1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
|
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
//! # Prepare pass
//!
//! TODO: document this!
use std::{cmp, u32};
use api::{PremultipliedColorF, PropertyBinding, GradientStop, ExtendMode};
use api::{BoxShadowClipMode, LineOrientation, BorderStyle, ClipMode};
use api::units::*;
use euclid::Scale;
use euclid::approxeq::ApproxEq;
use smallvec::SmallVec;
use crate::image_tiling::{self, Repetition};
use crate::border::{get_max_scale_for_border, build_border_instances};
use crate::clip::{ClipStore};
use crate::spatial_tree::{SpatialNodeIndex, SpatialTree};
use crate::clip::{ClipDataStore, ClipNodeFlags, ClipChainInstance, ClipItemKind};
use crate::frame_builder::{FrameBuildingContext, FrameBuildingState, PictureContext, PictureState};
use crate::gpu_cache::{GpuCacheHandle, GpuDataRequest};
use crate::gpu_types::{BrushFlags};
use crate::internal_types::{FastHashMap, PlaneSplitAnchor};
use crate::picture::{PicturePrimitive, SliceId, TileCacheLogger, ClusterFlags, SurfaceRenderTasks};
use crate::picture::{PrimitiveList, PrimitiveCluster, SurfaceIndex, TileCacheInstance};
use crate::prim_store::gradient::{GRADIENT_FP_STOPS, GradientCacheKey, GradientStopKey};
use crate::prim_store::gradient::LinearGradientPrimitive;
use crate::prim_store::line_dec::MAX_LINE_DECORATION_RESOLUTION;
use crate::prim_store::*;
use crate::render_backend::DataStores;
use crate::render_task_cache::{RenderTaskCacheKeyKind, RenderTaskCacheEntryHandle};
use crate::render_task_cache::{RenderTaskCacheKey, to_cache_size, RenderTaskParent};
use crate::render_task::{RenderTaskKind, RenderTask};
use crate::segment::SegmentBuilder;
use crate::space::SpaceMapper;
use crate::texture_cache::TEXTURE_REGION_DIMENSIONS;
use crate::util::{clamp_to_scale_factor, pack_as_float, raster_rect_to_device_pixels};
use crate::visibility::{compute_conservative_visible_rect, PrimitiveVisibility, VisibilityState, PrimitiveVisibilityMask};
const MAX_MASK_SIZE: f32 = 4096.0;
const MIN_BRUSH_SPLIT_AREA: f32 = 128.0 * 128.0;
pub fn prepare_primitives(
store: &mut PrimitiveStore,
prim_list: &mut PrimitiveList,
pic_context: &PictureContext,
pic_state: &mut PictureState,
frame_context: &FrameBuildingContext,
frame_state: &mut FrameBuildingState,
data_stores: &mut DataStores,
scratch: &mut PrimitiveScratchBuffer,
tile_cache_log: &mut TileCacheLogger,
tile_caches: &mut FastHashMap<SliceId, Box<TileCacheInstance>>,
) {
profile_scope!("prepare_primitives");
for (cluster_index, cluster) in prim_list.clusters.iter_mut().enumerate() {
if !cluster.flags.contains(ClusterFlags::IS_VISIBLE) {
continue;
}
profile_scope!("cluster");
pic_state.map_local_to_pic.set_target_spatial_node(
cluster.spatial_node_index,
frame_context.spatial_tree,
);
frame_state.surfaces[pic_context.surface_index.0].opaque_rect = PictureRect::zero();
for (idx, prim_instance) in (&mut prim_list.prim_instances[cluster.prim_range()]).iter_mut().enumerate() {
let prim_instance_index = cluster.prim_range.start + idx;
// First check for coarse visibility (if this primitive was completely off-screen)
match prim_instance.vis.state {
VisibilityState::Unset => {
panic!("bug: invalid vis state");
}
VisibilityState::Culled => {
continue;
}
VisibilityState::Coarse { ref rect_in_pic_space } => {
// The original coarse state was calculated during the initial visibility pass.
// However, it's possible that the dirty rect has got smaller, if tiles were not
// dirty. Intersecting with the dirty rect here eliminates preparing any primitives
// outside the dirty rect, and reduces the size of any off-screen surface allocations
// for clip masks / render tasks that we make.
// Clear the current visibiilty mask, and build a more detailed one based on the dirty rect
// regions below.
let dirty_region = frame_state.current_dirty_region();
let mut visibility_mask = PrimitiveVisibilityMask::empty();
for dirty_region in &dirty_region.dirty_rects {
if rect_in_pic_space.intersects(&dirty_region.rect_in_pic_space) {
visibility_mask.include(dirty_region.visibility_mask);
}
}
// Check again if the prim is now visible after considering the current dirty regions.
if visibility_mask.is_empty() {
prim_instance.clear_visibility();
continue;
} else {
prim_instance.vis.state = VisibilityState::Detailed {
visibility_mask,
}
}
}
VisibilityState::Detailed { .. } => {
// Was already set to detailed (picture caching disabled or a root element)
}
}
let plane_split_anchor = PlaneSplitAnchor::new(cluster_index, prim_instance_index);
if prepare_prim_for_render(
store,
prim_instance,
cluster,
pic_context,
pic_state,
frame_context,
frame_state,
plane_split_anchor,
data_stores,
scratch,
tile_cache_log,
tile_caches,
) {
frame_state.num_visible_primitives += 1;
} else {
prim_instance.clear_visibility();
}
}
if !cluster.opaque_rect.is_empty() {
let surface = &mut frame_state.surfaces[pic_context.surface_index.0];
if let Some(cluster_opaque_rect) = surface.map_local_to_surface.map_inner_bounds(&cluster.opaque_rect) {
surface.opaque_rect = crate::util::conservative_union_rect(&surface.opaque_rect, &cluster_opaque_rect);
}
}
}
}
fn prepare_prim_for_render(
store: &mut PrimitiveStore,
prim_instance: &mut PrimitiveInstance,
cluster: &mut PrimitiveCluster,
pic_context: &PictureContext,
pic_state: &mut PictureState,
frame_context: &FrameBuildingContext,
frame_state: &mut FrameBuildingState,
plane_split_anchor: PlaneSplitAnchor,
data_stores: &mut DataStores,
scratch: &mut PrimitiveScratchBuffer,
tile_cache_log: &mut TileCacheLogger,
tile_caches: &mut FastHashMap<SliceId, Box<TileCacheInstance>>,
) -> bool {
profile_scope!("prepare_prim_for_render");
// If we have dependencies, we need to prepare them first, in order
// to know the actual rect of this primitive.
// For example, scrolling may affect the location of an item in
// local space, which may force us to render this item on a larger
// picture target, if being composited.
let pic_info = {
match prim_instance.kind {
PrimitiveInstanceKind::Picture { pic_index ,.. } => {
let pic = &mut store.pictures[pic_index.0];
match pic.take_context(
pic_index,
pic_context.surface_spatial_node_index,
pic_context.raster_spatial_node_index,
pic_context.surface_index,
&pic_context.subpixel_mode,
frame_state,
frame_context,
scratch,
tile_cache_log,
tile_caches,
) {
Some(info) => Some(info),
None => {
if prim_instance.is_chased() {
println!("\tculled for carrying an invisible composite filter");
}
return false;
}
}
}
PrimitiveInstanceKind::TextRun { .. } |
PrimitiveInstanceKind::Rectangle { .. } |
PrimitiveInstanceKind::LineDecoration { .. } |
PrimitiveInstanceKind::NormalBorder { .. } |
PrimitiveInstanceKind::ImageBorder { .. } |
PrimitiveInstanceKind::YuvImage { .. } |
PrimitiveInstanceKind::Image { .. } |
PrimitiveInstanceKind::LinearGradient { .. } |
PrimitiveInstanceKind::RadialGradient { .. } |
PrimitiveInstanceKind::ConicGradient { .. } |
PrimitiveInstanceKind::Clear { .. } |
PrimitiveInstanceKind::Backdrop { .. } => {
None
}
}
};
let is_passthrough = match pic_info {
Some((pic_context_for_children, mut pic_state_for_children, mut prim_list)) => {
let is_passthrough = pic_context_for_children.is_passthrough;
prepare_primitives(
store,
&mut prim_list,
&pic_context_for_children,
&mut pic_state_for_children,
frame_context,
frame_state,
data_stores,
scratch,
tile_cache_log,
tile_caches,
);
// Restore the dependencies (borrow check dance)
store.pictures[pic_context_for_children.pic_index.0]
.restore_context(
prim_list,
pic_context_for_children,
pic_state_for_children,
frame_state,
);
is_passthrough
}
None => {
false
}
};
let prim_rect = data_stores.get_local_prim_rect(
prim_instance,
store,
);
if !is_passthrough {
if !update_clip_task(
prim_instance,
&prim_rect.origin,
cluster.spatial_node_index,
pic_context.raster_spatial_node_index,
pic_context,
pic_state,
frame_context,
frame_state,
store,
data_stores,
scratch,
) {
if prim_instance.is_chased() {
println!("\tconsidered invisible");
}
return false;
}
if prim_instance.is_chased() {
println!("\tconsidered visible and ready with local pos {:?}", prim_rect.origin);
}
}
#[cfg(debug_assertions)]
{
prim_instance.prepared_frame_id = frame_state.rg_builder.frame_id();
}
prepare_interned_prim_for_render(
store,
prim_instance,
cluster,
plane_split_anchor,
pic_context,
pic_state,
frame_context,
frame_state,
data_stores,
scratch,
);
true
}
/// Prepare an interned primitive for rendering, by requesting
/// resources, render tasks etc. This is equivalent to the
/// prepare_prim_for_render_inner call for old style primitives.
fn prepare_interned_prim_for_render(
store: &mut PrimitiveStore,
prim_instance: &mut PrimitiveInstance,
cluster: &mut PrimitiveCluster,
plane_split_anchor: PlaneSplitAnchor,
pic_context: &PictureContext,
pic_state: &mut PictureState,
frame_context: &FrameBuildingContext,
frame_state: &mut FrameBuildingState,
data_stores: &mut DataStores,
scratch: &mut PrimitiveScratchBuffer,
) {
let prim_spatial_node_index = cluster.spatial_node_index;
let is_chased = prim_instance.is_chased();
let device_pixel_scale = frame_state.surfaces[pic_context.surface_index.0].device_pixel_scale;
let mut is_opaque = false;
match &mut prim_instance.kind {
PrimitiveInstanceKind::LineDecoration { data_handle, ref mut cache_handle, .. } => {
profile_scope!("LineDecoration");
let prim_data = &mut data_stores.line_decoration[*data_handle];
let common_data = &mut prim_data.common;
let line_dec_data = &mut prim_data.kind;
// Update the template this instane references, which may refresh the GPU
// cache with any shared template data.
line_dec_data.update(common_data, frame_state);
// Work out the device pixel size to be used to cache this line decoration.
if is_chased {
println!("\tline decoration key={:?}", line_dec_data.cache_key);
}
// If we have a cache key, it's a wavy / dashed / dotted line. Otherwise, it's
// a simple solid line.
if let Some(cache_key) = line_dec_data.cache_key.as_ref() {
// TODO(gw): Do we ever need / want to support scales for text decorations
// based on the current transform?
let scale_factor = Scale::new(1.0) * device_pixel_scale;
let mut task_size = (LayoutSize::from_au(cache_key.size) * scale_factor).ceil().to_i32();
if task_size.width > MAX_LINE_DECORATION_RESOLUTION as i32 ||
task_size.height > MAX_LINE_DECORATION_RESOLUTION as i32 {
let max_extent = cmp::max(task_size.width, task_size.height);
let task_scale_factor = Scale::new(MAX_LINE_DECORATION_RESOLUTION as f32 / max_extent as f32);
task_size = (LayoutSize::from_au(cache_key.size) * scale_factor * task_scale_factor)
.ceil().to_i32();
}
// Request a pre-rendered image task.
// TODO(gw): This match is a bit untidy, but it should disappear completely
// once the prepare_prims and batching are unified. When that
// happens, we can use the cache handle immediately, and not need
// to temporarily store it in the primitive instance.
*cache_handle = Some(frame_state.resource_cache.request_render_task(
RenderTaskCacheKey {
size: task_size,
kind: RenderTaskCacheKeyKind::LineDecoration(cache_key.clone()),
},
frame_state.gpu_cache,
frame_state.rg_builder,
None,
false,
RenderTaskParent::Surface(pic_context.surface_index),
frame_state.surfaces,
|rg_builder| {
rg_builder.add().init(RenderTask::new_dynamic(
task_size,
RenderTaskKind::new_line_decoration(
cache_key.style,
cache_key.orientation,
cache_key.wavy_line_thickness.to_f32_px(),
LayoutSize::from_au(cache_key.size),
),
))
}
));
}
}
PrimitiveInstanceKind::TextRun { run_index, data_handle, .. } => {
profile_scope!("TextRun");
let prim_data = &mut data_stores.text_run[*data_handle];
let run = &mut store.text_runs[*run_index];
prim_data.common.may_need_repetition = false;
// The glyph transform has to match `glyph_transform` in "ps_text_run" shader.
// It's relative to the rasterizing space of a glyph.
let transform = frame_context.spatial_tree
.get_relative_transform(
prim_spatial_node_index,
pic_context.raster_spatial_node_index,
)
.into_fast_transform();
let prim_offset = prim_data.common.prim_rect.origin.to_vector() - run.reference_frame_relative_offset;
let pic = &store.pictures[pic_context.pic_index.0];
let surface = &frame_state.surfaces[pic_context.surface_index.0];
let prim_info = &prim_instance.vis;
let root_scaling_factor = match pic.raster_config {
Some(ref raster_config) => raster_config.root_scaling_factor,
None => 1.0
};
run.request_resources(
prim_offset,
prim_info.clip_chain.pic_clip_rect,
&prim_data.font,
&prim_data.glyphs,
&transform.to_transform().with_destination::<_>(),
surface,
prim_spatial_node_index,
root_scaling_factor,
&pic_context.subpixel_mode,
frame_state.resource_cache,
frame_state.gpu_cache,
frame_context.spatial_tree,
scratch,
);
// Update the template this instane references, which may refresh the GPU
// cache with any shared template data.
prim_data.update(frame_state);
}
PrimitiveInstanceKind::Clear { data_handle, .. } => {
profile_scope!("Clear");
let prim_data = &mut data_stores.prim[*data_handle];
prim_data.common.may_need_repetition = false;
// Update the template this instane references, which may refresh the GPU
// cache with any shared template data.
prim_data.update(frame_state, frame_context.scene_properties);
}
PrimitiveInstanceKind::NormalBorder { data_handle, ref mut cache_handles, .. } => {
profile_scope!("NormalBorder");
let prim_data = &mut data_stores.normal_border[*data_handle];
let common_data = &mut prim_data.common;
let border_data = &mut prim_data.kind;
common_data.may_need_repetition =
matches!(border_data.border.top.style, BorderStyle::Dotted | BorderStyle::Dashed) ||
matches!(border_data.border.right.style, BorderStyle::Dotted | BorderStyle::Dashed) ||
matches!(border_data.border.bottom.style, BorderStyle::Dotted | BorderStyle::Dashed) ||
matches!(border_data.border.left.style, BorderStyle::Dotted | BorderStyle::Dashed);
// Update the template this instance references, which may refresh the GPU
// cache with any shared template data.
border_data.update(common_data, frame_state);
// TODO(gw): For now, the scale factors to rasterize borders at are
// based on the true world transform of the primitive. When
// raster roots with local scale are supported in future,
// that will need to be accounted for here.
let scale = frame_context
.spatial_tree
.get_world_transform(prim_spatial_node_index)
.scale_factors();
// Scale factors are normalized to a power of 2 to reduce the number of
// resolution changes.
// For frames with a changing scale transform round scale factors up to
// nearest power-of-2 boundary so that we don't keep having to redraw
// the content as it scales up and down. Rounding up to nearest
// power-of-2 boundary ensures we never scale up, only down --- avoiding
// jaggies. It also ensures we never scale down by more than a factor of
// 2, avoiding bad downscaling quality.
let scale_width = clamp_to_scale_factor(scale.0, false);
let scale_height = clamp_to_scale_factor(scale.1, false);
// Pick the maximum dimension as scale
let world_scale = LayoutToWorldScale::new(scale_width.max(scale_height));
let mut scale = world_scale * device_pixel_scale;
let max_scale = get_max_scale_for_border(border_data);
scale.0 = scale.0.min(max_scale.0);
// For each edge and corner, request the render task by content key
// from the render task cache. This ensures that the render task for
// this segment will be available for batching later in the frame.
let mut handles: SmallVec<[RenderTaskCacheEntryHandle; 8]> = SmallVec::new();
for segment in &border_data.border_segments {
// Update the cache key device size based on requested scale.
let cache_size = to_cache_size(segment.local_task_size, &mut scale);
let cache_key = RenderTaskCacheKey {
kind: RenderTaskCacheKeyKind::BorderSegment(segment.cache_key.clone()),
size: cache_size,
};
handles.push(frame_state.resource_cache.request_render_task(
cache_key,
frame_state.gpu_cache,
frame_state.rg_builder,
None,
false, // TODO(gw): We don't calculate opacity for borders yet!
RenderTaskParent::Surface(pic_context.surface_index),
frame_state.surfaces,
|rg_builder| {
rg_builder.add().init(RenderTask::new_dynamic(
cache_size,
RenderTaskKind::new_border_segment(
build_border_instances(
&segment.cache_key,
cache_size,
&border_data.border,
scale,
)
),
))
}
));
}
*cache_handles = scratch
.border_cache_handles
.extend(handles);
}
PrimitiveInstanceKind::ImageBorder { data_handle, .. } => {
profile_scope!("ImageBorder");
let prim_data = &mut data_stores.image_border[*data_handle];
// TODO: get access to the ninepatch and to check whwther we need support
// for repetitions in the shader.
// Update the template this instane references, which may refresh the GPU
// cache with any shared template data.
prim_data.kind.update(&mut prim_data.common, frame_state);
}
PrimitiveInstanceKind::Rectangle { data_handle, segment_instance_index, color_binding_index, .. } => {
profile_scope!("Rectangle");
let prim_data = &mut data_stores.prim[*data_handle];
prim_data.common.may_need_repetition = false;
if *color_binding_index != ColorBindingIndex::INVALID {
match store.color_bindings[*color_binding_index] {
PropertyBinding::Binding(..) => {
// We explicitly invalidate the gpu cache
// if the color is animating.
let gpu_cache_handle =
if *segment_instance_index == SegmentInstanceIndex::INVALID {
None
} else if *segment_instance_index == SegmentInstanceIndex::UNUSED {
Some(&prim_data.common.gpu_cache_handle)
} else {
Some(&scratch.segment_instances[*segment_instance_index].gpu_cache_handle)
};
if let Some(gpu_cache_handle) = gpu_cache_handle {
frame_state.gpu_cache.invalidate(gpu_cache_handle);
}
}
PropertyBinding::Value(..) => {},
}
}
// Update the template this instane references, which may refresh the GPU
// cache with any shared template data.
prim_data.update(
frame_state,
frame_context.scene_properties,
);
is_opaque = prim_data.common.opacity.is_opaque;
write_segment(
*segment_instance_index,
frame_state,
&mut scratch.segments,
&mut scratch.segment_instances,
|request| {
prim_data.kind.write_prim_gpu_blocks(
request,
frame_context.scene_properties,
);
}
);
}
PrimitiveInstanceKind::YuvImage { data_handle, segment_instance_index, .. } => {
profile_scope!("YuvImage");
let prim_data = &mut data_stores.yuv_image[*data_handle];
let common_data = &mut prim_data.common;
let yuv_image_data = &mut prim_data.kind;
is_opaque = true;
common_data.may_need_repetition = false;
// Update the template this instane references, which may refresh the GPU
// cache with any shared template data.
yuv_image_data.update(common_data, frame_state);
write_segment(
*segment_instance_index,
frame_state,
&mut scratch.segments,
&mut scratch.segment_instances,
|request| {
yuv_image_data.write_prim_gpu_blocks(request);
}
);
}
PrimitiveInstanceKind::Image { data_handle, image_instance_index, .. } => {
profile_scope!("Image");
let prim_data = &mut data_stores.image[*data_handle];
let common_data = &mut prim_data.common;
let image_data = &mut prim_data.kind;
if image_data.stretch_size.width >= common_data.prim_rect.size.width &&
image_data.stretch_size.height >= common_data.prim_rect.size.height {
common_data.may_need_repetition = false;
}
// Update the template this instane references, which may refresh the GPU
// cache with any shared template data.
image_data.update(
common_data,
pic_context.surface_index,
frame_state,
);
// common_data.opacity.is_opaque is computed in the above update call.
is_opaque = common_data.opacity.is_opaque;
let image_instance = &mut store.images[*image_instance_index];
write_segment(
image_instance.segment_instance_index,
frame_state,
&mut scratch.segments,
&mut scratch.segment_instances,
|request| {
image_data.write_prim_gpu_blocks(request);
},
);
}
PrimitiveInstanceKind::LinearGradient { data_handle, gradient_index, .. } => {
profile_scope!("LinearGradient");
let prim_data = &mut data_stores.linear_grad[*data_handle];
let gradient = &mut store.linear_gradients[*gradient_index];
// Update the template this instane references, which may refresh the GPU
// cache with any shared template data.
prim_data.update(frame_state);
if prim_data.stretch_size.width >= prim_data.common.prim_rect.size.width &&
prim_data.stretch_size.height >= prim_data.common.prim_rect.size.height {
prim_data.common.may_need_repetition = false;
}
if prim_data.supports_caching {
let gradient_size = (prim_data.end_point - prim_data.start_point).to_size();
// Calculate what the range of the gradient is that covers this
// primitive. These values are included in the cache key. The
// size of the gradient task is the length of a texture cache
// region, for maximum accuracy, and a minimal size on the
// axis that doesn't matter.
let (size, orientation, prim_start_offset, prim_end_offset) =
if prim_data.start_point.x.approx_eq(&prim_data.end_point.x) {
let prim_start_offset = -prim_data.start_point.y / gradient_size.height;
let prim_end_offset = (prim_data.common.prim_rect.size.height - prim_data.start_point.y)
/ gradient_size.height;
let size = DeviceIntSize::new(16, TEXTURE_REGION_DIMENSIONS);
(size, LineOrientation::Vertical, prim_start_offset, prim_end_offset)
} else {
let prim_start_offset = -prim_data.start_point.x / gradient_size.width;
let prim_end_offset = (prim_data.common.prim_rect.size.width - prim_data.start_point.x)
/ gradient_size.width;
let size = DeviceIntSize::new(TEXTURE_REGION_DIMENSIONS, 16);
(size, LineOrientation::Horizontal, prim_start_offset, prim_end_offset)
};
// Build the cache key, including information about the stops.
let mut stops = vec![GradientStopKey::empty(); prim_data.stops.len()];
// Reverse the stops as required, same as the gradient builder does
// for the slow path.
if prim_data.reverse_stops {
for (src, dest) in prim_data.stops.iter().rev().zip(stops.iter_mut()) {
let stop = GradientStop {
offset: 1.0 - src.offset,
color: src.color,
};
*dest = stop.into();
}
} else {
for (src, dest) in prim_data.stops.iter().zip(stops.iter_mut()) {
*dest = (*src).into();
}
}
gradient.cache_segments.clear();
// emit render task caches and image rectangles to draw a gradient
// with offsets from start_offset to end_offset.
//
// the primitive is covered by a gradient that ranges from
// prim_start_offset to prim_end_offset.
//
// when clamping, these two pairs of offsets will always be the same.
// when repeating, however, we march across the primitive, blitting
// copies of the gradient along the way. each copy has a range from
// 0.0 to 1.0 (assuming it's fully visible), but where it appears on
// the primitive changes as we go. this position is also expressed
// as an offset: gradient_offset_base. that is, in terms of stops,
// we draw a gradient from start_offset to end_offset. its actual
// location on the primitive is at start_offset + gradient_offset_base.
//
// either way, we need a while-loop to draw the gradient as well
// because it might have more than 4 stops (the maximum of a cached
// segment) and/or hard stops. so we have a walk-within-the-walk from
// start_offset to end_offset caching up to GRADIENT_FP_STOPS stops at a
// time.
fn emit_segments(start_offset: f32, // start and end offset together are
end_offset: f32, // always a subrange of 0..1
gradient_offset_base: f32,
prim_start_offset: f32, // the offsets of the entire gradient as it
prim_end_offset: f32, // covers the entire primitive.
prim_origin_in: LayoutPoint,
prim_size_in: LayoutSize,
task_size: DeviceIntSize,
is_opaque: bool,
stops: &[GradientStopKey],
orientation: LineOrientation,
frame_state: &mut FrameBuildingState,
gradient: &mut LinearGradientPrimitive,
parent_surface_index: SurfaceIndex,
) {
// these prints are used to generate documentation examples, so
// leaving them in but commented out:
//println!("emit_segments call:");
//println!("\tstart_offset: {}, end_offset: {}", start_offset, end_offset);
//println!("\tprim_start_offset: {}, prim_end_offset: {}", prim_start_offset, prim_end_offset);
//println!("\tgradient_offset_base: {}", gradient_offset_base);
let mut first_stop = 0;
// look for an inclusive range of stops [first_stop, last_stop].
// once first_stop points at (or past) the last stop, we're done.
while first_stop < stops.len()-1 {
// if the entire sub-gradient starts at an offset that's past the
// segment's end offset, we're done.
if stops[first_stop].offset > end_offset {
return;
}
// accumulate stops until we have GRADIENT_FP_STOPS of them, or we hit
// a hard stop:
let mut last_stop = first_stop;
let mut hard_stop = false; // did we stop on a hard stop?
while last_stop < stops.len()-1 &&
last_stop - first_stop + 1 < GRADIENT_FP_STOPS
{
if stops[last_stop+1].offset == stops[last_stop].offset {
hard_stop = true;
break;
}
last_stop = last_stop + 1;
}
let num_stops = last_stop - first_stop + 1;
// repeated hard stops at the same offset, skip
if num_stops == 0 {
first_stop = last_stop + 1;
continue;
}
// if the last_stop offset is before start_offset, the segment's not visible:
if stops[last_stop].offset < start_offset {
first_stop = if hard_stop { last_stop+1 } else { last_stop };
continue;
}
let segment_start_point = start_offset.max(stops[first_stop].offset);
let segment_end_point = end_offset .min(stops[last_stop ].offset);
let mut segment_stops = [GradientStopKey::empty(); GRADIENT_FP_STOPS];
for i in 0..num_stops {
segment_stops[i] = stops[first_stop + i];
}
let cache_key = GradientCacheKey {
orientation,
start_stop_point: VectorKey {
x: segment_start_point,
y: segment_end_point,
},
stops: segment_stops,
};
let mut prim_origin = prim_origin_in;
let mut prim_size = prim_size_in;
// the primitive is covered by a segment from overall_start to
// overall_end; scale and shift based on the length of the actual
// segment that we're drawing:
let inv_length = 1.0 / ( prim_end_offset - prim_start_offset );
if orientation == LineOrientation::Horizontal {
prim_origin.x += ( segment_start_point + gradient_offset_base - prim_start_offset )
* inv_length * prim_size.width;
prim_size.width *= ( segment_end_point - segment_start_point )
* inv_length; // 2 gradient_offset_bases cancel out
} else {
prim_origin.y += ( segment_start_point + gradient_offset_base - prim_start_offset )
* inv_length * prim_size.height;
prim_size.height *= ( segment_end_point - segment_start_point )
* inv_length; // 2 gradient_offset_bases cancel out
}
// <= 0 can happen if a hardstop lands exactly on an edge
if prim_size.area() > 0.0 {
let local_rect = LayoutRect::new( prim_origin, prim_size );
// documentation example traces:
//println!("\t\tcaching from offset {} to {}", segment_start_point, segment_end_point);
//println!("\t\tand blitting to {:?}", local_rect);
// Request the render task each frame.
gradient.cache_segments.push(
CachedGradientSegment {
handle: frame_state.resource_cache.request_render_task(
RenderTaskCacheKey {
size: task_size,
kind: RenderTaskCacheKeyKind::Gradient(cache_key),
},
frame_state.gpu_cache,
frame_state.rg_builder,
None,
is_opaque,
RenderTaskParent::Surface(parent_surface_index),
frame_state.surfaces,
|rg_builder| {
rg_builder.add().init(RenderTask::new_dynamic(
task_size,
RenderTaskKind::new_gradient(
segment_stops,
orientation,
segment_start_point,
segment_end_point,
),
))
}),
local_rect: local_rect,
}
);
}
// if ending on a hardstop, skip past it for the start of the next run:
first_stop = if hard_stop { last_stop + 1 } else { last_stop };
}
}
if prim_data.extend_mode == ExtendMode::Clamp ||
( prim_start_offset >= 0.0 && prim_end_offset <= 1.0 ) // repeat doesn't matter
{
// To support clamping, we need to make sure that quads are emitted for the
// segments before and after the 0.0...1.0 range of offsets. emit_segments
// can handle that by duplicating the first and last point if necessary:
if prim_start_offset < 0.0 {
stops.insert(0, GradientStopKey {
offset: prim_start_offset,
color : stops[0].color
});
}
if prim_end_offset > 1.0 {
stops.push( GradientStopKey {
offset: prim_end_offset,
color : stops[stops.len()-1].color
});
}
emit_segments(prim_start_offset, prim_end_offset,
0.0,
prim_start_offset, prim_end_offset,
prim_data.common.prim_rect.origin,
prim_data.common.prim_rect.size,
size,
prim_data.stops_opacity.is_opaque,
&stops,
orientation,
frame_state,
gradient,
pic_context.surface_index,
);
}
else
{
let mut segment_start_point = prim_start_offset;
while segment_start_point < prim_end_offset {
// gradient stops are expressed in the range 0.0 ... 1.0, so to blit
// a copy of the gradient, snap to the integer just before the offset
// we want ...
let gradient_offset_base = segment_start_point.floor();
// .. and then draw from a start offset in range 0 to 1 ...
let repeat_start = segment_start_point - gradient_offset_base;
// .. up to the next integer, but clamped to the primitive's real
// end offset:
let repeat_end = (gradient_offset_base + 1.0).min(prim_end_offset) - gradient_offset_base;
emit_segments(repeat_start, repeat_end,
gradient_offset_base,
prim_start_offset, prim_end_offset,
prim_data.common.prim_rect.origin,
prim_data.common.prim_rect.size,
size,
prim_data.stops_opacity.is_opaque,
&stops,
orientation,
frame_state,
gradient,
pic_context.surface_index,
);
segment_start_point = repeat_end + gradient_offset_base;
}
}
}
if prim_data.tile_spacing != LayoutSize::zero() {
// We are performing the decomposition on the CPU here, no need to
// have it in the shader.
prim_data.common.may_need_repetition = false;
gradient.visible_tiles_range = decompose_repeated_primitive(
&prim_instance.vis,
&prim_data.common.prim_rect,
prim_spatial_node_index,
&prim_data.stretch_size,
&prim_data.tile_spacing,
frame_state,
&mut scratch.gradient_tiles,
&frame_context.spatial_tree,
&mut |_, mut request| {
request.push([
prim_data.start_point.x,
prim_data.start_point.y,
prim_data.end_point.x,
prim_data.end_point.y,
]);
request.push([
pack_as_float(prim_data.extend_mode as u32),
prim_data.stretch_size.width,
prim_data.stretch_size.height,
0.0,
]);
}
);
if gradient.visible_tiles_range.is_empty() {
prim_instance.clear_visibility();
}
}
// TODO(gw): Consider whether it's worth doing segment building
// for gradient primitives.
}
PrimitiveInstanceKind::RadialGradient { data_handle, ref mut visible_tiles_range, .. } => {
profile_scope!("RadialGradient");
let prim_data = &mut data_stores.radial_grad[*data_handle];
if prim_data.stretch_size.width >= prim_data.common.prim_rect.size.width &&
prim_data.stretch_size.height >= prim_data.common.prim_rect.size.height {
// We are performing the decomposition on the CPU here, no need to
// have it in the shader.
prim_data.common.may_need_repetition = false;
}
// Update the template this instane references, which may refresh the GPU
// cache with any shared template data.
prim_data.update(frame_state);
if prim_data.tile_spacing != LayoutSize::zero() {
prim_data.common.may_need_repetition = false;
*visible_tiles_range = decompose_repeated_primitive(
&prim_instance.vis,
&prim_data.common.prim_rect,
prim_spatial_node_index,
&prim_data.stretch_size,
&prim_data.tile_spacing,
frame_state,
&mut scratch.gradient_tiles,
&frame_context.spatial_tree,
&mut |_, mut request| {
request.push([
prim_data.center.x,
prim_data.center.y,
prim_data.params.start_radius,
prim_data.params.end_radius,
]);
request.push([
prim_data.params.ratio_xy,
pack_as_float(prim_data.extend_mode as u32),
prim_data.stretch_size.width,
prim_data.stretch_size.height,
]);
},
);
if visible_tiles_range.is_empty() {
prim_instance.clear_visibility();
}
}
// TODO(gw): Consider whether it's worth doing segment building
// for gradient primitives.
}
PrimitiveInstanceKind::ConicGradient { data_handle, ref mut visible_tiles_range, .. } => {
profile_scope!("ConicGradient");
let prim_data = &mut data_stores.conic_grad[*data_handle];
if prim_data.stretch_size.width >= prim_data.common.prim_rect.size.width &&
prim_data.stretch_size.height >= prim_data.common.prim_rect.size.height {
// We are performing the decomposition on the CPU here, no need to
// have it in the shader.
prim_data.common.may_need_repetition = false;
}
// Update the template this instane references, which may refresh the GPU
// cache with any shared template data.
prim_data.update(frame_state);
if prim_data.tile_spacing != LayoutSize::zero() {
prim_data.common.may_need_repetition = false;
*visible_tiles_range = decompose_repeated_primitive(
&prim_instance.vis,
&prim_data.common.prim_rect,
prim_spatial_node_index,
&prim_data.stretch_size,
&prim_data.tile_spacing,
frame_state,
&mut scratch.gradient_tiles,
&frame_context.spatial_tree,
&mut |_, mut request| {
request.push([
prim_data.center.x,
prim_data.center.y,
prim_data.params.start_offset,
prim_data.params.end_offset,
]);
request.push([
prim_data.params.angle,
pack_as_float(prim_data.extend_mode as u32),
prim_data.stretch_size.width,
prim_data.stretch_size.height,
]);
},
);
if visible_tiles_range.is_empty() {
prim_instance.clear_visibility();
}
}
// TODO(gw): Consider whether it's worth doing segment building
// for gradient primitives.
}
PrimitiveInstanceKind::Picture { pic_index, segment_instance_index, .. } => {
profile_scope!("Picture");
let pic = &mut store.pictures[pic_index.0];
if pic.prepare_for_render(
frame_context,
frame_state,
data_stores,
) {
if let Some(ref mut splitter) = pic_state.plane_splitter {
PicturePrimitive::add_split_plane(
splitter,
frame_context.spatial_tree,
prim_spatial_node_index,
pic.precise_local_rect,
&prim_instance.vis.combined_local_clip_rect,
frame_state.current_dirty_region().combined,
plane_split_anchor,
);
}
// If this picture uses segments, ensure the GPU cache is
// up to date with segment local rects.
// TODO(gw): This entire match statement above can now be
// refactored into prepare_interned_prim_for_render.
if pic.can_use_segments() {
write_segment(
*segment_instance_index,
frame_state,
&mut scratch.segments,
&mut scratch.segment_instances,
|request| {
request.push(PremultipliedColorF::WHITE);
request.push(PremultipliedColorF::WHITE);
request.push([
-1.0, // -ve means use prim rect for stretch size
0.0,
0.0,
0.0,
]);
}
);
}
} else {
prim_instance.clear_visibility();
}
}
PrimitiveInstanceKind::Backdrop { data_handle } => {
profile_scope!("Backdrop");
let backdrop_pic_index = data_stores.backdrop[*data_handle].kind.pic_index;
// Setup a dependency on the backdrop picture to ensure it is rendered prior to rendering this primitive.
let backdrop_surface_index = store.pictures[backdrop_pic_index.0].raster_config.as_ref().unwrap().surface_index;
if let Some(ref backdrop_tasks) = frame_state.surfaces[backdrop_surface_index.0].render_tasks {
// This is untidy / code duplication but matches existing behavior and will be
// removed in follow up patches to this bug to rework how backdrop-filter works.
let backdrop_task_id = match backdrop_tasks {
SurfaceRenderTasks::Tiled(..) => unreachable!(),
SurfaceRenderTasks::Simple(id) => *id,
SurfaceRenderTasks::Chained { port_task_id, .. } => *port_task_id,
};
frame_state.add_child_render_task(
pic_context.surface_index,
backdrop_task_id,
);
} else {
if prim_instance.is_chased() {
println!("\tBackdrop primitive culled because backdrop task was not assigned render tasks");
}
prim_instance.clear_visibility();
}
}
};
// If the primitive is opaque, see if it can contribut to it's picture surface's opaque rect.
is_opaque = is_opaque && {
let clip = prim_instance.vis.clip_task_index;
clip == ClipTaskIndex::INVALID
};
is_opaque = is_opaque && !frame_context.spatial_tree.is_relative_transform_complex(
prim_spatial_node_index,
pic_context.raster_spatial_node_index,
);
if is_opaque {
let prim_local_rect = data_stores.get_local_prim_rect(
prim_instance,
store,
);
cluster.opaque_rect = crate::util::conservative_union_rect(&cluster.opaque_rect, &prim_local_rect);
}
}
fn write_segment<F>(
segment_instance_index: SegmentInstanceIndex,
frame_state: &mut FrameBuildingState,
segments: &mut SegmentStorage,
segment_instances: &mut SegmentInstanceStorage,
f: F,
) where F: Fn(&mut GpuDataRequest) {
debug_assert_ne!(segment_instance_index, SegmentInstanceIndex::INVALID);
if segment_instance_index != SegmentInstanceIndex::UNUSED {
let segment_instance = &mut segment_instances[segment_instance_index];
if let Some(mut request) = frame_state.gpu_cache.request(&mut segment_instance.gpu_cache_handle) {
let segments = &segments[segment_instance.segments_range];
f(&mut request);
for segment in segments {
request.write_segment(
segment.local_rect,
[0.0; 4],
);
}
}
}
}
fn decompose_repeated_primitive(
prim_vis: &PrimitiveVisibility,
prim_local_rect: &LayoutRect,
prim_spatial_node_index: SpatialNodeIndex,
stretch_size: &LayoutSize,
tile_spacing: &LayoutSize,
frame_state: &mut FrameBuildingState,
gradient_tiles: &mut GradientTileStorage,
spatial_tree: &SpatialTree,
callback: &mut dyn FnMut(&LayoutRect, GpuDataRequest),
) -> GradientTileRange {
let mut visible_tiles = Vec::new();
// Tighten the clip rect because decomposing the repeated image can
// produce primitives that are partially covering the original image
// rect and we want to clip these extra parts out.
let tight_clip_rect = prim_vis
.combined_local_clip_rect
.intersection(prim_local_rect).unwrap();
let visible_rect = compute_conservative_visible_rect(
&prim_vis.clip_chain,
frame_state.current_dirty_region().combined,
prim_spatial_node_index,
spatial_tree,
);
let stride = *stretch_size + *tile_spacing;
let repetitions = image_tiling::repetitions(prim_local_rect, &visible_rect, stride);
for Repetition { origin, .. } in repetitions {
let mut handle = GpuCacheHandle::new();
let rect = LayoutRect {
origin,
size: *stretch_size,
};
if let Some(request) = frame_state.gpu_cache.request(&mut handle) {
callback(&rect, request);
}
visible_tiles.push(VisibleGradientTile {
local_rect: rect,
local_clip_rect: tight_clip_rect,
handle
});
}
// At this point if we don't have tiles to show it means we could probably
// have done a better a job at culling during an earlier stage.
// Clearing the screen rect has the effect of "culling out" the primitive
// from the point of view of the batch builder, and ensures we don't hit
// assertions later on because we didn't request any image.
if visible_tiles.is_empty() {
GradientTileRange::empty()
} else {
gradient_tiles.extend(visible_tiles)
}
}
fn update_clip_task_for_brush(
instance: &PrimitiveInstance,
prim_origin: &LayoutPoint,
prim_spatial_node_index: SpatialNodeIndex,
root_spatial_node_index: SpatialNodeIndex,
pic_context: &PictureContext,
pic_state: &mut PictureState,
frame_context: &FrameBuildingContext,
frame_state: &mut FrameBuildingState,
prim_store: &PrimitiveStore,
data_stores: &mut DataStores,
segments_store: &mut SegmentStorage,
segment_instances_store: &mut SegmentInstanceStorage,
clip_mask_instances: &mut Vec<ClipMaskKind>,
unclipped: &DeviceRect,
device_pixel_scale: DevicePixelScale,
) -> Option<ClipTaskIndex> {
let segments = match instance.kind {
PrimitiveInstanceKind::TextRun { .. } |
PrimitiveInstanceKind::Clear { .. } |
PrimitiveInstanceKind::LineDecoration { .. } |
PrimitiveInstanceKind::Backdrop { .. } => {
return None;
}
PrimitiveInstanceKind::Image { image_instance_index, .. } => {
let segment_instance_index = prim_store
.images[image_instance_index]
.segment_instance_index;
if segment_instance_index == SegmentInstanceIndex::UNUSED {
return None;
}
let segment_instance = &segment_instances_store[segment_instance_index];
&segments_store[segment_instance.segments_range]
}
PrimitiveInstanceKind::Picture { segment_instance_index, .. } => {
// Pictures may not support segment rendering at all (INVALID)
// or support segment rendering but choose not to due to size
// or some other factor (UNUSED).
if segment_instance_index == SegmentInstanceIndex::UNUSED ||
segment_instance_index == SegmentInstanceIndex::INVALID {
return None;
}
let segment_instance = &segment_instances_store[segment_instance_index];
&segments_store[segment_instance.segments_range]
}
PrimitiveInstanceKind::YuvImage { segment_instance_index, .. } |
PrimitiveInstanceKind::Rectangle { segment_instance_index, .. } => {
debug_assert!(segment_instance_index != SegmentInstanceIndex::INVALID);
if segment_instance_index == SegmentInstanceIndex::UNUSED {
return None;
}
let segment_instance = &segment_instances_store[segment_instance_index];
&segments_store[segment_instance.segments_range]
}
PrimitiveInstanceKind::ImageBorder { data_handle, .. } => {
let border_data = &data_stores.image_border[data_handle].kind;
// TODO: This is quite messy - once we remove legacy primitives we
// can change this to be a tuple match on (instance, template)
border_data.brush_segments.as_slice()
}
PrimitiveInstanceKind::NormalBorder { data_handle, .. } => {
let border_data = &data_stores.normal_border[data_handle].kind;
// TODO: This is quite messy - once we remove legacy primitives we
// can change this to be a tuple match on (instance, template)
border_data.brush_segments.as_slice()
}
PrimitiveInstanceKind::LinearGradient { data_handle, .. } => {
let prim_data = &data_stores.linear_grad[data_handle];
// TODO: This is quite messy - once we remove legacy primitives we
// can change this to be a tuple match on (instance, template)
if prim_data.brush_segments.is_empty() {
return None;
}
prim_data.brush_segments.as_slice()
}
PrimitiveInstanceKind::RadialGradient { data_handle, .. } => {
let prim_data = &data_stores.radial_grad[data_handle];
// TODO: This is quite messy - once we remove legacy primitives we
// can change this to be a tuple match on (instance, template)
if prim_data.brush_segments.is_empty() {
return None;
}
prim_data.brush_segments.as_slice()
}
PrimitiveInstanceKind::ConicGradient { data_handle, .. } => {
let prim_data = &data_stores.conic_grad[data_handle];
// TODO: This is quite messy - once we remove legacy primitives we
// can change this to be a tuple match on (instance, template)
if prim_data.brush_segments.is_empty() {
return None;
}
prim_data.brush_segments.as_slice()
}
};
// If there are no segments, early out to avoid setting a valid
// clip task instance location below.
if segments.is_empty() {
return None;
}
// Set where in the clip mask instances array the clip mask info
// can be found for this primitive. Each segment will push the
// clip mask information for itself in update_clip_task below.
let clip_task_index = ClipTaskIndex(clip_mask_instances.len() as _);
// If we only built 1 segment, there is no point in re-running
// the clip chain builder. Instead, just use the clip chain
// instance that was built for the main primitive. This is a
// significant optimization for the common case.
if segments.len() == 1 {
let clip_mask_kind = update_brush_segment_clip_task(
&segments[0],
Some(&instance.vis.clip_chain),
frame_state.current_dirty_region().combined,
root_spatial_node_index,
pic_context.surface_index,
pic_state,
frame_context,
frame_state,
&mut data_stores.clip,
unclipped,
device_pixel_scale,
);
clip_mask_instances.push(clip_mask_kind);
} else {
let dirty_world_rect = frame_state.current_dirty_region().combined;
for segment in segments {
// Build a clip chain for the smaller segment rect. This will
// often manage to eliminate most/all clips, and sometimes
// clip the segment completely.
frame_state.clip_store.set_active_clips_from_clip_chain(
&instance.vis.clip_chain,
prim_spatial_node_index,
&frame_context.spatial_tree,
);
let segment_clip_chain = frame_state
.clip_store
.build_clip_chain_instance(
segment.local_rect.translate(prim_origin.to_vector()),
&pic_state.map_local_to_pic,
&pic_state.map_pic_to_world,
&frame_context.spatial_tree,
frame_state.gpu_cache,
frame_state.resource_cache,
device_pixel_scale,
&dirty_world_rect,
&mut data_stores.clip,
false,
instance.is_chased(),
);
let clip_mask_kind = update_brush_segment_clip_task(
&segment,
segment_clip_chain.as_ref(),
frame_state.current_dirty_region().combined,
root_spatial_node_index,
pic_context.surface_index,
pic_state,
frame_context,
frame_state,
&mut data_stores.clip,
unclipped,
device_pixel_scale,
);
clip_mask_instances.push(clip_mask_kind);
}
}
Some(clip_task_index)
}
pub fn update_clip_task(
instance: &mut PrimitiveInstance,
prim_origin: &LayoutPoint,
prim_spatial_node_index: SpatialNodeIndex,
root_spatial_node_index: SpatialNodeIndex,
pic_context: &PictureContext,
pic_state: &mut PictureState,
frame_context: &FrameBuildingContext,
frame_state: &mut FrameBuildingState,
prim_store: &mut PrimitiveStore,
data_stores: &mut DataStores,
scratch: &mut PrimitiveScratchBuffer,
) -> bool {
let device_pixel_scale = frame_state.surfaces[pic_context.surface_index.0].device_pixel_scale;
if instance.is_chased() {
println!("\tupdating clip task with pic rect {:?}", instance.vis.clip_chain.pic_clip_rect);
}
// Get the device space rect for the primitive if it was unclipped.
let unclipped = match get_unclipped_device_rect(
instance.vis.clip_chain.pic_clip_rect,
&pic_state.map_pic_to_raster,
device_pixel_scale,
) {
Some(rect) => rect,
None => return false,
};
build_segments_if_needed(
instance,
frame_state,
prim_store,
data_stores,
&mut scratch.segments,
&mut scratch.segment_instances,
);
// First try to render this primitive's mask using optimized brush rendering.
instance.vis.clip_task_index = if let Some(clip_task_index) = update_clip_task_for_brush(
instance,
prim_origin,
prim_spatial_node_index,
root_spatial_node_index,
pic_context,
pic_state,
frame_context,
frame_state,
prim_store,
data_stores,
&mut scratch.segments,
&mut scratch.segment_instances,
&mut scratch.clip_mask_instances,
&unclipped,
device_pixel_scale,
) {
if instance.is_chased() {
println!("\tsegment tasks have been created for clipping: {:?}", clip_task_index);
}
clip_task_index
} else if instance.vis.clip_chain.needs_mask {
// Get a minimal device space rect, clipped to the screen that we
// need to allocate for the clip mask, as well as interpolated
// snap offsets.
let unadjusted_device_rect = match get_clipped_device_rect(
&unclipped,
&pic_state.map_raster_to_world,
frame_state.current_dirty_region().combined,
device_pixel_scale,
) {
Some(device_rect) => device_rect,
None => return false,
};
let (device_rect, device_pixel_scale) = adjust_mask_scale_for_max_size(
unadjusted_device_rect,
device_pixel_scale,
);
let clip_task_id = RenderTaskKind::new_mask(
device_rect,
instance.vis.clip_chain.clips_range,
root_spatial_node_index,
frame_state.clip_store,
frame_state.gpu_cache,
frame_state.resource_cache,
frame_state.rg_builder,
&mut data_stores.clip,
device_pixel_scale,
frame_context.fb_config,
frame_state.surfaces,
);
if instance.is_chased() {
println!("\tcreated task {:?} with device rect {:?}",
clip_task_id, device_rect);
}
// Set the global clip mask instance for this primitive.
let clip_task_index = ClipTaskIndex(scratch.clip_mask_instances.len() as _);
scratch.clip_mask_instances.push(ClipMaskKind::Mask(clip_task_id));
instance.vis.clip_task_index = clip_task_index;
frame_state.add_child_render_task(
pic_context.surface_index,
clip_task_id,
);
clip_task_index
} else {
if instance.is_chased() {
println!("\tno mask is needed");
}
ClipTaskIndex::INVALID
};
true
}
/// Write out to the clip mask instances array the correct clip mask
/// config for this segment.
pub fn update_brush_segment_clip_task(
segment: &BrushSegment,
clip_chain: Option<&ClipChainInstance>,
world_clip_rect: WorldRect,
root_spatial_node_index: SpatialNodeIndex,
surface_index: SurfaceIndex,
pic_state: &mut PictureState,
frame_context: &FrameBuildingContext,
frame_state: &mut FrameBuildingState,
clip_data_store: &mut ClipDataStore,
unclipped: &DeviceRect,
device_pixel_scale: DevicePixelScale,
) -> ClipMaskKind {
let clip_chain = match clip_chain {
Some(chain) => chain,
None => return ClipMaskKind::Clipped,
};
if !clip_chain.needs_mask ||
(!segment.may_need_clip_mask && !clip_chain.has_non_local_clips) {
return ClipMaskKind::None;
}
let segment_world_rect = match pic_state.map_pic_to_world.map(&clip_chain.pic_clip_rect) {
Some(rect) => rect,
None => return ClipMaskKind::Clipped,
};
let segment_world_rect = match segment_world_rect.intersection(&world_clip_rect) {
Some(rect) => rect,
None => return ClipMaskKind::Clipped,
};
// Get a minimal device space rect, clipped to the screen that we
// need to allocate for the clip mask, as well as interpolated
// snap offsets.
let device_rect = match get_clipped_device_rect(
unclipped,
&pic_state.map_raster_to_world,
segment_world_rect,
device_pixel_scale,
) {
Some(info) => info,
None => {
return ClipMaskKind::Clipped;
}
};
let (device_rect, device_pixel_scale) = adjust_mask_scale_for_max_size(device_rect, device_pixel_scale);
let clip_task_id = RenderTaskKind::new_mask(
device_rect,
clip_chain.clips_range,
root_spatial_node_index,
frame_state.clip_store,
frame_state.gpu_cache,
frame_state.resource_cache,
frame_state.rg_builder,
clip_data_store,
device_pixel_scale,
frame_context.fb_config,
frame_state.surfaces,
);
frame_state.add_child_render_task(
surface_index,
clip_task_id,
);
ClipMaskKind::Mask(clip_task_id)
}
fn write_brush_segment_description(
prim_local_rect: LayoutRect,
prim_local_clip_rect: LayoutRect,
clip_chain: &ClipChainInstance,
segment_builder: &mut SegmentBuilder,
clip_store: &ClipStore,
data_stores: &DataStores,
) -> bool {
// If the brush is small, we want to skip building segments
// and just draw it as a single primitive with clip mask.
if prim_local_rect.size.area() < MIN_BRUSH_SPLIT_AREA {
return false;
}
segment_builder.initialize(
prim_local_rect,
None,
prim_local_clip_rect
);
// Segment the primitive on all the local-space clip sources that we can.
for i in 0 .. clip_chain.clips_range.count {
let clip_instance = clip_store
.get_instance_from_range(&clip_chain.clips_range, i);
let clip_node = &data_stores.clip[clip_instance.handle];
// If this clip item is positioned by another positioning node, its relative position
// could change during scrolling. This means that we would need to resegment. Instead
// of doing that, only segment with clips that have the same positioning node.
// TODO(mrobinson, #2858): It may make sense to include these nodes, resegmenting only
// when necessary while scrolling.
if !clip_instance.flags.contains(ClipNodeFlags::SAME_SPATIAL_NODE) {
continue;
}
let (local_clip_rect, radius, mode) = match clip_node.item.kind {
ClipItemKind::RoundedRectangle { rect, radius, mode } => {
(rect, Some(radius), mode)
}
ClipItemKind::Rectangle { rect, mode } => {
(rect, None, mode)
}
ClipItemKind::BoxShadow { ref source } => {
// For inset box shadows, we can clip out any
// pixels that are inside the shadow region
// and are beyond the inner rect, as they can't
// be affected by the blur radius.
let inner_clip_mode = match source.clip_mode {
BoxShadowClipMode::Outset => None,
BoxShadowClipMode::Inset => Some(ClipMode::ClipOut),
};
// Push a region into the segment builder where the
// box-shadow can have an effect on the result. This
// ensures clip-mask tasks get allocated for these
// pixel regions, even if no other clips affect them.
segment_builder.push_mask_region(
source.prim_shadow_rect,
source.prim_shadow_rect.inflate(
-0.5 * source.original_alloc_size.width,
-0.5 * source.original_alloc_size.height,
),
inner_clip_mode,
);
continue;
}
ClipItemKind::Image { .. } => {
// If we encounter an image mask, bail out from segment building.
// It's not possible to know which parts of the primitive are affected
// by the mask (without inspecting the pixels). We could do something
// better here in the future if it ever shows up as a performance issue
// (for instance, at least segment based on the bounding rect of the
// image mask if it's non-repeating).
return false;
}
};
segment_builder.push_clip_rect(local_clip_rect, radius, mode);
}
true
}
fn build_segments_if_needed(
instance: &mut PrimitiveInstance,
frame_state: &mut FrameBuildingState,
prim_store: &mut PrimitiveStore,
data_stores: &DataStores,
segments_store: &mut SegmentStorage,
segment_instances_store: &mut SegmentInstanceStorage,
) {
let prim_clip_chain = &instance.vis.clip_chain;
// Usually, the primitive rect can be found from information
// in the instance and primitive template.
let prim_local_rect = data_stores.get_local_prim_rect(
instance,
prim_store,
);
let segment_instance_index = match instance.kind {
PrimitiveInstanceKind::Rectangle { ref mut segment_instance_index, .. } |
PrimitiveInstanceKind::YuvImage { ref mut segment_instance_index, .. } => {
segment_instance_index
}
PrimitiveInstanceKind::Image { data_handle, image_instance_index, .. } => {
let image_data = &data_stores.image[data_handle].kind;
let image_instance = &mut prim_store.images[image_instance_index];
//Note: tiled images don't support automatic segmentation,
// they strictly produce one segment per visible tile instead.
if frame_state
.resource_cache
.get_image_properties(image_data.key)
.and_then(|properties| properties.tiling)
.is_some()
{
image_instance.segment_instance_index = SegmentInstanceIndex::UNUSED;
return;
}
&mut image_instance.segment_instance_index
}
PrimitiveInstanceKind::Picture { ref mut segment_instance_index, pic_index, .. } => {
let pic = &mut prim_store.pictures[pic_index.0];
// If this picture supports segment rendering
if pic.can_use_segments() {
// If the segments have been invalidated, ensure the current
// index of segments is invalid. This ensures that the segment
// building logic below will be run.
if !pic.segments_are_valid {
*segment_instance_index = SegmentInstanceIndex::INVALID;
pic.segments_are_valid = true;
}
segment_instance_index
} else {
return;
}
}
PrimitiveInstanceKind::TextRun { .. } |
PrimitiveInstanceKind::NormalBorder { .. } |
PrimitiveInstanceKind::ImageBorder { .. } |
PrimitiveInstanceKind::Clear { .. } |
PrimitiveInstanceKind::LinearGradient { .. } |
PrimitiveInstanceKind::RadialGradient { .. } |
PrimitiveInstanceKind::ConicGradient { .. } |
PrimitiveInstanceKind::LineDecoration { .. } |
PrimitiveInstanceKind::Backdrop { .. } => {
// These primitives don't support / need segments.
return;
}
};
if *segment_instance_index == SegmentInstanceIndex::INVALID {
let mut segments: SmallVec<[BrushSegment; 8]> = SmallVec::new();
if write_brush_segment_description(
prim_local_rect,
instance.clip_set.local_clip_rect,
prim_clip_chain,
&mut frame_state.segment_builder,
frame_state.clip_store,
data_stores,
) {
frame_state.segment_builder.build(|segment| {
segments.push(
BrushSegment::new(
segment.rect.translate(-prim_local_rect.origin.to_vector()),
segment.has_mask,
segment.edge_flags,
[0.0; 4],
BrushFlags::PERSPECTIVE_INTERPOLATION,
),
);
});
}
// If only a single segment is produced, there is no benefit to writing
// a segment instance array. Instead, just use the main primitive rect
// written into the GPU cache.
// TODO(gw): This is (sortof) a bandaid - due to a limitation in the current
// brush encoding, we can only support a total of up to 2^16 segments.
// This should be (more than) enough for any real world case, so for
// now we can handle this by skipping cases where we were generating
// segments where there is no benefit. The long term / robust fix
// for this is to move the segment building to be done as a more
// limited nine-patch system during scene building, removing arbitrary
// segmentation during frame-building (see bug #1617491).
if segments.len() <= 1 {
*segment_instance_index = SegmentInstanceIndex::UNUSED;
} else {
let segments_range = segments_store.extend(segments);
let instance = SegmentedInstance {
segments_range,
gpu_cache_handle: GpuCacheHandle::new(),
};
*segment_instance_index = segment_instances_store.push(instance);
};
}
}
/// Retrieve the exact unsnapped device space rectangle for a primitive.
fn get_unclipped_device_rect(
prim_rect: PictureRect,
map_to_raster: &SpaceMapper<PicturePixel, RasterPixel>,
device_pixel_scale: DevicePixelScale,
) -> Option<DeviceRect> {
let raster_rect = map_to_raster.map(&prim_rect)?;
let world_rect = raster_rect * Scale::new(1.0);
Some(world_rect * device_pixel_scale)
}
/// Given an unclipped device rect, try to find a minimal device space
/// rect to allocate a clip mask for, by clipping to the screen. This
/// function is very similar to picture::get_raster_rects. It is far from
/// ideal, and should be refactored as part of the support for setting
/// scale per-raster-root.
fn get_clipped_device_rect(
unclipped: &DeviceRect,
map_to_world: &SpaceMapper<RasterPixel, WorldPixel>,
world_clip_rect: WorldRect,
device_pixel_scale: DevicePixelScale,
) -> Option<DeviceRect> {
let unclipped_raster_rect = {
let world_rect = *unclipped * Scale::new(1.0);
let raster_rect = world_rect * device_pixel_scale.inverse();
raster_rect.cast_unit()
};
let unclipped_world_rect = map_to_world.map(&unclipped_raster_rect)?;
let clipped_world_rect = unclipped_world_rect.intersection(&world_clip_rect)?;
let clipped_raster_rect = map_to_world.unmap(&clipped_world_rect)?;
let clipped_raster_rect = clipped_raster_rect.intersection(&unclipped_raster_rect)?;
// Ensure that we won't try to allocate a zero-sized clip render task.
if clipped_raster_rect.is_empty() {
return None;
}
let clipped = raster_rect_to_device_pixels(
clipped_raster_rect,
device_pixel_scale,
);
Some(clipped)
}
// Ensures that the size of mask render tasks are within MAX_MASK_SIZE.
fn adjust_mask_scale_for_max_size(device_rect: DeviceRect, device_pixel_scale: DevicePixelScale) -> (DeviceRect, DevicePixelScale) {
if device_rect.width() > MAX_MASK_SIZE || device_rect.height() > MAX_MASK_SIZE {
// round_out will grow by 1 integer pixel if origin is on a
// fractional position, so keep that margin for error with -1:
let scale = (MAX_MASK_SIZE - 1.0) /
f32::max(device_rect.width(), device_rect.height());
let new_device_pixel_scale = device_pixel_scale * Scale::new(scale);
let new_device_rect = (device_rect.to_f32() * Scale::new(scale))
.round_out();
(new_device_rect, new_device_pixel_scale)
} else {
(device_rect, device_pixel_scale)
}
}
|