summaryrefslogtreecommitdiffstats
path: root/dom/animation/ComputedTimingFunction.cpp
blob: 17b8de323d8b6f4a89fc409322ed8c31298e7606 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this file,
 * You can obtain one at http://mozilla.org/MPL/2.0/. */

#include "ComputedTimingFunction.h"
#include "mozilla/ServoBindings.h"
#include "nsAlgorithm.h"  // For clamped()

namespace mozilla {

void ComputedTimingFunction::Init(const nsTimingFunction& aFunction) {
  const StyleComputedTimingFunction& timing = aFunction.mTiming;
  switch (timing.tag) {
    case StyleComputedTimingFunction::Tag::Keyword: {
      mType = static_cast<Type>(static_cast<uint8_t>(timing.keyword._0));

      static_assert(
          static_cast<uint8_t>(StyleTimingKeyword::Linear) == 0 &&
              static_cast<uint8_t>(StyleTimingKeyword::Ease) == 1 &&
              static_cast<uint8_t>(StyleTimingKeyword::EaseIn) == 2 &&
              static_cast<uint8_t>(StyleTimingKeyword::EaseOut) == 3 &&
              static_cast<uint8_t>(StyleTimingKeyword::EaseInOut) == 4,
          "transition timing function constants not as expected");

      static const float timingFunctionValues[5][4] = {
          {0.00f, 0.00f, 1.00f, 1.00f},  // linear
          {0.25f, 0.10f, 0.25f, 1.00f},  // ease
          {0.42f, 0.00f, 1.00f, 1.00f},  // ease-in
          {0.00f, 0.00f, 0.58f, 1.00f},  // ease-out
          {0.42f, 0.00f, 0.58f, 1.00f}   // ease-in-out
      };
      const float(&values)[4] = timingFunctionValues[uint8_t(mType)];
      mTimingFunction.Init(values[0], values[1], values[2], values[3]);
      break;
    }
    case StyleComputedTimingFunction::Tag::CubicBezier:
      mType = Type::CubicBezier;
      mTimingFunction.Init(timing.cubic_bezier.x1, timing.cubic_bezier.y1,
                           timing.cubic_bezier.x2, timing.cubic_bezier.y2);
      break;
    case StyleComputedTimingFunction::Tag::Steps:
      mType = Type::Step;
      mSteps.mSteps = static_cast<uint32_t>(timing.steps._0);
      mSteps.mPos = timing.steps._1;
      break;
  }
}

static inline double StepTiming(
    const ComputedTimingFunction::StepFunc& aStepFunc, double aPortion,
    ComputedTimingFunction::BeforeFlag aBeforeFlag) {
  // Use the algorithm defined in the spec:
  // https://drafts.csswg.org/css-easing-1/#step-timing-function-algo

  // Calculate current step.
  int32_t currentStep = floor(aPortion * aStepFunc.mSteps);

  // Increment current step if it is jump-start or start.
  if (aStepFunc.mPos == StyleStepPosition::Start ||
      aStepFunc.mPos == StyleStepPosition::JumpStart ||
      aStepFunc.mPos == StyleStepPosition::JumpBoth) {
    ++currentStep;
  }

  // If the "before flag" is set and we are at a transition point,
  // drop back a step
  if (aBeforeFlag == ComputedTimingFunction::BeforeFlag::Set &&
      fmod(aPortion * aStepFunc.mSteps, 1) == 0) {
    --currentStep;
  }

  // We should not produce a result outside [0, 1] unless we have an
  // input outside that range. This takes care of steps that would otherwise
  // occur at boundaries.
  if (aPortion >= 0.0 && currentStep < 0) {
    currentStep = 0;
  }

  int32_t jumps = aStepFunc.mSteps;
  if (aStepFunc.mPos == StyleStepPosition::JumpBoth) {
    ++jumps;
  } else if (aStepFunc.mPos == StyleStepPosition::JumpNone) {
    --jumps;
  }

  if (aPortion <= 1.0 && currentStep > jumps) {
    currentStep = jumps;
  }

  // Convert to the output progress value.
  MOZ_ASSERT(jumps > 0, "`jumps` should be a positive integer");
  return double(currentStep) / double(jumps);
}

double ComputedTimingFunction::GetValue(
    double aPortion, ComputedTimingFunction::BeforeFlag aBeforeFlag) const {
  if (HasSpline()) {
    // Check for a linear curve.
    // (GetSplineValue(), below, also checks this but doesn't work when
    // aPortion is outside the range [0.0, 1.0]).
    if (mTimingFunction.X1() == mTimingFunction.Y1() &&
        mTimingFunction.X2() == mTimingFunction.Y2()) {
      return aPortion;
    }

    // Ensure that we return 0 or 1 on both edges.
    if (aPortion == 0.0) {
      return 0.0;
    }
    if (aPortion == 1.0) {
      return 1.0;
    }

    // For negative values, try to extrapolate with tangent (p1 - p0) or,
    // if p1 is coincident with p0, with (p2 - p0).
    if (aPortion < 0.0) {
      if (mTimingFunction.X1() > 0.0) {
        return aPortion * mTimingFunction.Y1() / mTimingFunction.X1();
      } else if (mTimingFunction.Y1() == 0 && mTimingFunction.X2() > 0.0) {
        return aPortion * mTimingFunction.Y2() / mTimingFunction.X2();
      }
      // If we can't calculate a sensible tangent, don't extrapolate at all.
      return 0.0;
    }

    // For values greater than 1, try to extrapolate with tangent (p2 - p3) or,
    // if p2 is coincident with p3, with (p1 - p3).
    if (aPortion > 1.0) {
      if (mTimingFunction.X2() < 1.0) {
        return 1.0 + (aPortion - 1.0) * (mTimingFunction.Y2() - 1) /
                         (mTimingFunction.X2() - 1);
      } else if (mTimingFunction.Y2() == 1 && mTimingFunction.X1() < 1.0) {
        return 1.0 + (aPortion - 1.0) * (mTimingFunction.Y1() - 1) /
                         (mTimingFunction.X1() - 1);
      }
      // If we can't calculate a sensible tangent, don't extrapolate at all.
      return 1.0;
    }

    return mTimingFunction.GetSplineValue(aPortion);
  }

  return StepTiming(mSteps, aPortion, aBeforeFlag);
}

int32_t ComputedTimingFunction::Compare(
    const ComputedTimingFunction& aRhs) const {
  if (mType != aRhs.mType) {
    return int32_t(mType) - int32_t(aRhs.mType);
  }

  if (mType == Type::CubicBezier) {
    int32_t order = mTimingFunction.Compare(aRhs.mTimingFunction);
    if (order != 0) {
      return order;
    }
  } else if (mType == Type::Step) {
    if (mSteps.mPos != aRhs.mSteps.mPos) {
      return int32_t(mSteps.mPos) - int32_t(aRhs.mSteps.mPos);
    } else if (mSteps.mSteps != aRhs.mSteps.mSteps) {
      return int32_t(mSteps.mSteps) - int32_t(aRhs.mSteps.mSteps);
    }
  }

  return 0;
}

void ComputedTimingFunction::AppendToString(nsACString& aResult) const {
  nsTimingFunction timing;
  switch (mType) {
    case Type::CubicBezier:
      timing.mTiming = StyleComputedTimingFunction::CubicBezier(
          mTimingFunction.X1(), mTimingFunction.Y1(), mTimingFunction.X2(),
          mTimingFunction.Y2());
      break;
    case Type::Step:
      timing.mTiming =
          StyleComputedTimingFunction::Steps(mSteps.mSteps, mSteps.mPos);
      break;
    case Type::Linear:
    case Type::Ease:
    case Type::EaseIn:
    case Type::EaseOut:
    case Type::EaseInOut:
      timing.mTiming = StyleComputedTimingFunction::Keyword(
          static_cast<StyleTimingKeyword>(mType));
      break;
    default:
      MOZ_ASSERT_UNREACHABLE("Unsupported timing type");
  }
  Servo_SerializeEasing(&timing, &aResult);
}

/* static */
int32_t ComputedTimingFunction::Compare(
    const Maybe<ComputedTimingFunction>& aLhs,
    const Maybe<ComputedTimingFunction>& aRhs) {
  // We can't use |operator<| for const Maybe<>& here because
  // 'ease' is prior to 'linear' which is represented by Nothing().
  // So we have to convert Nothing() as 'linear' and check it first.
  Type lhsType = aLhs.isNothing() ? Type::Linear : aLhs->GetType();
  Type rhsType = aRhs.isNothing() ? Type::Linear : aRhs->GetType();

  if (lhsType != rhsType) {
    return int32_t(lhsType) - int32_t(rhsType);
  }

  // Both of them are Nothing().
  if (lhsType == Type::Linear) {
    return 0;
  }

  // Other types.
  return aLhs->Compare(aRhs.value());
}

}  // namespace mozilla