1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
|
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#define VECS_PER_SPECIFIC_BRUSH 3
#define WR_FEATURE_TEXTURE_2D
#include shared,prim_shared,brush
// Interpolated UV coordinates to sample.
varying vec2 v_uv;
varying vec2 v_local_pos;
// Normalized bounds of the source image in the texture, adjusted to avoid
// sampling artifacts.
flat varying vec4 v_uv_sample_bounds;
// Layer index to sample.
// Flag to allow perspective interpolation of UV.
flat varying float v_perspective;
flat varying float v_opacity;
#ifdef WR_VERTEX_SHADER
void brush_vs(
VertexInfo vi,
int prim_address,
RectWithSize local_rect,
RectWithSize segment_rect,
ivec4 prim_user_data,
int specific_resource_address,
mat4 transform,
PictureTask pic_task,
int brush_flags,
vec4 unused
) {
ImageResource res = fetch_image_resource(prim_user_data.x);
vec2 uv0 = res.uv_rect.p0;
vec2 uv1 = res.uv_rect.p1;
vec2 texture_size = vec2(textureSize(sColor0, 0).xy);
vec2 f = (vi.local_pos - local_rect.p0) / local_rect.size;
f = get_image_quad_uv(prim_user_data.x, f);
vec2 uv = mix(uv0, uv1, f);
float perspective_interpolate = (brush_flags & BRUSH_FLAG_PERSPECTIVE_INTERPOLATION) != 0 ? 1.0 : 0.0;
v_uv = uv / texture_size * mix(vi.world_pos.w, 1.0, perspective_interpolate);
v_perspective = perspective_interpolate;
v_uv_sample_bounds = vec4(uv0 + vec2(0.5), uv1 - vec2(0.5)) / texture_size.xyxy;
#ifdef WR_FEATURE_ANTIALIASING
v_local_pos = vi.local_pos;
#endif
v_opacity = float(prim_user_data.y) / 65536.0;
}
#endif
#ifdef WR_FRAGMENT_SHADER
Fragment brush_fs() {
float perspective_divisor = mix(gl_FragCoord.w, 1.0, v_perspective);
vec2 uv = v_uv * perspective_divisor;
// Clamp the uvs to avoid sampling artifacts.
uv = clamp(uv, v_uv_sample_bounds.xy, v_uv_sample_bounds.zw);
// No need to un-premultiply since we'll only apply a factor to the alpha.
vec4 color = texture(sColor0, uv);
float alpha = v_opacity;
#ifdef WR_FEATURE_ANTIALIASING
alpha *= init_transform_fs(v_local_pos);
#endif
// Pre-multiply the contribution of the opacity factor.
return Fragment(alpha * color);
}
#if defined(SWGL) && !defined(WR_FEATURE_DUAL_SOURCE_BLENDING)
void swgl_drawSpanRGBA8() {
if (!swgl_isTextureRGBA8(sColor0)) {
return;
}
float perspective_divisor = mix(swgl_forceScalar(gl_FragCoord.w), 1.0, v_perspective);
vec2 uv = v_uv * perspective_divisor;
#ifndef WR_FEATURE_ANTIALIASING
if (swgl_allowTextureNearest(sColor0, uv)) {
swgl_commitTextureNearestColorRGBA8(sColor0, uv, v_uv_sample_bounds, v_opacity, 0);
return;
}
#endif
uv = swgl_linearQuantize(sColor0, uv);
vec2 min_uv = swgl_linearQuantize(sColor0, v_uv_sample_bounds.xy);
vec2 max_uv = swgl_linearQuantize(sColor0, v_uv_sample_bounds.zw);
vec2 step_uv = swgl_linearQuantizeStep(sColor0, swgl_interpStep(v_uv)) * perspective_divisor;
while (swgl_SpanLength > 0) {
float alpha = v_opacity;
#ifdef WR_FEATURE_ANTIALIASING
alpha *= init_transform_fs(v_local_pos);
v_local_pos += swgl_interpStep(v_local_pos);
#endif
swgl_commitTextureLinearColorRGBA8(sColor0, clamp(uv, min_uv, max_uv), alpha, 0);
uv += step_uv;
}
}
#endif
#endif
|