1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
|
/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "gfxPattern.h"
#include "gfxUtils.h"
#include "gfxTypes.h"
#include "gfxASurface.h"
#include "gfxPlatform.h"
#include "gfx2DGlue.h"
#include "gfxGradientCache.h"
#include "mozilla/gfx/2D.h"
#include "cairo.h"
#include <vector>
using namespace mozilla::gfx;
gfxPattern::gfxPattern(const DeviceColor& aColor) : mExtend(ExtendMode::CLAMP) {
mGfxPattern.InitColorPattern(aColor);
}
// linear
gfxPattern::gfxPattern(gfxFloat x0, gfxFloat y0, gfxFloat x1, gfxFloat y1)
: mExtend(ExtendMode::CLAMP) {
mGfxPattern.InitLinearGradientPattern(Point(x0, y0), Point(x1, y1), nullptr);
}
// radial
gfxPattern::gfxPattern(gfxFloat cx0, gfxFloat cy0, gfxFloat radius0,
gfxFloat cx1, gfxFloat cy1, gfxFloat radius1)
: mExtend(ExtendMode::CLAMP) {
mGfxPattern.InitRadialGradientPattern(Point(cx0, cy0), Point(cx1, cy1),
radius0, radius1, nullptr);
}
// conic
gfxPattern::gfxPattern(gfxFloat cx, gfxFloat cy, gfxFloat angle,
gfxFloat startOffset, gfxFloat endOffset)
: mExtend(ExtendMode::CLAMP) {
mGfxPattern.InitConicGradientPattern(Point(cx, cy), angle, startOffset,
endOffset, nullptr);
}
// Azure
gfxPattern::gfxPattern(SourceSurface* aSurface,
const Matrix& aPatternToUserSpace)
: mPatternToUserSpace(aPatternToUserSpace), mExtend(ExtendMode::CLAMP) {
mGfxPattern.InitSurfacePattern(
aSurface, mExtend, Matrix(), // matrix is overridden in GetPattern()
mozilla::gfx::SamplingFilter::GOOD);
}
void gfxPattern::AddColorStop(gfxFloat offset, const DeviceColor& c) {
if (mGfxPattern.GetPattern()->GetType() != PatternType::LINEAR_GRADIENT &&
mGfxPattern.GetPattern()->GetType() != PatternType::RADIAL_GRADIENT &&
mGfxPattern.GetPattern()->GetType() != PatternType::CONIC_GRADIENT) {
return;
}
mStops = nullptr;
GradientStop stop;
stop.offset = offset;
stop.color = c;
mStopsList.AppendElement(stop);
}
void gfxPattern::SetColorStops(GradientStops* aStops) { mStops = aStops; }
void gfxPattern::CacheColorStops(const DrawTarget* aDT) {
mStops = gfxGradientCache::GetOrCreateGradientStops(aDT, mStopsList, mExtend);
}
void gfxPattern::SetMatrix(const gfxMatrix& aPatternToUserSpace) {
mPatternToUserSpace = ToMatrix(aPatternToUserSpace);
// Cairo-pattern matrices specify the conversion from DrawTarget to pattern
// space. Azure pattern matrices specify the conversion from pattern to
// DrawTarget space.
mPatternToUserSpace.Invert();
}
gfxMatrix gfxPattern::GetMatrix() const {
// invert at the higher precision of gfxMatrix
// cause we need to convert at some point anyways
gfxMatrix mat = ThebesMatrix(mPatternToUserSpace);
mat.Invert();
return mat;
}
gfxMatrix gfxPattern::GetInverseMatrix() const {
return ThebesMatrix(mPatternToUserSpace);
}
Pattern* gfxPattern::GetPattern(const DrawTarget* aTarget,
const Matrix* aOriginalUserToDevice) {
Matrix patternToUser = mPatternToUserSpace;
if (aOriginalUserToDevice &&
!aOriginalUserToDevice->FuzzyEquals(aTarget->GetTransform())) {
// mPatternToUserSpace maps from pattern space to the original user space,
// but aTarget now has a transform to a different user space. In order for
// the Pattern* that we return to be usable in aTarget's new user space we
// need the Pattern's mMatrix to be the transform from pattern space to
// aTarget's -new- user space. That transform is equivalent to the
// transform from pattern space to original user space (patternToUser),
// multiplied by the transform from original user space to device space,
// multiplied by the transform from device space to current user space.
Matrix deviceToCurrentUser = aTarget->GetTransform();
deviceToCurrentUser.Invert();
patternToUser =
patternToUser * *aOriginalUserToDevice * deviceToCurrentUser;
}
patternToUser.NudgeToIntegers();
if (!mStops && !mStopsList.IsEmpty()) {
mStops = aTarget->CreateGradientStops(mStopsList.Elements(),
mStopsList.Length(), mExtend);
}
switch (mGfxPattern.GetPattern()->GetType()) {
case PatternType::SURFACE: {
SurfacePattern* surfacePattern =
static_cast<SurfacePattern*>(mGfxPattern.GetPattern());
surfacePattern->mMatrix = patternToUser;
surfacePattern->mExtendMode = mExtend;
break;
}
case PatternType::LINEAR_GRADIENT: {
LinearGradientPattern* linearGradientPattern =
static_cast<LinearGradientPattern*>(mGfxPattern.GetPattern());
linearGradientPattern->mMatrix = patternToUser;
linearGradientPattern->mStops = mStops;
break;
}
case PatternType::RADIAL_GRADIENT: {
RadialGradientPattern* radialGradientPattern =
static_cast<RadialGradientPattern*>(mGfxPattern.GetPattern());
radialGradientPattern->mMatrix = patternToUser;
radialGradientPattern->mStops = mStops;
break;
}
case PatternType::CONIC_GRADIENT: {
ConicGradientPattern* conicGradientPattern =
static_cast<ConicGradientPattern*>(mGfxPattern.GetPattern());
conicGradientPattern->mMatrix = patternToUser;
conicGradientPattern->mStops = mStops;
break;
}
default:
/* Reassure the compiler we are handling all the enum values. */
break;
}
return mGfxPattern.GetPattern();
}
void gfxPattern::SetExtend(ExtendMode aExtend) {
mExtend = aExtend;
mStops = nullptr;
}
bool gfxPattern::IsOpaque() {
if (mGfxPattern.GetPattern()->GetType() != PatternType::SURFACE) {
return false;
}
if (static_cast<SurfacePattern*>(mGfxPattern.GetPattern())
->mSurface->GetFormat() == SurfaceFormat::B8G8R8X8) {
return true;
}
return false;
}
void gfxPattern::SetSamplingFilter(mozilla::gfx::SamplingFilter filter) {
if (mGfxPattern.GetPattern()->GetType() != PatternType::SURFACE) {
return;
}
static_cast<SurfacePattern*>(mGfxPattern.GetPattern())->mSamplingFilter =
filter;
}
SamplingFilter gfxPattern::SamplingFilter() const {
if (mGfxPattern.GetPattern()->GetType() != PatternType::SURFACE) {
return mozilla::gfx::SamplingFilter::GOOD;
}
return static_cast<const SurfacePattern*>(mGfxPattern.GetPattern())
->mSamplingFilter;
}
bool gfxPattern::GetSolidColor(DeviceColor& aColorOut) {
if (mGfxPattern.GetPattern()->GetType() == PatternType::COLOR) {
aColorOut = static_cast<ColorPattern*>(mGfxPattern.GetPattern())->mColor;
return true;
}
return false;
}
|