summaryrefslogtreecommitdiffstats
path: root/gfx/wr/webrender/res/ps_text_run.glsl
blob: 48ee50c3917e02050c931274e85ea54bfd96061b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#include shared,prim_shared

flat varying vec4 v_color;
flat varying vec2 v_mask_swizzle;
// Normalized bounds of the source image in the texture.
flat varying vec4 v_uv_bounds;

// Interpolated UV coordinates to sample.
varying vec2 v_uv;


#ifdef WR_FEATURE_GLYPH_TRANSFORM
varying vec4 v_uv_clip;
#endif

#ifdef WR_VERTEX_SHADER

#define VECS_PER_TEXT_RUN           2
#define GLYPHS_PER_GPU_BLOCK        2U

#ifdef WR_FEATURE_GLYPH_TRANSFORM
RectWithSize transform_rect(RectWithSize rect, mat2 transform) {
    vec2 center = transform * (rect.p0 + rect.size * 0.5);
    vec2 radius = mat2(abs(transform[0]), abs(transform[1])) * (rect.size * 0.5);
    return RectWithSize(center - radius, radius * 2.0);
}

bool rect_inside_rect(RectWithSize little, RectWithSize big) {
    return all(lessThanEqual(vec4(big.p0, little.p0 + little.size),
                             vec4(little.p0, big.p0 + big.size)));
}
#endif //WR_FEATURE_GLYPH_TRANSFORM

struct Glyph {
    vec2 offset;
};

Glyph fetch_glyph(int specific_prim_address,
                  int glyph_index) {
    // Two glyphs are packed in each texel in the GPU cache.
    int glyph_address = specific_prim_address +
                        VECS_PER_TEXT_RUN +
                        int(uint(glyph_index) / GLYPHS_PER_GPU_BLOCK);
    vec4 data = fetch_from_gpu_cache_1(glyph_address);
    // Select XY or ZW based on glyph index.
    // We use "!= 0" instead of "== 1" here in order to work around a driver
    // bug with equality comparisons on integers.
    vec2 glyph = mix(data.xy, data.zw,
                     bvec2(uint(glyph_index) % GLYPHS_PER_GPU_BLOCK != 0U));

    return Glyph(glyph);
}

struct GlyphResource {
    vec4 uv_rect;
    float layer;
    vec2 offset;
    float scale;
};

GlyphResource fetch_glyph_resource(int address) {
    vec4 data[2] = fetch_from_gpu_cache_2(address);
    return GlyphResource(data[0], data[1].x, data[1].yz, data[1].w);
}

struct TextRun {
    vec4 color;
    vec4 bg_color;
};

TextRun fetch_text_run(int address) {
    vec4 data[2] = fetch_from_gpu_cache_2(address);
    return TextRun(data[0], data[1]);
}

vec2 get_snap_bias(int subpx_dir) {
    // In subpixel mode, the subpixel offset has already been
    // accounted for while rasterizing the glyph. However, we
    // must still round with a subpixel bias rather than rounding
    // to the nearest whole pixel, depending on subpixel direciton.
    switch (subpx_dir) {
        case SUBPX_DIR_NONE:
        default:
            return vec2(0.5);
        case SUBPX_DIR_HORIZONTAL:
            // Glyphs positioned [-0.125, 0.125] get a
            // subpx position of zero. So include that
            // offset in the glyph position to ensure
            // we round to the correct whole position.
            return vec2(0.125, 0.5);
        case SUBPX_DIR_VERTICAL:
            return vec2(0.5, 0.125);
        case SUBPX_DIR_MIXED:
            return vec2(0.125);
    }
}

void main() {
    Instance instance = decode_instance_attributes();
    PrimitiveHeader ph = fetch_prim_header(instance.prim_header_address);
    Transform transform = fetch_transform(ph.transform_id);
    ClipArea clip_area = fetch_clip_area(instance.clip_address);
    PictureTask task = fetch_picture_task(instance.picture_task_address);

    int glyph_index = instance.segment_index;
    int subpx_dir = (instance.flags >> 8) & 0xff;
    int color_mode = instance.flags & 0xff;

    // Note that the reference frame relative offset is stored in the prim local
    // rect size during batching, instead of the actual size of the primitive.
    TextRun text = fetch_text_run(ph.specific_prim_address);
    vec2 text_offset = ph.local_rect.size;

    if (color_mode == COLOR_MODE_FROM_PASS) {
        color_mode = uMode;
    }

    // Note that the unsnapped reference frame relative offset has already
    // been subtracted from the prim local rect origin during batching.
    // It was done this way to avoid pushing both the snapped and the
    // unsnapped offsets to the shader.
    Glyph glyph = fetch_glyph(ph.specific_prim_address, glyph_index);
    glyph.offset += ph.local_rect.p0;

    GlyphResource res = fetch_glyph_resource(instance.resource_address);

    vec2 snap_bias = get_snap_bias(subpx_dir);

    // Glyph space refers to the pixel space used by glyph rasterization during frame
    // building. If a non-identity transform was used, WR_FEATURE_GLYPH_TRANSFORM will
    // be set. Otherwise, regardless of whether the raster space is LOCAL or SCREEN,
    // we ignored the transform during glyph rasterization, and need to snap just using
    // the device pixel scale and the raster scale.
#ifdef WR_FEATURE_GLYPH_TRANSFORM
    // Transform from local space to glyph space.
    mat2 glyph_transform = mat2(transform.m) * task.device_pixel_scale;
    vec2 glyph_translation = transform.m[3].xy * task.device_pixel_scale;

    // Transform from glyph space back to local space.
    mat2 glyph_transform_inv = inverse(glyph_transform);

    // Glyph raster pixels include the impact of the transform. This path can only be
    // entered for 3d transforms that can be coerced into a 2d transform; they have no
    // perspective, and have a 2d inverse. This is a looser condition than axis aligned
    // transforms because it also allows 2d rotations.
    vec2 raster_glyph_offset = floor(glyph_transform * glyph.offset + snap_bias);

    // We want to eliminate any subpixel translation in device space to ensure glyph
    // snapping is stable for equivalent glyph subpixel positions. Note that we must take
    // into account the translation from the transform for snapping purposes.
    vec2 raster_text_offset = floor(glyph_transform * text_offset + glyph_translation + 0.5) - glyph_translation;

    // Compute the glyph rect in glyph space.
    RectWithSize glyph_rect = RectWithSize(res.offset + raster_glyph_offset + raster_text_offset,
                                           res.uv_rect.zw - res.uv_rect.xy);

    // The glyph rect is in glyph space, so transform it back to local space.
    RectWithSize local_rect = transform_rect(glyph_rect, glyph_transform_inv);

    // Select the corner of the glyph's local space rect that we are processing.
    vec2 local_pos = local_rect.p0 + local_rect.size * aPosition.xy;

    // If the glyph's local rect would fit inside the local clip rect, then select a corner from
    // the device space glyph rect to reduce overdraw of clipped pixels in the fragment shader.
    // Otherwise, fall back to clamping the glyph's local rect to the local clip rect.
    if (rect_inside_rect(local_rect, ph.local_clip_rect)) {
        local_pos = glyph_transform_inv * (glyph_rect.p0 + glyph_rect.size * aPosition.xy);
    }
#else
    float raster_scale = float(ph.user_data.x) / 65535.0;

    // Scale in which the glyph is snapped when rasterized.
    float glyph_raster_scale = raster_scale * task.device_pixel_scale;

    // Scale from glyph space to local space.
    float glyph_scale_inv = res.scale / glyph_raster_scale;

    // Glyph raster pixels do not include the impact of the transform. Instead it was
    // replaced with an identity transform during glyph rasterization. As such only the
    // impact of the raster scale (if in local space) and the device pixel scale (for both
    // local and screen space) are included.
    //
    // This implies one or more of the following conditions:
    // - The transform is an identity. In that case, setting WR_FEATURE_GLYPH_TRANSFORM
    //   should have the same output result as not. We just distingush which path to use
    //   based on the transform used during glyph rasterization. (Screen space).
    // - The transform contains an animation. We will imply local raster space in such
    //   cases to avoid constantly rerasterizing the glyphs.
    // - The transform has perspective or does not have a 2d inverse (Screen or local space).
    // - The transform's scale will result in result in very large rasterized glyphs and
    //   we clamped the size. This will imply local raster space.
    vec2 raster_glyph_offset = floor(glyph.offset * glyph_raster_scale + snap_bias) / res.scale;

    // Compute the glyph rect in local space.
    //
    // The transform may be animated, so we don't want to do any snapping here for the
    // text offset to avoid glyphs wiggling. The text offset should have been snapped
    // already for axis aligned transforms excluding any animations during frame building.
    RectWithSize glyph_rect = RectWithSize(glyph_scale_inv * (res.offset + raster_glyph_offset) + text_offset,
                                           glyph_scale_inv * (res.uv_rect.zw - res.uv_rect.xy));

    // Select the corner of the glyph rect that we are processing.
    vec2 local_pos = glyph_rect.p0 + glyph_rect.size * aPosition.xy;
#endif

    VertexInfo vi = write_vertex(
        local_pos,
        ph.local_clip_rect,
        ph.z,
        transform,
        task
    );

#ifdef WR_FEATURE_GLYPH_TRANSFORM
    vec2 f = (glyph_transform * vi.local_pos - glyph_rect.p0) / glyph_rect.size;
    v_uv_clip = vec4(f, 1.0 - f);
#else
    vec2 f = (vi.local_pos - glyph_rect.p0) / glyph_rect.size;
#endif

    write_clip(vi.world_pos, clip_area, task);

    switch (color_mode) {
        case COLOR_MODE_ALPHA:
        case COLOR_MODE_BITMAP:
            v_mask_swizzle = vec2(0.0, 1.0);
            v_color = text.color;
            break;
        case COLOR_MODE_SUBPX_BG_PASS2:
        case COLOR_MODE_SUBPX_DUAL_SOURCE:
            v_mask_swizzle = vec2(1.0, 0.0);
            v_color = text.color;
            break;
        case COLOR_MODE_SUBPX_CONST_COLOR:
        case COLOR_MODE_SUBPX_BG_PASS0:
        case COLOR_MODE_COLOR_BITMAP:
            v_mask_swizzle = vec2(1.0, 0.0);
            v_color = vec4(text.color.a);
            break;
        case COLOR_MODE_SUBPX_BG_PASS1:
            v_mask_swizzle = vec2(-1.0, 1.0);
            v_color = vec4(text.color.a) * text.bg_color;
            break;
        default:
            v_mask_swizzle = vec2(0.0);
            v_color = vec4(1.0);
    }

    vec2 texture_size = vec2(textureSize(sColor0, 0));
    vec2 st0 = res.uv_rect.xy / texture_size;
    vec2 st1 = res.uv_rect.zw / texture_size;

    v_uv = mix(st0, st1, f);
    v_uv_bounds = (res.uv_rect + vec4(0.5, 0.5, -0.5, -0.5)) / texture_size.xyxy;
}

#endif // WR_VERTEX_SHADER

#ifdef WR_FRAGMENT_SHADER

Fragment text_fs(void) {
    Fragment frag;

    vec2 tc = clamp(v_uv, v_uv_bounds.xy, v_uv_bounds.zw);
    vec4 mask = texture(sColor0, tc);
    mask.rgb = mask.rgb * v_mask_swizzle.x + mask.aaa * v_mask_swizzle.y;

    #ifdef WR_FEATURE_GLYPH_TRANSFORM
        mask *= float(all(greaterThanEqual(v_uv_clip, vec4(0.0))));
    #endif

    frag.color = v_color * mask;

    #ifdef WR_FEATURE_DUAL_SOURCE_BLENDING
        frag.blend = v_color.a * mask;
    #endif

    return frag;
}


void main() {
    Fragment frag = text_fs();

    float clip_mask = do_clip();
    frag.color *= clip_mask;

    #if defined(WR_FEATURE_DEBUG_OVERDRAW)
        oFragColor = WR_DEBUG_OVERDRAW_COLOR;
    #elif defined(WR_FEATURE_DUAL_SOURCE_BLENDING)
        oFragColor = frag.color;
        oFragBlend = frag.blend * clip_mask;
    #else
        write_output(frag.color);
    #endif
}

#endif // WR_FRAGMENT_SHADER