/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim: set ts=8 sts=2 et sw=2 tw=80: */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "nsTimerImpl.h" #include "TimerThread.h" #include "nsThreadUtils.h" #include "pratom.h" #include "nsIObserverService.h" #include "mozilla/Services.h" #include "mozilla/ChaosMode.h" #include "mozilla/ArenaAllocator.h" #include "mozilla/ArrayUtils.h" #include "mozilla/BinarySearch.h" #include "mozilla/OperatorNewExtensions.h" #include using namespace mozilla; #ifdef MOZ_TASK_TRACER # include "GeckoTaskTracerImpl.h" using namespace mozilla::tasktracer; #endif NS_IMPL_ISUPPORTS_INHERITED(TimerThread, Runnable, nsIObserver) TimerThread::TimerThread() : Runnable("TimerThread"), mInitialized(false), mMonitor("TimerThread.mMonitor"), mShutdown(false), mWaiting(false), mNotified(false), mSleeping(false), mAllowedEarlyFiringMicroseconds(0) {} TimerThread::~TimerThread() { mThread = nullptr; NS_ASSERTION(mTimers.IsEmpty(), "Timers remain in TimerThread::~TimerThread"); } nsresult TimerThread::InitLocks() { return NS_OK; } namespace { class TimerObserverRunnable : public Runnable { public: explicit TimerObserverRunnable(nsIObserver* aObserver) : mozilla::Runnable("TimerObserverRunnable"), mObserver(aObserver) {} NS_DECL_NSIRUNNABLE private: nsCOMPtr mObserver; }; NS_IMETHODIMP TimerObserverRunnable::Run() { nsCOMPtr observerService = mozilla::services::GetObserverService(); if (observerService) { observerService->AddObserver(mObserver, "sleep_notification", false); observerService->AddObserver(mObserver, "wake_notification", false); observerService->AddObserver(mObserver, "suspend_process_notification", false); observerService->AddObserver(mObserver, "resume_process_notification", false); } return NS_OK; } } // namespace namespace { // TimerEventAllocator is a thread-safe allocator used only for nsTimerEvents. // It's needed to avoid contention over the default allocator lock when // firing timer events (see bug 733277). The thread-safety is required because // nsTimerEvent objects are allocated on the timer thread, and freed on another // thread. Because TimerEventAllocator has its own lock, contention over that // lock is limited to the allocation and deallocation of nsTimerEvent objects. // // Because this is layered over ArenaAllocator, it never shrinks -- even // "freed" nsTimerEvents aren't truly freed, they're just put onto a free-list // for later recycling. So the amount of memory consumed will always be equal // to the high-water mark consumption. But nsTimerEvents are small and it's // unusual to have more than a few hundred of them, so this shouldn't be a // problem in practice. class TimerEventAllocator { private: struct FreeEntry { FreeEntry* mNext; }; ArenaAllocator<4096> mPool; FreeEntry* mFirstFree; mozilla::Monitor mMonitor; public: TimerEventAllocator() : mPool(), mFirstFree(nullptr), mMonitor("TimerEventAllocator") {} ~TimerEventAllocator() = default; void* Alloc(size_t aSize); void Free(void* aPtr); }; } // namespace // This is a nsICancelableRunnable because we can dispatch it to Workers and // those can be shut down at any time, and in these cases, Cancel() is called // instead of Run(). class nsTimerEvent final : public CancelableRunnable { public: NS_IMETHOD Run() override; nsresult Cancel() override { mTimer->Cancel(); return NS_OK; } #ifdef MOZ_COLLECTING_RUNNABLE_TELEMETRY NS_IMETHOD GetName(nsACString& aName) override; #endif explicit nsTimerEvent(already_AddRefed aTimer) : mozilla::CancelableRunnable("nsTimerEvent"), mTimer(aTimer), mGeneration(mTimer->GetGeneration()) { // Note: We override operator new for this class, and the override is // fallible! sAllocatorUsers++; if (MOZ_LOG_TEST(GetTimerLog(), LogLevel::Debug)) { mInitTime = TimeStamp::Now(); } } static void Init(); static void Shutdown(); static void DeleteAllocatorIfNeeded(); static void* operator new(size_t aSize) noexcept(true) { return sAllocator->Alloc(aSize); } void operator delete(void* aPtr) { sAllocator->Free(aPtr); DeleteAllocatorIfNeeded(); } already_AddRefed ForgetTimer() { return mTimer.forget(); } private: nsTimerEvent(const nsTimerEvent&) = delete; nsTimerEvent& operator=(const nsTimerEvent&) = delete; nsTimerEvent& operator=(const nsTimerEvent&&) = delete; ~nsTimerEvent() { MOZ_ASSERT(!sCanDeleteAllocator || sAllocatorUsers > 0, "This will result in us attempting to deallocate the " "nsTimerEvent allocator twice"); sAllocatorUsers--; } TimeStamp mInitTime; RefPtr mTimer; const int32_t mGeneration; static TimerEventAllocator* sAllocator; static Atomic sAllocatorUsers; static Atomic sCanDeleteAllocator; }; TimerEventAllocator* nsTimerEvent::sAllocator = nullptr; Atomic nsTimerEvent::sAllocatorUsers; Atomic nsTimerEvent::sCanDeleteAllocator; namespace { void* TimerEventAllocator::Alloc(size_t aSize) { MOZ_ASSERT(aSize == sizeof(nsTimerEvent)); mozilla::MonitorAutoLock lock(mMonitor); void* p; if (mFirstFree) { p = mFirstFree; mFirstFree = mFirstFree->mNext; } else { p = mPool.Allocate(aSize, fallible); } return p; } void TimerEventAllocator::Free(void* aPtr) { mozilla::MonitorAutoLock lock(mMonitor); FreeEntry* entry = reinterpret_cast(aPtr); entry->mNext = mFirstFree; mFirstFree = entry; } } // namespace void nsTimerEvent::Init() { sAllocator = new TimerEventAllocator(); } void nsTimerEvent::Shutdown() { sCanDeleteAllocator = true; DeleteAllocatorIfNeeded(); } void nsTimerEvent::DeleteAllocatorIfNeeded() { if (sCanDeleteAllocator && sAllocatorUsers == 0) { delete sAllocator; sAllocator = nullptr; } } #ifdef MOZ_COLLECTING_RUNNABLE_TELEMETRY NS_IMETHODIMP nsTimerEvent::GetName(nsACString& aName) { bool current; MOZ_RELEASE_ASSERT( NS_SUCCEEDED(mTimer->mEventTarget->IsOnCurrentThread(¤t)) && current); mTimer->GetName(aName); return NS_OK; } #endif NS_IMETHODIMP nsTimerEvent::Run() { if (MOZ_LOG_TEST(GetTimerLog(), LogLevel::Debug)) { TimeStamp now = TimeStamp::Now(); MOZ_LOG(GetTimerLog(), LogLevel::Debug, ("[this=%p] time between PostTimerEvent() and Fire(): %fms\n", this, (now - mInitTime).ToMilliseconds())); } mTimer->Fire(mGeneration); return NS_OK; } nsresult TimerThread::Init() { mMonitor.AssertCurrentThreadOwns(); MOZ_LOG(GetTimerLog(), LogLevel::Debug, ("TimerThread::Init [%d]\n", mInitialized)); if (!mInitialized) { nsTimerEvent::Init(); // We hold on to mThread to keep the thread alive. nsresult rv = NS_NewNamedThread("Timer Thread", getter_AddRefs(mThread), this); if (NS_FAILED(rv)) { mThread = nullptr; } else { RefPtr r = new TimerObserverRunnable(this); if (NS_IsMainThread()) { r->Run(); } else { NS_DispatchToMainThread(r); } } mInitialized = true; } if (!mThread) { return NS_ERROR_FAILURE; } return NS_OK; } nsresult TimerThread::Shutdown() { MOZ_LOG(GetTimerLog(), LogLevel::Debug, ("TimerThread::Shutdown begin\n")); if (!mThread) { return NS_ERROR_NOT_INITIALIZED; } nsTArray> timers; { // lock scope MonitorAutoLock lock(mMonitor); mShutdown = true; // notify the cond var so that Run() can return if (mWaiting) { mNotified = true; mMonitor.Notify(); } // Need to copy content of mTimers array to a local array // because call to timers' Cancel() (and release its self) // must not be done under the lock. Destructor of a callback // might potentially call some code reentering the same lock // that leads to unexpected behavior or deadlock. // See bug 422472. for (const UniquePtr& entry : mTimers) { timers.AppendElement(entry->Take()); } mTimers.Clear(); } for (const RefPtr& timer : timers) { if (timer) { timer->Cancel(); } } mThread->Shutdown(); // wait for the thread to die nsTimerEvent::Shutdown(); MOZ_LOG(GetTimerLog(), LogLevel::Debug, ("TimerThread::Shutdown end\n")); return NS_OK; } namespace { struct MicrosecondsToInterval { PRIntervalTime operator[](size_t aMs) const { return PR_MicrosecondsToInterval(aMs); } }; struct IntervalComparator { int operator()(PRIntervalTime aInterval) const { return (0 < aInterval) ? -1 : 1; } }; } // namespace NS_IMETHODIMP TimerThread::Run() { NS_SetCurrentThreadName("Timer"); MonitorAutoLock lock(mMonitor); // We need to know how many microseconds give a positive PRIntervalTime. This // is platform-dependent and we calculate it at runtime, finding a value |v| // such that |PR_MicrosecondsToInterval(v) > 0| and then binary-searching in // the range [0, v) to find the ms-to-interval scale. uint32_t usForPosInterval = 1; while (PR_MicrosecondsToInterval(usForPosInterval) == 0) { usForPosInterval <<= 1; } size_t usIntervalResolution; BinarySearchIf(MicrosecondsToInterval(), 0, usForPosInterval, IntervalComparator(), &usIntervalResolution); MOZ_ASSERT(PR_MicrosecondsToInterval(usIntervalResolution - 1) == 0); MOZ_ASSERT(PR_MicrosecondsToInterval(usIntervalResolution) == 1); // Half of the amount of microseconds needed to get positive PRIntervalTime. // We use this to decide how to round our wait times later mAllowedEarlyFiringMicroseconds = usIntervalResolution / 2; bool forceRunNextTimer = false; while (!mShutdown) { // Have to use PRIntervalTime here, since PR_WaitCondVar takes it TimeDuration waitFor; bool forceRunThisTimer = forceRunNextTimer; forceRunNextTimer = false; if (mSleeping) { // Sleep for 0.1 seconds while not firing timers. uint32_t milliseconds = 100; if (ChaosMode::isActive(ChaosFeature::TimerScheduling)) { milliseconds = ChaosMode::randomUint32LessThan(200); } waitFor = TimeDuration::FromMilliseconds(milliseconds); } else { waitFor = TimeDuration::Forever(); TimeStamp now = TimeStamp::Now(); RemoveLeadingCanceledTimersInternal(); if (!mTimers.IsEmpty()) { if (now >= mTimers[0]->Value()->mTimeout || forceRunThisTimer) { next: // NB: AddRef before the Release under RemoveTimerInternal to avoid // mRefCnt passing through zero, in case all other refs than the one // from mTimers have gone away (the last non-mTimers[i]-ref's Release // must be racing with us, blocked in gThread->RemoveTimer waiting // for TimerThread::mMonitor, under nsTimerImpl::Release. RefPtr timerRef(mTimers[0]->Take()); RemoveFirstTimerInternal(); MOZ_LOG(GetTimerLog(), LogLevel::Debug, ("Timer thread woke up %fms from when it was supposed to\n", fabs((now - timerRef->mTimeout).ToMilliseconds()))); // We are going to let the call to PostTimerEvent here handle the // release of the timer so that we don't end up releasing the timer // on the TimerThread instead of on the thread it targets. { LogTimerEvent::Run run(timerRef.get()); timerRef = PostTimerEvent(timerRef.forget()); } if (timerRef) { // We got our reference back due to an error. // Unhook the nsRefPtr, and release manually so we can get the // refcount. nsrefcnt rc = timerRef.forget().take()->Release(); (void)rc; // The nsITimer interface requires that its users keep a reference // to the timers they use while those timers are initialized but // have not yet fired. If this ever happens, it is a bug in the // code that created and used the timer. // // Further, note that this should never happen even with a // misbehaving user, because nsTimerImpl::Release checks for a // refcount of 1 with an armed timer (a timer whose only reference // is from the timer thread) and when it hits this will remove the // timer from the timer thread and thus destroy the last reference, // preventing this situation from occurring. MOZ_ASSERT(rc != 0, "destroyed timer off its target thread!"); } if (mShutdown) { break; } // Update now, as PostTimerEvent plus the locking may have taken a // tick or two, and we may goto next below. now = TimeStamp::Now(); } } RemoveLeadingCanceledTimersInternal(); if (!mTimers.IsEmpty()) { TimeStamp timeout = mTimers[0]->Value()->mTimeout; // Don't wait at all (even for PR_INTERVAL_NO_WAIT) if the next timer // is due now or overdue. // // Note that we can only sleep for integer values of a certain // resolution. We use mAllowedEarlyFiringMicroseconds, calculated // before, to do the optimal rounding (i.e., of how to decide what // interval is so small we should not wait at all). double microseconds = (timeout - now).ToMilliseconds() * 1000; if (ChaosMode::isActive(ChaosFeature::TimerScheduling)) { // The mean value of sFractions must be 1 to ensure that // the average of a long sequence of timeouts converges to the // actual sum of their times. static const float sFractions[] = {0.0f, 0.25f, 0.5f, 0.75f, 1.0f, 1.75f, 2.75f}; microseconds *= sFractions[ChaosMode::randomUint32LessThan( ArrayLength(sFractions))]; forceRunNextTimer = true; } if (microseconds < mAllowedEarlyFiringMicroseconds) { forceRunNextTimer = false; goto next; // round down; execute event now } waitFor = TimeDuration::FromMicroseconds(microseconds); if (waitFor.IsZero()) { // round up, wait the minimum time we can wait waitFor = TimeDuration::FromMicroseconds(1); } } if (MOZ_LOG_TEST(GetTimerLog(), LogLevel::Debug)) { if (waitFor == TimeDuration::Forever()) MOZ_LOG(GetTimerLog(), LogLevel::Debug, ("waiting forever\n")); else MOZ_LOG(GetTimerLog(), LogLevel::Debug, ("waiting for %f\n", waitFor.ToMilliseconds())); } } mWaiting = true; mNotified = false; mMonitor.Wait(waitFor); if (mNotified) { forceRunNextTimer = false; } mWaiting = false; } return NS_OK; } nsresult TimerThread::AddTimer(nsTimerImpl* aTimer) { MonitorAutoLock lock(mMonitor); if (!aTimer->mEventTarget) { return NS_ERROR_NOT_INITIALIZED; } nsresult rv = Init(); if (NS_FAILED(rv)) { return rv; } // Add the timer to our list. if (!AddTimerInternal(aTimer)) { return NS_ERROR_OUT_OF_MEMORY; } // Awaken the timer thread. if (mWaiting && mTimers[0]->Value() == aTimer) { mNotified = true; mMonitor.Notify(); } return NS_OK; } nsresult TimerThread::RemoveTimer(nsTimerImpl* aTimer) { MonitorAutoLock lock(mMonitor); // Remove the timer from our array. Tell callers that aTimer was not found // by returning NS_ERROR_NOT_AVAILABLE. if (!RemoveTimerInternal(aTimer)) { return NS_ERROR_NOT_AVAILABLE; } // Awaken the timer thread. if (mWaiting) { mNotified = true; mMonitor.Notify(); } return NS_OK; } TimeStamp TimerThread::FindNextFireTimeForCurrentThread(TimeStamp aDefault, uint32_t aSearchBound) { MonitorAutoLock lock(mMonitor); TimeStamp timeStamp = aDefault; uint32_t index = 0; #ifdef DEBUG TimeStamp firstTimeStamp; Entry* initialFirstEntry = nullptr; if (!mTimers.IsEmpty()) { initialFirstEntry = mTimers[0].get(); firstTimeStamp = mTimers[0]->Timeout(); } #endif auto end = mTimers.end(); while (end != mTimers.begin()) { nsTimerImpl* timer = mTimers[0]->Value(); if (timer) { if (timer->mTimeout > aDefault) { timeStamp = aDefault; break; } // Don't yield to timers created with the *_LOW_PRIORITY type. if (!timer->IsLowPriority()) { bool isOnCurrentThread = false; nsresult rv = timer->mEventTarget->IsOnCurrentThread(&isOnCurrentThread); if (NS_SUCCEEDED(rv) && isOnCurrentThread) { timeStamp = timer->mTimeout; break; } } if (++index > aSearchBound) { // Track the currently highest timeout so that we can bail out when we // reach the bound or when we find a timer for the current thread. // This won't give accurate information if we stop before finding // any timer for the current thread, but at least won't report too // long idle period. timeStamp = timer->mTimeout; break; } } std::pop_heap(mTimers.begin(), end, Entry::UniquePtrLessThan); --end; } while (end != mTimers.end()) { ++end; std::push_heap(mTimers.begin(), end, Entry::UniquePtrLessThan); } #ifdef DEBUG if (!mTimers.IsEmpty()) { if (firstTimeStamp != mTimers[0]->Timeout()) { TimeStamp now = TimeStamp::Now(); printf_stderr( "firstTimeStamp %f, mTimers[0]->Timeout() %f, " "initialFirstTimer %p, current first %p\n", (firstTimeStamp - now).ToMilliseconds(), (mTimers[0]->Timeout() - now).ToMilliseconds(), initialFirstEntry, mTimers[0].get()); } } MOZ_ASSERT_IF(!mTimers.IsEmpty(), firstTimeStamp == mTimers[0]->Timeout()); #endif return timeStamp; } // This function must be called from within a lock bool TimerThread::AddTimerInternal(nsTimerImpl* aTimer) { mMonitor.AssertCurrentThreadOwns(); if (mShutdown) { return false; } TimeStamp now = TimeStamp::Now(); LogTimerEvent::LogDispatch(aTimer); UniquePtr* entry = mTimers.AppendElement( MakeUnique(now, aTimer->mTimeout, aTimer), mozilla::fallible); if (!entry) { return false; } std::push_heap(mTimers.begin(), mTimers.end(), Entry::UniquePtrLessThan); #ifdef MOZ_TASK_TRACER // Caller of AddTimer is the parent task of its timer event, so we store the // TraceInfo here for later used. aTimer->GetTLSTraceInfo(); #endif return true; } bool TimerThread::RemoveTimerInternal(nsTimerImpl* aTimer) { mMonitor.AssertCurrentThreadOwns(); if (!aTimer || !aTimer->mHolder) { return false; } aTimer->mHolder->Forget(aTimer); return true; } void TimerThread::RemoveLeadingCanceledTimersInternal() { mMonitor.AssertCurrentThreadOwns(); // Move all canceled timers from the front of the list to // the back of the list using std::pop_heap(). We do this // without actually removing them from the list so we can // modify the nsTArray in a single bulk operation. auto sortedEnd = mTimers.end(); while (sortedEnd != mTimers.begin() && !mTimers[0]->Value()) { std::pop_heap(mTimers.begin(), sortedEnd, Entry::UniquePtrLessThan); --sortedEnd; } // If there were no canceled timers then we are done. if (sortedEnd == mTimers.end()) { return; } // Finally, remove the canceled timers from the back of the // nsTArray. mTimers.RemoveLastElements(mTimers.end() - sortedEnd); } void TimerThread::RemoveFirstTimerInternal() { mMonitor.AssertCurrentThreadOwns(); MOZ_ASSERT(!mTimers.IsEmpty()); std::pop_heap(mTimers.begin(), mTimers.end(), Entry::UniquePtrLessThan); mTimers.RemoveLastElement(); } already_AddRefed TimerThread::PostTimerEvent( already_AddRefed aTimerRef) { mMonitor.AssertCurrentThreadOwns(); RefPtr timer(aTimerRef); if (!timer->mEventTarget) { NS_ERROR("Attempt to post timer event to NULL event target"); return timer.forget(); } // XXX we may want to reuse this nsTimerEvent in the case of repeating timers. // Since we already addref'd 'timer', we don't need to addref here. // We will release either in ~nsTimerEvent(), or pass the reference back to // the caller. We need to copy the generation number from this timer into the // event, so we can avoid firing a timer that was re-initialized after being // canceled. #ifdef MOZ_TASK_TRACER // During the dispatch of TimerEvent, we overwrite the current TraceInfo // partially with the info saved in timer earlier, and restore it back by // AutoSaveCurTraceInfo. AutoSaveCurTraceInfo saveCurTraceInfo; (timer->GetTracedTask()).SetTLSTraceInfo(); #endif nsCOMPtr target = timer->mEventTarget; void* p = nsTimerEvent::operator new(sizeof(nsTimerEvent)); if (!p) { return timer.forget(); } RefPtr event = ::new (KnownNotNull, p) nsTimerEvent(timer.forget()); nsresult rv; { // We release mMonitor around the Dispatch because if this timer is targeted // at the TimerThread we'll deadlock. MonitorAutoUnlock unlock(mMonitor); rv = target->Dispatch(event, NS_DISPATCH_NORMAL); } if (NS_FAILED(rv)) { timer = event->ForgetTimer(); RemoveTimerInternal(timer); return timer.forget(); } return nullptr; } void TimerThread::DoBeforeSleep() { // Mainthread MonitorAutoLock lock(mMonitor); mSleeping = true; } // Note: wake may be notified without preceding sleep notification void TimerThread::DoAfterSleep() { // Mainthread MonitorAutoLock lock(mMonitor); mSleeping = false; // Wake up the timer thread to re-process the array to ensure the sleep delay // is correct, and fire any expired timers (perhaps quite a few) mNotified = true; mMonitor.Notify(); } NS_IMETHODIMP TimerThread::Observe(nsISupports* /* aSubject */, const char* aTopic, const char16_t* /* aData */) { if (strcmp(aTopic, "sleep_notification") == 0 || strcmp(aTopic, "suspend_process_notification") == 0) { DoBeforeSleep(); } else if (strcmp(aTopic, "wake_notification") == 0 || strcmp(aTopic, "resume_process_notification") == 0) { DoAfterSleep(); } return NS_OK; } uint32_t TimerThread::AllowedEarlyFiringMicroseconds() const { return mAllowedEarlyFiringMicroseconds; }