1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef NSCOORD_H
#define NSCOORD_H
#include <algorithm>
#include <cstdint>
#include <cstdlib>
#include <math.h>
#include "mozilla/Assertions.h"
#include "nsMathUtils.h"
/*
* Basic type used for the geometry classes.
*
* Normally all coordinates are maintained in an app unit coordinate
* space. An app unit is 1/60th of a CSS device pixel, which is, in turn
* an integer number of device pixels, such at the CSS DPI is as close to
* 96dpi as possible.
*/
// This controls whether we're using integers or floats for coordinates. We
// want to eventually use floats.
//#define NS_COORD_IS_FLOAT
#ifdef NS_COORD_IS_FLOAT
typedef float nscoord;
# define nscoord_MAX (mozilla::PositiveInfinity<float>())
#else
typedef int32_t nscoord;
# define nscoord_MAX nscoord((1 << 30) - 1)
#endif
#define nscoord_MIN (-nscoord_MAX)
inline void VERIFY_COORD(nscoord aCoord) {
#ifdef NS_COORD_IS_FLOAT
NS_ASSERTION(floorf(aCoord) == aCoord, "Coords cannot have fractions");
#endif
}
/**
* Divide aSpace by aN. Assign the resulting quotient to aQuotient and
* return the remainder.
*/
inline nscoord NSCoordDivRem(nscoord aSpace, size_t aN, nscoord* aQuotient) {
#ifdef NS_COORD_IS_FLOAT
*aQuotient = aSpace / aN;
return 0.0f;
#else
div_t result = div(aSpace, aN);
*aQuotient = nscoord(result.quot);
return nscoord(result.rem);
#endif
}
inline nscoord NSCoordMulDiv(nscoord aMult1, nscoord aMult2, nscoord aDiv) {
#ifdef NS_COORD_IS_FLOAT
return (aMult1 * aMult2 / aDiv);
#else
return (int64_t(aMult1) * int64_t(aMult2) / int64_t(aDiv));
#endif
}
inline nscoord NSToCoordRound(float aValue) {
#if defined(XP_WIN) && defined(_M_IX86) && !defined(__GNUC__) && \
!defined(__clang__)
return NS_lroundup30(aValue);
#else
return nscoord(floorf(aValue + 0.5f));
#endif /* XP_WIN && _M_IX86 && !__GNUC__ */
}
inline nscoord NSToCoordRound(double aValue) {
#if defined(XP_WIN) && defined(_M_IX86) && !defined(__GNUC__) && \
!defined(__clang__)
return NS_lroundup30((float)aValue);
#else
return nscoord(floor(aValue + 0.5f));
#endif /* XP_WIN && _M_IX86 && !__GNUC__ */
}
inline nscoord NSToCoordRoundWithClamp(float aValue) {
#ifndef NS_COORD_IS_FLOAT
// Bounds-check before converting out of float, to avoid overflow
if (aValue >= float(nscoord_MAX)) {
return nscoord_MAX;
}
if (aValue <= float(nscoord_MIN)) {
return nscoord_MIN;
}
#endif
return NSToCoordRound(aValue);
}
/**
* Returns aCoord * aScale, capping the product to nscoord_MAX or nscoord_MIN as
* appropriate for the signs of aCoord and aScale. If requireNotNegative is
* true, this method will enforce that aScale is not negative; use that
* parametrization to get a check of that fact in debug builds.
*/
inline nscoord _nscoordSaturatingMultiply(nscoord aCoord, float aScale,
bool requireNotNegative) {
VERIFY_COORD(aCoord);
if (requireNotNegative) {
MOZ_ASSERT(aScale >= 0.0f,
"negative scaling factors must be handled manually");
}
#ifdef NS_COORD_IS_FLOAT
return floorf(aCoord * aScale);
#else
float product = aCoord * aScale;
if (requireNotNegative ? aCoord > 0 : (aCoord > 0) == (aScale > 0))
return NSToCoordRoundWithClamp(
std::min<float>((float)nscoord_MAX, product));
return NSToCoordRoundWithClamp(std::max<float>((float)nscoord_MIN, product));
#endif
}
/**
* Returns aCoord * aScale, capping the product to nscoord_MAX or nscoord_MIN as
* appropriate for the sign of aCoord. This method requires aScale to not be
* negative; use this method when you know that aScale should never be
* negative to get a sanity check of that invariant in debug builds.
*/
inline nscoord NSCoordSaturatingNonnegativeMultiply(nscoord aCoord,
float aScale) {
return _nscoordSaturatingMultiply(aCoord, aScale, true);
}
/**
* Returns aCoord * aScale, capping the product to nscoord_MAX or nscoord_MIN as
* appropriate for the signs of aCoord and aScale.
*/
inline nscoord NSCoordSaturatingMultiply(nscoord aCoord, float aScale) {
return _nscoordSaturatingMultiply(aCoord, aScale, false);
}
/**
* Returns a + b, capping the sum to nscoord_MAX.
*
* This function assumes that neither argument is nscoord_MIN.
*
* Note: If/when we start using floats for nscoords, this function won't be as
* necessary. Normal float addition correctly handles adding with infinity,
* assuming we aren't adding nscoord_MIN. (-infinity)
*/
inline nscoord NSCoordSaturatingAdd(nscoord a, nscoord b) {
VERIFY_COORD(a);
VERIFY_COORD(b);
#ifdef NS_COORD_IS_FLOAT
// Float math correctly handles a+b, given that neither is -infinity.
return a + b;
#else
if (a == nscoord_MAX || b == nscoord_MAX) {
// infinity + anything = anything + infinity = infinity
return nscoord_MAX;
} else {
// a + b = a + b
// Cap the result, just in case we're dealing with numbers near nscoord_MAX
return std::min(nscoord_MAX, a + b);
}
#endif
}
/**
* Returns a - b, gracefully handling cases involving nscoord_MAX.
* This function assumes that neither argument is nscoord_MIN.
*
* The behavior is as follows:
*
* a) infinity - infinity -> infMinusInfResult
* b) N - infinity -> 0 (unexpected -- triggers NOTREACHED)
* c) infinity - N -> infinity
* d) N1 - N2 -> N1 - N2
*
* Note: For float nscoords, cases (c) and (d) are handled by normal float
* math. We still need to explicitly specify the behavior for cases (a)
* and (b), though. (Under normal float math, those cases would return NaN
* and -infinity, respectively.)
*/
inline nscoord NSCoordSaturatingSubtract(nscoord a, nscoord b,
nscoord infMinusInfResult) {
VERIFY_COORD(a);
VERIFY_COORD(b);
if (b == nscoord_MAX) {
if (a == nscoord_MAX) {
// case (a)
return infMinusInfResult;
} else {
// case (b)
MOZ_ASSERT_UNREACHABLE("Attempted to subtract [n - nscoord_MAX]");
return 0;
}
} else {
#ifdef NS_COORD_IS_FLOAT
// case (c) and (d) for floats. (float math handles both)
return a - b;
#else
if (a == nscoord_MAX) {
// case (c) for integers
return nscoord_MAX;
} else {
// case (d) for integers
// Cap the result, in case we're dealing with numbers near nscoord_MAX
return std::min(nscoord_MAX, a - b);
}
#endif
}
}
inline float NSCoordToFloat(nscoord aCoord) {
VERIFY_COORD(aCoord);
#ifdef NS_COORD_IS_FLOAT
NS_ASSERTION(!mozilla::IsNaN(aCoord), "NaN encountered in float conversion");
#endif
return (float)aCoord;
}
/*
* Coord Rounding Functions
*/
inline nscoord NSToCoordFloor(float aValue) { return nscoord(floorf(aValue)); }
inline nscoord NSToCoordFloor(double aValue) { return nscoord(floor(aValue)); }
inline nscoord NSToCoordFloorClamped(float aValue) {
#ifndef NS_COORD_IS_FLOAT
// Bounds-check before converting out of float, to avoid overflow
if (aValue >= float(nscoord_MAX)) {
return nscoord_MAX;
}
if (aValue <= float(nscoord_MIN)) {
return nscoord_MIN;
}
#endif
return NSToCoordFloor(aValue);
}
inline nscoord NSToCoordCeil(float aValue) { return nscoord(ceilf(aValue)); }
inline nscoord NSToCoordCeil(double aValue) { return nscoord(ceil(aValue)); }
inline nscoord NSToCoordCeilClamped(double aValue) {
#ifndef NS_COORD_IS_FLOAT
// Bounds-check before converting out of double, to avoid overflow
if (aValue >= nscoord_MAX) {
return nscoord_MAX;
}
if (aValue <= nscoord_MIN) {
return nscoord_MIN;
}
#endif
return NSToCoordCeil(aValue);
}
// The NSToCoordTrunc* functions remove the fractional component of
// aValue, and are thus equivalent to NSToCoordFloor* for positive
// values and NSToCoordCeil* for negative values.
inline nscoord NSToCoordTrunc(float aValue) {
// There's no need to use truncf() since it matches the default
// rules for float to integer conversion.
return nscoord(aValue);
}
inline nscoord NSToCoordTrunc(double aValue) {
// There's no need to use trunc() since it matches the default
// rules for float to integer conversion.
return nscoord(aValue);
}
inline nscoord NSToCoordTruncClamped(float aValue) {
#ifndef NS_COORD_IS_FLOAT
// Bounds-check before converting out of float, to avoid overflow
if (aValue >= float(nscoord_MAX)) {
return nscoord_MAX;
}
if (aValue <= float(nscoord_MIN)) {
return nscoord_MIN;
}
#endif
return NSToCoordTrunc(aValue);
}
inline nscoord NSToCoordTruncClamped(double aValue) {
#ifndef NS_COORD_IS_FLOAT
// Bounds-check before converting out of double, to avoid overflow
if (aValue >= float(nscoord_MAX)) {
return nscoord_MAX;
}
if (aValue <= float(nscoord_MIN)) {
return nscoord_MIN;
}
#endif
return NSToCoordTrunc(aValue);
}
/*
* Int Rounding Functions
*/
inline int32_t NSToIntFloor(float aValue) { return int32_t(floorf(aValue)); }
inline int32_t NSToIntCeil(float aValue) { return int32_t(ceilf(aValue)); }
inline int32_t NSToIntRound(float aValue) { return NS_lroundf(aValue); }
inline int32_t NSToIntRound(double aValue) { return NS_lround(aValue); }
inline int32_t NSToIntRoundUp(double aValue) {
return int32_t(floor(aValue + 0.5));
}
/*
* App Unit/Pixel conversions
*/
inline nscoord NSFloatPixelsToAppUnits(float aPixels, float aAppUnitsPerPixel) {
return NSToCoordRoundWithClamp(aPixels * aAppUnitsPerPixel);
}
inline nscoord NSIntPixelsToAppUnits(int32_t aPixels,
int32_t aAppUnitsPerPixel) {
// The cast to nscoord makes sure we don't overflow if we ever change
// nscoord to float
nscoord r = aPixels * (nscoord)aAppUnitsPerPixel;
VERIFY_COORD(r);
return r;
}
inline float NSAppUnitsToFloatPixels(nscoord aAppUnits,
float aAppUnitsPerPixel) {
return (float(aAppUnits) / aAppUnitsPerPixel);
}
inline double NSAppUnitsToDoublePixels(nscoord aAppUnits,
double aAppUnitsPerPixel) {
return (double(aAppUnits) / aAppUnitsPerPixel);
}
inline int32_t NSAppUnitsToIntPixels(nscoord aAppUnits,
float aAppUnitsPerPixel) {
return NSToIntRound(float(aAppUnits) / aAppUnitsPerPixel);
}
inline float NSCoordScale(nscoord aCoord, int32_t aFromAPP, int32_t aToAPP) {
return (NSCoordToFloat(aCoord) * aToAPP) / aFromAPP;
}
/// handy constants
#define TWIPS_PER_POINT_INT 20
#define TWIPS_PER_POINT_FLOAT 20.0f
#define POINTS_PER_INCH_INT 72
#define POINTS_PER_INCH_FLOAT 72.0f
#define CM_PER_INCH_FLOAT 2.54f
#define MM_PER_INCH_FLOAT 25.4f
/*
* Twips/unit conversions
*/
inline float NSUnitsToTwips(float aValue, float aPointsPerUnit) {
return aValue * aPointsPerUnit * TWIPS_PER_POINT_FLOAT;
}
inline float NSTwipsToUnits(float aTwips, float aUnitsPerPoint) {
return (aTwips * (aUnitsPerPoint / TWIPS_PER_POINT_FLOAT));
}
/// Unit conversion macros
//@{
#define NS_POINTS_TO_TWIPS(x) NSUnitsToTwips((x), 1.0f)
#define NS_INCHES_TO_TWIPS(x) \
NSUnitsToTwips((x), POINTS_PER_INCH_FLOAT) // 72 points per inch
#define NS_MILLIMETERS_TO_TWIPS(x) \
NSUnitsToTwips((x), (POINTS_PER_INCH_FLOAT * 0.03937f))
#define NS_POINTS_TO_INT_TWIPS(x) NSToIntRound(NS_POINTS_TO_TWIPS(x))
#define NS_INCHES_TO_INT_TWIPS(x) NSToIntRound(NS_INCHES_TO_TWIPS(x))
#define NS_TWIPS_TO_INCHES(x) NSTwipsToUnits((x), 1.0f / POINTS_PER_INCH_FLOAT)
#define NS_TWIPS_TO_MILLIMETERS(x) \
NSTwipsToUnits((x), 1.0f / (POINTS_PER_INCH_FLOAT * 0.03937f))
//@}
#endif /* NSCOORD_H */
|