameInfo::kTerminator, 0xfedcba9876543210ULL); } TEST_F(LulDwarfCFIReporter, ClearingCFARule) { reporter.ClearingCFARule(0x0123456789abcdefULL, CallFrameInfo::kFDE, 0xfedcba9876543210ULL); } class LulDwarfExpr : public Test {}; class MockSummariser : public Summariser { public: MockSummariser() : Summariser(nullptr, 0, nullptr) {} MOCK_METHOD2(Entry, void(uintptr_t, uintptr_t)); MOCK_METHOD0(End, void()); MOCK_METHOD5(Rule, void(uintptr_t, int, LExprHow, int16_t, int64_t)); MOCK_METHOD1(AddPfxInstr, uint32_t(PfxInstr)); }; TEST_F(LulDwarfExpr, SimpleTransliteration) { MockSummariser summ; ByteReader reader(ENDIANNESS_LITTLE); CFISection section(kLittleEndian, 8); section.D8(DW_OP_lit0) .D8(DW_OP_lit31) .D8(DW_OP_breg0 + 17) .LEB128(-1234) .D8(DW_OP_const4s) .D32(0xFEDC9876) .D8(DW_OP_deref) .D8(DW_OP_and) .D8(DW_OP_plus) .D8(DW_OP_minus) .D8(DW_OP_shl) .D8(DW_OP_ge); string expr; bool ok = section.GetContents(&expr); EXPECT_TRUE(ok); { InSequence s; // required start marker EXPECT_CALL(summ, AddPfxInstr(PfxInstr(PX_Start, 0))); // DW_OP_lit0 EXPECT_CALL(summ, AddPfxInstr(PfxInstr(PX_SImm32, 0))); // DW_OP_lit31 EXPECT_CALL(summ, AddPfxInstr(PfxInstr(PX_SImm32, 31))); // DW_OP_breg17 -1234 EXPECT_CALL(summ, AddPfxInstr(PfxInstr(PX_DwReg, 17))); EXPECT_CALL(summ, AddPfxInstr(PfxInstr(PX_SImm32, -1234))); EXPECT_CALL(summ, AddPfxInstr(PfxInstr(PX_Add))); // DW_OP_const4s 0xFEDC9876 EXPECT_CALL(summ, AddPfxInstr(PfxInstr(PX_SImm32, 0xFEDC9876))); // DW_OP_deref EXPECT_CALL(summ, AddPfxInstr(PfxInstr(PX_Deref))); // DW_OP_and EXPECT_CALL(summ, AddPfxInstr(PfxInstr(PX_And))); // DW_OP_plus EXPECT_CALL(summ, AddPfxInstr(PfxInstr(PX_Add))); // DW_OP_minus EXPECT_CALL(summ, AddPfxInstr(PfxInstr(PX_Sub))); // DW_OP_shl EXPECT_CALL(summ, AddPfxInstr(PfxInstr(PX_Shl))); // DW_OP_ge EXPECT_CALL(summ, AddPfxInstr(PfxInstr(PX_CmpGES))); // required end marker EXPECT_CALL(summ, AddPfxInstr(PfxInstr(PX_End))); } int32_t ix = parseDwarfExpr(&summ, &reader, expr, false, false, false); EXPECT_TRUE(ix >= 0); } TEST_F(LulDwarfExpr, UnknownOpcode) { MockSummariser summ; ByteReader reader(ENDIANNESS_LITTLE); CFISection section(kLittleEndian, 8); section.D8(DW_OP_lo_user - 1); string expr; bool ok = section.GetContents(&expr); EXPECT_TRUE(ok); { InSequence s; // required start marker EXPECT_CALL(summ, AddPfxInstr(PfxInstr(PX_Start, 0))); } int32_t ix = parseDwarfExpr(&summ, &reader, expr, false, false, false); EXPECT_TRUE(ix == -1); } TEST_F(LulDwarfExpr, ExpressionOverrun) { MockSummariser summ; ByteReader reader(ENDIANNESS_LITTLE); CFISection section(kLittleEndian, 8); section.D8(DW_OP_const4s).D8(0x12).D8(0x34).D8(0x56); string expr; bool ok = section.GetContents(&expr); EXPECT_TRUE(ok); { InSequence s; // required start marker EXPECT_CALL(summ, AddPfxInstr(PfxInstr(PX_Start, 0))); // DW_OP_const4s followed by 3 (a.k.a. not enough) bytes // We expect PfxInstr(PX_Simm32, not-known-for-sure-32-bit-immediate) // Hence must use _ as the argument. EXPECT_CALL(summ, AddPfxInstr(_)); } int32_t ix = parseDwarfExpr(&summ, &reader, expr, false, false, false); EXPECT_TRUE(ix == -1); } // We'll need to mention specific Dwarf registers in the EvaluatePfxExpr tests, // and those names are arch-specific, so a bit of macro magic is helpful. #if defined(GP_ARCH_arm) # define TESTED_REG_STRUCT_NAME r11 # define TESTED_REG_DWARF_NAME DW_REG_ARM_R11 #elif defined(GP_ARCH_arm64) # define TESTED_REG_STRUCT_NAME x29 # define TESTED_REG_DWARF_NAME DW_REG_AARCH64_X29 #elif defined(GP_ARCH_amd64) || defined(GP_ARCH_x86) # define TESTED_REG_STRUCT_NAME xbp # define TESTED_REG_DWARF_NAME DW_REG_INTEL_XBP #else # error "Unknown plat" #endif struct EvaluatePfxExprFixture { // Creates: // initial stack, AVMA 0x12345678, at offset 4 bytes = 0xdeadbeef // initial regs, with XBP = 0x14141356 // initial CFA = 0x5432ABCD EvaluatePfxExprFixture() { // The test stack. si.mStartAvma = 0x12345678; si.mLen = 0; #define XX(_byte) \ do { \ si.mContents[si.mLen++] = (_byte); \ } while (0) XX(0x55); XX(0x55); XX(0x55); XX(0x55); if (sizeof(void*) == 8) { // le64 XX(0xEF); XX(0xBE); XX(0xAD); XX(0xDE); XX(0); XX(0); XX(0); XX(0); } else { // le32 XX(0xEF); XX(0xBE); XX(0xAD); XX(0xDE); } XX(0xAA); XX(0xAA); XX(0xAA); XX(0xAA); #undef XX // The initial CFA. initialCFA = TaggedUWord(0x5432ABCD); // The initial register state. memset(®s, 0, sizeof(regs)); regs.TESTED_REG_STRUCT_NAME = TaggedUWord(0x14141356); } StackImage si; TaggedUWord initialCFA; UnwindRegs regs; }; class LulDwarfEvaluatePfxExpr : public EvaluatePfxExprFixture, public Test {}; TEST_F(LulDwarfEvaluatePfxExpr, NormalEvaluation) { vector instrs; // Put some junk at the start of the insn sequence. instrs.push_back(PfxInstr(PX_End)); instrs.push_back(PfxInstr(PX_End)); // Now the real sequence // stack is empty instrs.push_back(PfxInstr(PX_Start, 1)); // 0x5432ABCD instrs.push_back(PfxInstr(PX_SImm32, 0x31415927)); // 0x5432ABCD 0x31415927 instrs.push_back(PfxInstr(PX_DwReg, TESTED_REG_DWARF_NAME)); // 0x5432ABCD 0x31415927 0x14141356 instrs.push_back(PfxInstr(PX_SImm32, 42)); // 0x5432ABCD 0x31415927 0x14141356 42 instrs.push_back(PfxInstr(PX_Sub)); // 0x5432ABCD 0x31415927 0x1414132c instrs.push_back(PfxInstr(PX_Add)); // 0x5432ABCD 0x45556c53 instrs.push_back(PfxInstr(PX_SImm32, si.mStartAvma + 4)); // 0x5432ABCD 0x45556c53 0x1234567c instrs.push_back(PfxInstr(PX_Deref)); // 0x5432ABCD 0x45556c53 0xdeadbeef instrs.push_back(PfxInstr(PX_SImm32, 0xFE01DC23)); // 0x5432ABCD 0x45556c53 0xdeadbeef 0xFE01DC23 instrs.push_back(PfxInstr(PX_And)); // 0x5432ABCD 0x45556c53 0xde019c23 instrs.push_back(PfxInstr(PX_SImm32, 7)); // 0x5432ABCD 0x45556c53 0xde019c23 7 instrs.push_back(PfxInstr(PX_Shl)); // 0x5432ABCD 0x45556c53 0x6f00ce1180 instrs.push_back(PfxInstr(PX_SImm32, 0x7fffffff)); // 0x5432ABCD 0x45556c53 0x6f00ce1180 7fffffff instrs.push_back(PfxInstr(PX_And)); // 0x5432ABCD 0x45556c53 0x00ce1180 instrs.push_back(PfxInstr(PX_Add)); // 0x5432ABCD 0x46237dd3 instrs.push_back(PfxInstr(PX_Sub)); // 0xe0f2dfa instrs.push_back(PfxInstr(PX_End)); TaggedUWord res = EvaluatePfxExpr(2 /*offset of start insn*/, ®s, initialCFA, &si, instrs); EXPECT_TRUE(res.Valid()); EXPECT_TRUE(res.Value() == 0xe0f2dfa); } TEST_F(LulDwarfEvaluatePfxExpr, EmptySequence) { vector instrs; TaggedUWord res = EvaluatePfxExpr(0, ®s, initialCFA, &si, instrs); EXPECT_FALSE(res.Valid()); } TEST_F(LulDwarfEvaluatePfxExpr, BogusStartPoint) { vector instrs; instrs.push_back(PfxInstr(PX_SImm32, 42)); instrs.push_back(PfxInstr(PX_SImm32, 24)); instrs.push_back(PfxInstr(PX_SImm32, 4224)); TaggedUWord res = EvaluatePfxExpr(1, ®s, initialCFA, &si, instrs); EXPECT_FALSE(res.Valid()); } TEST_F(LulDwarfEvaluatePfxExpr, MissingEndMarker) { vector instrs; instrs.push_back(PfxInstr(PX_Start, 0)); instrs.push_back(PfxInstr(PX_SImm32, 24)); TaggedUWord res = EvaluatePfxExpr(0, ®s, initialCFA, &si, instrs); EXPECT_FALSE(res.Valid()); } TEST_F(LulDwarfEvaluatePfxExpr, StackUnderflow) { vector instrs; instrs.push_back(PfxInstr(PX_Start, 0)); instrs.push_back(PfxInstr(PX_End)); TaggedUWord res = EvaluatePfxExpr(0, ®s, initialCFA, &si, instrs); EXPECT_FALSE(res.Valid()); } TEST_F(LulDwarfEvaluatePfxExpr, StackNoUnderflow) { vector instrs; instrs.push_back(PfxInstr(PX_Start, 1 /*push the initial CFA*/)); instrs.push_back(PfxInstr(PX_End)); TaggedUWord res = EvaluatePfxExpr(0, ®s, initialCFA, &si, instrs); EXPECT_TRUE(res.Valid()); EXPECT_TRUE(res == initialCFA); } TEST_F(LulDwarfEvaluatePfxExpr, StackOverflow) { vector instrs; instrs.push_back(PfxInstr(PX_Start, 0)); for (int i = 0; i < 10 + 1; i++) { instrs.push_back(PfxInstr(PX_SImm32, i + 100)); } instrs.push_back(PfxInstr(PX_End)); TaggedUWord res = EvaluatePfxExpr(0, ®s, initialCFA, &si, instrs); EXPECT_FALSE(res.Valid()); } TEST_F(LulDwarfEvaluatePfxExpr, StackNoOverflow) { vector instrs; instrs.push_back(PfxInstr(PX_Start, 0)); for (int i = 0; i < 10 + 0; i++) { instrs.push_back(PfxInstr(PX_SImm32, i + 100)); } instrs.push_back(PfxInstr(PX_End)); TaggedUWord res = EvaluatePfxExpr(0, ®s, initialCFA, &si, instrs); EXPECT_TRUE(res.Valid()); EXPECT_TRUE(res == TaggedUWord(109)); } TEST_F(LulDwarfEvaluatePfxExpr, OutOfRangeShl) { vector instrs; instrs.push_back(PfxInstr(PX_Start, 0)); instrs.push_back(PfxInstr(PX_SImm32, 1234)); instrs.push_back(PfxInstr(PX_SImm32, 5678)); instrs.push_back(PfxInstr(PX_Shl)); TaggedUWord res = EvaluatePfxExpr(0, ®s, initialCFA, &si, instrs); EXPECT_TRUE(!res.Valid()); } TEST_F(LulDwarfEvaluatePfxExpr, TestCmpGES) { const int32_t argsL[6] = {0, 0, 1, -2, -1, -2}; const int32_t argsR[6] = {0, 1, 0, -2, -2, -1}; // expecting: t f t t t f = 101110 = 0x2E vector instrs; instrs.push_back(PfxInstr(PX_Start, 0)); // The "running total" instrs.push_back(PfxInstr(PX_SImm32, 0)); for (unsigned int i = 0; i < sizeof(argsL) / sizeof(argsL[0]); i++) { // Shift the "running total" at the bottom of the stack left by one bit instrs.push_back(PfxInstr(PX_SImm32, 1)); instrs.push_back(PfxInstr(PX_Shl)); // Push both test args and do the comparison instrs.push_back(PfxInstr(PX_SImm32, argsL[i])); instrs.push_back(PfxInstr(PX_SImm32, argsR[i])); instrs.push_back(PfxInstr(PX_CmpGES)); // Or the result into the running total instrs.push_back(PfxInstr(PX_Or)); } instrs.push_back(PfxInstr(PX_End)); TaggedUWord res = EvaluatePfxExpr(0, ®s, initialCFA, &si, instrs); EXPECT_TRUE(res.Valid()); EXPECT_TRUE(res == TaggedUWord(0x2E)); } } // namespace lul