1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set ts=8 sts=2 et sw=2 tw=80:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "jit/arm64/CodeGenerator-arm64.h"
#include "mozilla/MathAlgorithms.h"
#include "jsnum.h"
#include "jit/CodeGenerator.h"
#include "jit/InlineScriptTree.h"
#include "jit/JitRuntime.h"
#include "jit/MIR.h"
#include "jit/MIRGraph.h"
#include "vm/JSContext.h"
#include "vm/Realm.h"
#include "vm/Shape.h"
#include "vm/TraceLogging.h"
#include "jit/shared/CodeGenerator-shared-inl.h"
#include "vm/JSScript-inl.h"
using namespace js;
using namespace js::jit;
using JS::GenericNaN;
using mozilla::FloorLog2;
using mozilla::NegativeInfinity;
// shared
CodeGeneratorARM64::CodeGeneratorARM64(MIRGenerator* gen, LIRGraph* graph,
MacroAssembler* masm)
: CodeGeneratorShared(gen, graph, masm) {}
bool CodeGeneratorARM64::generateOutOfLineCode() {
if (!CodeGeneratorShared::generateOutOfLineCode()) {
return false;
}
if (deoptLabel_.used()) {
// All non-table-based bailouts will go here.
masm.bind(&deoptLabel_);
// Store the frame size, so the handler can recover the IonScript.
masm.push(Imm32(frameSize()));
TrampolinePtr handler = gen->jitRuntime()->getGenericBailoutHandler();
masm.jump(handler);
}
return !masm.oom();
}
void CodeGeneratorARM64::emitBranch(Assembler::Condition cond,
MBasicBlock* mirTrue,
MBasicBlock* mirFalse) {
if (isNextBlock(mirFalse->lir())) {
jumpToBlock(mirTrue, cond);
} else {
jumpToBlock(mirFalse, Assembler::InvertCondition(cond));
jumpToBlock(mirTrue);
}
}
void OutOfLineBailout::accept(CodeGeneratorARM64* codegen) {
codegen->visitOutOfLineBailout(this);
}
void CodeGenerator::visitTestIAndBranch(LTestIAndBranch* test) {
Register input = ToRegister(test->input());
MBasicBlock* mirTrue = test->ifTrue();
MBasicBlock* mirFalse = test->ifFalse();
// Jump to the True block if NonZero.
// Jump to the False block if Zero.
if (isNextBlock(mirFalse->lir())) {
masm.branch32(Assembler::NonZero, input, Imm32(0),
getJumpLabelForBranch(mirTrue));
} else {
masm.branch32(Assembler::Zero, input, Imm32(0),
getJumpLabelForBranch(mirFalse));
if (!isNextBlock(mirTrue->lir())) {
jumpToBlock(mirTrue);
}
}
}
void CodeGenerator::visitCompare(LCompare* comp) {
const MCompare* mir = comp->mir();
const MCompare::CompareType type = mir->compareType();
const Assembler::Condition cond = JSOpToCondition(type, comp->jsop());
const Register leftreg = ToRegister(comp->getOperand(0));
const LAllocation* right = comp->getOperand(1);
const Register defreg = ToRegister(comp->getDef(0));
if (type == MCompare::Compare_Object || type == MCompare::Compare_Symbol) {
masm.cmpPtrSet(cond, leftreg, ToRegister(right), defreg);
return;
}
if (right->isConstant()) {
masm.cmp32Set(cond, leftreg, Imm32(ToInt32(right)), defreg);
} else {
masm.cmp32Set(cond, leftreg, ToRegister(right), defreg);
}
}
void CodeGenerator::visitCompareAndBranch(LCompareAndBranch* comp) {
const MCompare* mir = comp->cmpMir();
const MCompare::CompareType type = mir->compareType();
const LAllocation* left = comp->left();
const LAllocation* right = comp->right();
if (type == MCompare::Compare_Object || type == MCompare::Compare_Symbol) {
masm.cmpPtr(ToRegister(left), ToRegister(right));
} else if (right->isConstant()) {
masm.cmp32(ToRegister(left), Imm32(ToInt32(right)));
} else {
masm.cmp32(ToRegister(left), ToRegister(right));
}
Assembler::Condition cond = JSOpToCondition(type, comp->jsop());
emitBranch(cond, comp->ifTrue(), comp->ifFalse());
}
void CodeGeneratorARM64::bailoutIf(Assembler::Condition condition,
LSnapshot* snapshot) {
encode(snapshot);
// Though the assembler doesn't track all frame pushes, at least make sure
// the known value makes sense.
MOZ_ASSERT_IF(frameClass_ != FrameSizeClass::None() && deoptTable_,
frameClass_.frameSize() == masm.framePushed());
// ARM64 doesn't use a bailout table.
InlineScriptTree* tree = snapshot->mir()->block()->trackedTree();
OutOfLineBailout* ool = new (alloc()) OutOfLineBailout(snapshot);
addOutOfLineCode(ool,
new (alloc()) BytecodeSite(tree, tree->script()->code()));
masm.B(ool->entry(), condition);
}
void CodeGeneratorARM64::bailoutFrom(Label* label, LSnapshot* snapshot) {
MOZ_ASSERT_IF(!masm.oom(), label->used());
MOZ_ASSERT_IF(!masm.oom(), !label->bound());
encode(snapshot);
// Though the assembler doesn't track all frame pushes, at least make sure
// the known value makes sense.
MOZ_ASSERT_IF(frameClass_ != FrameSizeClass::None() && deoptTable_,
frameClass_.frameSize() == masm.framePushed());
// ARM64 doesn't use a bailout table.
InlineScriptTree* tree = snapshot->mir()->block()->trackedTree();
OutOfLineBailout* ool = new (alloc()) OutOfLineBailout(snapshot);
addOutOfLineCode(ool,
new (alloc()) BytecodeSite(tree, tree->script()->code()));
masm.retarget(label, ool->entry());
}
void CodeGeneratorARM64::bailout(LSnapshot* snapshot) {
Label label;
masm.b(&label);
bailoutFrom(&label, snapshot);
}
void CodeGeneratorARM64::visitOutOfLineBailout(OutOfLineBailout* ool) {
masm.push(Imm32(ool->snapshot()->snapshotOffset()));
masm.B(&deoptLabel_);
}
void CodeGenerator::visitMinMaxD(LMinMaxD* ins) {
ARMFPRegister lhs(ToFloatRegister(ins->first()), 64);
ARMFPRegister rhs(ToFloatRegister(ins->second()), 64);
ARMFPRegister output(ToFloatRegister(ins->output()), 64);
if (ins->mir()->isMax()) {
masm.Fmax(output, lhs, rhs);
} else {
masm.Fmin(output, lhs, rhs);
}
}
void CodeGenerator::visitMinMaxF(LMinMaxF* ins) {
ARMFPRegister lhs(ToFloatRegister(ins->first()), 32);
ARMFPRegister rhs(ToFloatRegister(ins->second()), 32);
ARMFPRegister output(ToFloatRegister(ins->output()), 32);
if (ins->mir()->isMax()) {
masm.Fmax(output, lhs, rhs);
} else {
masm.Fmin(output, lhs, rhs);
}
}
// FIXME: Uh, is this a static function? It looks like it is...
template <typename T>
ARMRegister toWRegister(const T* a) {
return ARMRegister(ToRegister(a), 32);
}
// FIXME: Uh, is this a static function? It looks like it is...
template <typename T>
ARMRegister toXRegister(const T* a) {
return ARMRegister(ToRegister(a), 64);
}
Operand toWOperand(const LAllocation* a) {
if (a->isConstant()) {
return Operand(ToInt32(a));
}
return Operand(toWRegister(a));
}
vixl::CPURegister ToCPURegister(const LAllocation* a, Scalar::Type type) {
if (a->isFloatReg() && type == Scalar::Float64) {
return ARMFPRegister(ToFloatRegister(a), 64);
}
if (a->isFloatReg() && type == Scalar::Float32) {
return ARMFPRegister(ToFloatRegister(a), 32);
}
if (a->isGeneralReg()) {
return ARMRegister(ToRegister(a), 32);
}
MOZ_CRASH("Unknown LAllocation");
}
vixl::CPURegister ToCPURegister(const LDefinition* d, Scalar::Type type) {
return ToCPURegister(d->output(), type);
}
void CodeGenerator::visitAddI(LAddI* ins) {
const LAllocation* lhs = ins->getOperand(0);
const LAllocation* rhs = ins->getOperand(1);
const LDefinition* dest = ins->getDef(0);
// Platforms with three-operand arithmetic ops don't need recovery.
MOZ_ASSERT(!ins->recoversInput());
if (ins->snapshot()) {
masm.Adds(toWRegister(dest), toWRegister(lhs), toWOperand(rhs));
bailoutIf(Assembler::Overflow, ins->snapshot());
} else {
masm.Add(toWRegister(dest), toWRegister(lhs), toWOperand(rhs));
}
}
void CodeGenerator::visitSubI(LSubI* ins) {
const LAllocation* lhs = ins->getOperand(0);
const LAllocation* rhs = ins->getOperand(1);
const LDefinition* dest = ins->getDef(0);
// Platforms with three-operand arithmetic ops don't need recovery.
MOZ_ASSERT(!ins->recoversInput());
if (ins->snapshot()) {
masm.Subs(toWRegister(dest), toWRegister(lhs), toWOperand(rhs));
bailoutIf(Assembler::Overflow, ins->snapshot());
} else {
masm.Sub(toWRegister(dest), toWRegister(lhs), toWOperand(rhs));
}
}
void CodeGenerator::visitMulI(LMulI* ins) {
const LAllocation* lhs = ins->getOperand(0);
const LAllocation* rhs = ins->getOperand(1);
const LDefinition* dest = ins->getDef(0);
MMul* mul = ins->mir();
MOZ_ASSERT_IF(mul->mode() == MMul::Integer,
!mul->canBeNegativeZero() && !mul->canOverflow());
Register lhsreg = ToRegister(lhs);
const ARMRegister lhsreg32 = ARMRegister(lhsreg, 32);
Register destreg = ToRegister(dest);
const ARMRegister destreg32 = ARMRegister(destreg, 32);
if (rhs->isConstant()) {
// Bailout on -0.0.
int32_t constant = ToInt32(rhs);
if (mul->canBeNegativeZero() && constant <= 0) {
Assembler::Condition bailoutCond =
(constant == 0) ? Assembler::LessThan : Assembler::Equal;
masm.Cmp(toWRegister(lhs), Operand(0));
bailoutIf(bailoutCond, ins->snapshot());
}
switch (constant) {
case -1:
masm.Negs(destreg32, Operand(lhsreg32));
break; // Go to overflow check.
case 0:
masm.Mov(destreg32, wzr);
return; // Avoid overflow check.
case 1:
if (destreg != lhsreg) {
masm.Mov(destreg32, lhsreg32);
}
return; // Avoid overflow check.
case 2:
masm.Adds(destreg32, lhsreg32, Operand(lhsreg32));
break; // Go to overflow check.
default:
// Use shift if cannot overflow and constant is a power of 2
if (!mul->canOverflow() && constant > 0) {
int32_t shift = FloorLog2(constant);
if ((1 << shift) == constant) {
masm.Lsl(destreg32, lhsreg32, shift);
return;
}
}
// Otherwise, just multiply. We have to check for overflow.
// Negative zero was handled above.
Label bailout;
Label* onOverflow = mul->canOverflow() ? &bailout : nullptr;
vixl::UseScratchRegisterScope temps(&masm.asVIXL());
const Register scratch = temps.AcquireW().asUnsized();
masm.move32(Imm32(constant), scratch);
masm.mul32(lhsreg, scratch, destreg, onOverflow);
if (onOverflow) {
MOZ_ASSERT(lhsreg != destreg);
bailoutFrom(&bailout, ins->snapshot());
}
return;
}
// Overflow check.
if (mul->canOverflow()) {
bailoutIf(Assembler::Overflow, ins->snapshot());
}
} else {
Register rhsreg = ToRegister(rhs);
const ARMRegister rhsreg32 = ARMRegister(rhsreg, 32);
Label bailout;
Label* onOverflow = mul->canOverflow() ? &bailout : nullptr;
if (mul->canBeNegativeZero()) {
// The product of two integer operands is negative zero iff one
// operand is zero, and the other is negative. Therefore, the
// sum of the two operands will also be negative (specifically,
// it will be the non-zero operand). If the result of the
// multiplication is 0, we can check the sign of the sum to
// determine whether we should bail out.
// This code can bailout, so lowering guarantees that the input
// operands are not overwritten.
MOZ_ASSERT(destreg != lhsreg);
MOZ_ASSERT(destreg != rhsreg);
// Do the multiplication.
masm.mul32(lhsreg, rhsreg, destreg, onOverflow);
// Set Zero flag if destreg is 0.
masm.test32(destreg, destreg);
// ccmn is 'conditional compare negative'.
// If the Zero flag is set:
// perform a compare negative (compute lhs+rhs and set flags)
// else:
// clear flags
masm.Ccmn(lhsreg32, rhsreg32, vixl::NoFlag, Assembler::Zero);
// Bails out if (lhs * rhs == 0) && (lhs + rhs < 0):
bailoutIf(Assembler::LessThan, ins->snapshot());
} else {
masm.mul32(lhsreg, rhsreg, destreg, onOverflow);
}
if (onOverflow) {
bailoutFrom(&bailout, ins->snapshot());
}
}
}
void CodeGenerator::visitDivI(LDivI* ins) {
const Register lhs = ToRegister(ins->lhs());
const Register rhs = ToRegister(ins->rhs());
const Register output = ToRegister(ins->output());
const ARMRegister lhs32 = toWRegister(ins->lhs());
const ARMRegister rhs32 = toWRegister(ins->rhs());
const ARMRegister temp32 = toWRegister(ins->getTemp(0));
const ARMRegister output32 = toWRegister(ins->output());
MDiv* mir = ins->mir();
Label done;
// Handle division by zero.
if (mir->canBeDivideByZero()) {
masm.test32(rhs, rhs);
if (mir->trapOnError()) {
Label nonZero;
masm.j(Assembler::NonZero, &nonZero);
masm.wasmTrap(wasm::Trap::IntegerDivideByZero, mir->bytecodeOffset());
masm.bind(&nonZero);
} else if (mir->canTruncateInfinities()) {
// Truncated division by zero is zero: (Infinity|0 = 0).
Label nonZero;
masm.j(Assembler::NonZero, &nonZero);
masm.Mov(output32, wzr);
masm.jump(&done);
masm.bind(&nonZero);
} else {
MOZ_ASSERT(mir->fallible());
bailoutIf(Assembler::Zero, ins->snapshot());
}
}
// Handle an integer overflow from (INT32_MIN / -1).
// The integer division gives INT32_MIN, but should be -(double)INT32_MIN.
if (mir->canBeNegativeOverflow()) {
Label notOverflow;
// Branch to handle the non-overflow cases.
masm.branch32(Assembler::NotEqual, lhs, Imm32(INT32_MIN), ¬Overflow);
masm.branch32(Assembler::NotEqual, rhs, Imm32(-1), ¬Overflow);
// Handle overflow.
if (mir->trapOnError()) {
masm.wasmTrap(wasm::Trap::IntegerOverflow, mir->bytecodeOffset());
} else if (mir->canTruncateOverflow()) {
// (-INT32_MIN)|0 == INT32_MIN, which is already in lhs.
masm.move32(lhs, output);
masm.jump(&done);
} else {
MOZ_ASSERT(mir->fallible());
bailout(ins->snapshot());
}
masm.bind(¬Overflow);
}
// Handle negative zero: lhs == 0 && rhs < 0.
if (!mir->canTruncateNegativeZero() && mir->canBeNegativeZero()) {
Label nonZero;
masm.branch32(Assembler::NotEqual, lhs, Imm32(0), &nonZero);
masm.cmp32(rhs, Imm32(0));
bailoutIf(Assembler::LessThan, ins->snapshot());
masm.bind(&nonZero);
}
// Perform integer division.
if (mir->canTruncateRemainder()) {
masm.Sdiv(output32, lhs32, rhs32);
} else {
vixl::UseScratchRegisterScope temps(&masm.asVIXL());
ARMRegister scratch32 = temps.AcquireW();
// ARM does not automatically calculate the remainder.
// The ISR suggests multiplication to determine whether a remainder exists.
masm.Sdiv(scratch32, lhs32, rhs32);
masm.Mul(temp32, scratch32, rhs32);
masm.Cmp(lhs32, temp32);
bailoutIf(Assembler::NotEqual, ins->snapshot());
masm.Mov(output32, scratch32);
}
masm.bind(&done);
}
void CodeGenerator::visitDivPowTwoI(LDivPowTwoI* ins) {
const Register numerator = ToRegister(ins->numerator());
const ARMRegister numerator32 = toWRegister(ins->numerator());
const ARMRegister output32 = toWRegister(ins->output());
int32_t shift = ins->shift();
bool negativeDivisor = ins->negativeDivisor();
MDiv* mir = ins->mir();
if (!mir->isTruncated() && negativeDivisor) {
// 0 divided by a negative number returns a -0 double.
bailoutTest32(Assembler::Zero, numerator, numerator, ins->snapshot());
}
if (shift) {
if (!mir->isTruncated()) {
// If the remainder is != 0, bailout since this must be a double.
bailoutTest32(Assembler::NonZero, numerator,
Imm32(UINT32_MAX >> (32 - shift)), ins->snapshot());
}
if (mir->isUnsigned()) {
// shift right
masm.Lsr(output32, numerator32, shift);
} else {
ARMRegister temp32 = numerator32;
// Adjust the value so that shifting produces a correctly
// rounded result when the numerator is negative. See 10-1
// "Signed Division by a Known Power of 2" in Henry
// S. Warren, Jr.'s Hacker's Delight.
if (mir->canBeNegativeDividend() && mir->isTruncated()) {
if (shift > 1) {
// Copy the sign bit of the numerator. (= (2^32 - 1) or 0)
masm.Asr(output32, numerator32, 31);
temp32 = output32;
}
// Divide by 2^(32 - shift)
// i.e. (= (2^32 - 1) / 2^(32 - shift) or 0)
// i.e. (= (2^shift - 1) or 0)
masm.Lsr(output32, temp32, 32 - shift);
// If signed, make any 1 bit below the shifted bits to bubble up, such
// that once shifted the value would be rounded towards 0.
masm.Add(output32, output32, numerator32);
temp32 = output32;
}
masm.Asr(output32, temp32, shift);
if (negativeDivisor) {
masm.Neg(output32, output32);
}
}
return;
}
if (negativeDivisor) {
// INT32_MIN / -1 overflows.
if (!mir->isTruncated()) {
masm.Negs(output32, numerator32);
bailoutIf(Assembler::Overflow, ins->snapshot());
} else if (mir->trapOnError()) {
Label ok;
masm.Negs(output32, numerator32);
masm.branch(Assembler::NoOverflow, &ok);
masm.wasmTrap(wasm::Trap::IntegerOverflow, mir->bytecodeOffset());
masm.bind(&ok);
} else {
// Do not set condition flags.
masm.Neg(output32, numerator32);
}
} else {
if (mir->isUnsigned() && !mir->isTruncated()) {
// Copy and set flags.
masm.Adds(output32, numerator32, 0);
// Unsigned division by 1 can overflow if output is not truncated, as we
// do not have an Unsigned type for MIR instructions.
bailoutIf(Assembler::Signed, ins->snapshot());
} else {
// Copy the result.
masm.Mov(output32, numerator32);
}
}
}
void CodeGenerator::visitDivConstantI(LDivConstantI* ins) {
const ARMRegister lhs32 = toWRegister(ins->numerator());
const ARMRegister lhs64 = toXRegister(ins->numerator());
const ARMRegister const32 = toWRegister(ins->temp());
const ARMRegister output32 = toWRegister(ins->output());
const ARMRegister output64 = toXRegister(ins->output());
int32_t d = ins->denominator();
// The absolute value of the denominator isn't a power of 2.
using mozilla::Abs;
MOZ_ASSERT((Abs(d) & (Abs(d) - 1)) != 0);
// We will first divide by Abs(d), and negate the answer if d is negative.
// If desired, this can be avoided by generalizing computeDivisionConstants.
ReciprocalMulConstants rmc =
computeDivisionConstants(Abs(d), /* maxLog = */ 31);
// We first compute (M * n) >> 32, where M = rmc.multiplier.
masm.Mov(const32, int32_t(rmc.multiplier));
if (rmc.multiplier > INT32_MAX) {
MOZ_ASSERT(rmc.multiplier < (int64_t(1) << 32));
// We actually compute (int32_t(M) * n) instead, without the upper bit.
// Thus, (M * n) = (int32_t(M) * n) + n << 32.
//
// ((int32_t(M) * n) + n << 32) can't overflow, as both operands have
// opposite signs because int32_t(M) is negative.
masm.Lsl(output64, lhs64, 32);
// Store (M * n) in output64.
masm.Smaddl(output64, const32, lhs32, output64);
} else {
// Store (M * n) in output64.
masm.Smull(output64, const32, lhs32);
}
// (M * n) >> (32 + shift) is the truncated division answer if n is
// non-negative, as proved in the comments of computeDivisionConstants. We
// must add 1 later if n is negative to get the right answer in all cases.
masm.Asr(output64, output64, 32 + rmc.shiftAmount);
// We'll subtract -1 instead of adding 1, because (n < 0 ? -1 : 0) can be
// computed with just a sign-extending shift of 31 bits.
if (ins->canBeNegativeDividend()) {
masm.Asr(const32, lhs32, 31);
masm.Sub(output32, output32, const32);
}
// After this, output32 contains the correct truncated division result.
if (d < 0) {
masm.Neg(output32, output32);
}
if (!ins->mir()->isTruncated()) {
// This is a division op. Multiply the obtained value by d to check if
// the correct answer is an integer. This cannot overflow, since |d| > 1.
masm.Mov(const32, d);
masm.Msub(const32, output32, const32, lhs32);
// bailout if (lhs - output * d != 0)
masm.Cmp(const32, wzr);
auto bailoutCond = Assembler::NonZero;
// If lhs is zero and the divisor is negative, the answer should have
// been -0.
if (d < 0) {
// or bailout if (lhs == 0).
// ^ ^
// | '-- masm.Ccmp(lhs32, lhs32, .., ..)
// '-- masm.Ccmp(.., .., vixl::ZFlag, ! bailoutCond)
masm.Ccmp(lhs32, wzr, vixl::ZFlag, Assembler::Zero);
bailoutCond = Assembler::Zero;
}
// bailout if (lhs - output * d != 0) or (d < 0 && lhs == 0)
bailoutIf(bailoutCond, ins->snapshot());
}
}
void CodeGenerator::visitUDivConstantI(LUDivConstantI* ins) {
const ARMRegister lhs32 = toWRegister(ins->numerator());
const ARMRegister lhs64 = toXRegister(ins->numerator());
const ARMRegister const32 = toWRegister(ins->temp());
const ARMRegister output32 = toWRegister(ins->output());
const ARMRegister output64 = toXRegister(ins->output());
uint32_t d = ins->denominator();
if (d == 0) {
if (ins->mir()->isTruncated()) {
if (ins->mir()->trapOnError()) {
masm.wasmTrap(wasm::Trap::IntegerDivideByZero,
ins->mir()->bytecodeOffset());
} else {
masm.Mov(output32, wzr);
}
} else {
bailout(ins->snapshot());
}
return;
}
// The denominator isn't a power of 2 (see LDivPowTwoI).
MOZ_ASSERT((d & (d - 1)) != 0);
ReciprocalMulConstants rmc = computeDivisionConstants(d, /* maxLog = */ 32);
// We first compute (M * n) >> 32, where M = rmc.multiplier.
masm.Mov(const32, int32_t(rmc.multiplier));
masm.Umull(output64, const32, lhs32);
if (rmc.multiplier > UINT32_MAX) {
// M >= 2^32 and shift == 0 is impossible, as d >= 2 implies that
// ((M * n) >> (32 + shift)) >= n > floor(n/d) whenever n >= d,
// contradicting the proof of correctness in computeDivisionConstants.
MOZ_ASSERT(rmc.shiftAmount > 0);
MOZ_ASSERT(rmc.multiplier < (int64_t(1) << 33));
// We actually compute (uint32_t(M) * n) instead, without the upper bit.
// Thus, (M * n) = (uint32_t(M) * n) + n << 32.
//
// ((uint32_t(M) * n) + n << 32) can overflow. Hacker's Delight explains a
// trick to avoid this overflow case, but we can avoid it by computing the
// addition on 64 bits registers.
//
// Compute ((uint32_t(M) * n) >> 32 + n)
masm.Add(output64, lhs64, Operand(output64, vixl::LSR, 32));
// (M * n) >> (32 + shift) is the truncated division answer.
masm.Lsr(output64, output64, rmc.shiftAmount);
} else {
// (M * n) >> (32 + shift) is the truncated division answer.
masm.Lsr(output64, output64, 32 + rmc.shiftAmount);
}
// We now have the truncated division value. We are checking whether the
// division resulted in an integer, we multiply the obtained value by d and
// check the remainder of the division.
if (!ins->mir()->isTruncated()) {
masm.Mov(const32, d);
masm.Msub(const32, output32, const32, lhs32);
// bailout if (lhs - output * d != 0)
masm.Cmp(const32, const32);
bailoutIf(Assembler::NonZero, ins->snapshot());
}
}
void CodeGenerator::visitModI(LModI* ins) {
if (gen->compilingWasm()) {
MOZ_CRASH("visitModI while compilingWasm");
}
MMod* mir = ins->mir();
ARMRegister lhs = toWRegister(ins->lhs());
ARMRegister rhs = toWRegister(ins->rhs());
ARMRegister output = toWRegister(ins->output());
Label done;
if (mir->canBeDivideByZero() && !mir->isTruncated()) {
// Non-truncated division by zero produces a non-integer.
masm.Cmp(rhs, Operand(0));
bailoutIf(Assembler::Equal, ins->snapshot());
} else if (mir->canBeDivideByZero()) {
// Truncated division by zero yields integer zero.
masm.Mov(output, rhs);
masm.Cbz(rhs, &done);
}
// Signed division.
masm.Sdiv(output, lhs, rhs);
// Compute the remainder: output = lhs - (output * rhs).
masm.Msub(output, output, rhs, lhs);
if (mir->canBeNegativeDividend() && !mir->isTruncated()) {
// If output == 0 and lhs < 0, then the result should be double -0.0.
// Note that this guard handles lhs == INT_MIN and rhs == -1:
// output = INT_MIN - (INT_MIN / -1) * -1
// = INT_MIN - INT_MIN
// = 0
masm.Cbnz(output, &done);
bailoutCmp32(Assembler::LessThan, lhs, Imm32(0), ins->snapshot());
}
if (done.used()) {
masm.bind(&done);
}
}
void CodeGenerator::visitModPowTwoI(LModPowTwoI* ins) {
Register lhs = ToRegister(ins->getOperand(0));
ARMRegister lhsw = toWRegister(ins->getOperand(0));
ARMRegister outw = toWRegister(ins->output());
int32_t shift = ins->shift();
bool canBeNegative =
!ins->mir()->isUnsigned() && ins->mir()->canBeNegativeDividend();
Label negative;
if (canBeNegative) {
// Switch based on sign of the lhs.
// Positive numbers are just a bitmask.
masm.branchTest32(Assembler::Signed, lhs, lhs, &negative);
}
masm.And(outw, lhsw, Operand((uint32_t(1) << shift) - 1));
if (canBeNegative) {
Label done;
masm.jump(&done);
// Negative numbers need a negate, bitmask, negate.
masm.bind(&negative);
masm.Neg(outw, Operand(lhsw));
masm.And(outw, outw, Operand((uint32_t(1) << shift) - 1));
// Since a%b has the same sign as b, and a is negative in this branch,
// an answer of 0 means the correct result is actually -0. Bail out.
if (!ins->mir()->isTruncated()) {
masm.Negs(outw, Operand(outw));
bailoutIf(Assembler::Zero, ins->snapshot());
} else {
masm.Neg(outw, Operand(outw));
}
masm.bind(&done);
}
}
void CodeGenerator::visitModMaskI(LModMaskI* ins) {
MMod* mir = ins->mir();
int32_t shift = ins->shift();
const Register src = ToRegister(ins->getOperand(0));
const Register dest = ToRegister(ins->getDef(0));
const Register hold = ToRegister(ins->getTemp(0));
const Register remain = ToRegister(ins->getTemp(1));
const ARMRegister src32 = ARMRegister(src, 32);
const ARMRegister dest32 = ARMRegister(dest, 32);
const ARMRegister remain32 = ARMRegister(remain, 32);
vixl::UseScratchRegisterScope temps(&masm.asVIXL());
const ARMRegister scratch32 = temps.AcquireW();
const Register scratch = scratch32.asUnsized();
// We wish to compute x % (1<<y) - 1 for a known constant, y.
//
// 1. Let b = (1<<y) and C = (1<<y)-1, then think of the 32 bit dividend as
// a number in base b, namely c_0*1 + c_1*b + c_2*b^2 ... c_n*b^n
//
// 2. Since both addition and multiplication commute with modulus:
// x % C == (c_0 + c_1*b + ... + c_n*b^n) % C ==
// (c_0 % C) + (c_1%C) * (b % C) + (c_2 % C) * (b^2 % C)...
//
// 3. Since b == C + 1, b % C == 1, and b^n % C == 1 the whole thing
// simplifies to: c_0 + c_1 + c_2 ... c_n % C
//
// Each c_n can easily be computed by a shift/bitextract, and the modulus
// can be maintained by simply subtracting by C whenever the number gets
// over C.
int32_t mask = (1 << shift) - 1;
Label loop;
// Register 'hold' holds -1 if the value was negative, 1 otherwise.
// The remain reg holds the remaining bits that have not been processed.
// The scratch reg serves as a temporary location to store extracted bits.
// The dest reg is the accumulator, becoming final result.
//
// Move the whole value into the remain.
masm.Mov(remain32, src32);
// Zero out the dest.
masm.Mov(dest32, wzr);
// Set the hold appropriately.
{
Label negative;
masm.branch32(Assembler::Signed, remain, Imm32(0), &negative);
masm.move32(Imm32(1), hold);
masm.jump(&loop);
masm.bind(&negative);
masm.move32(Imm32(-1), hold);
masm.neg32(remain);
}
// Begin the main loop.
masm.bind(&loop);
{
// Extract the bottom bits into scratch.
masm.And(scratch32, remain32, Operand(mask));
// Add those bits to the accumulator.
masm.Add(dest32, dest32, scratch32);
// Do a trial subtraction. This functions as a cmp but remembers the result.
masm.Subs(scratch32, dest32, Operand(mask));
// If (sum - C) > 0, store sum - C back into sum, thus performing a modulus.
{
Label sumSigned;
masm.branch32(Assembler::Signed, scratch, scratch, &sumSigned);
masm.Mov(dest32, scratch32);
masm.bind(&sumSigned);
}
// Get rid of the bits that we extracted before.
masm.Lsr(remain32, remain32, shift);
// If the shift produced zero, finish, otherwise, continue in the loop.
masm.branchTest32(Assembler::NonZero, remain, remain, &loop);
}
// Check the hold to see if we need to negate the result.
{
Label done;
// If the hold was non-zero, negate the result to match JS expectations.
masm.branchTest32(Assembler::NotSigned, hold, hold, &done);
if (mir->canBeNegativeDividend() && !mir->isTruncated()) {
// Bail in case of negative zero hold.
bailoutTest32(Assembler::Zero, hold, hold, ins->snapshot());
}
masm.neg32(dest);
masm.bind(&done);
}
}
void CodeGeneratorARM64::emitBigIntDiv(LBigIntDiv* ins, Register dividend,
Register divisor, Register output,
Label* fail) {
// Callers handle division by zero and integer overflow.
const ARMRegister dividend64(dividend, 64);
const ARMRegister divisor64(divisor, 64);
masm.Sdiv(/* result= */ dividend64, dividend64, divisor64);
// Create and return the result.
masm.newGCBigInt(output, divisor, fail, bigIntsCanBeInNursery());
masm.initializeBigInt(output, dividend);
}
void CodeGeneratorARM64::emitBigIntMod(LBigIntMod* ins, Register dividend,
Register divisor, Register output,
Label* fail) {
// Callers handle division by zero and integer overflow.
const ARMRegister dividend64(dividend, 64);
const ARMRegister divisor64(divisor, 64);
const ARMRegister output64(output, 64);
// Signed division.
masm.Sdiv(output64, dividend64, divisor64);
// Compute the remainder: output = dividend - (output * divisor).
masm.Msub(/* result= */ dividend64, output64, divisor64, dividend64);
// Create and return the result.
masm.newGCBigInt(output, divisor, fail, bigIntsCanBeInNursery());
masm.initializeBigInt(output, dividend);
}
void CodeGenerator::visitBitNotI(LBitNotI* ins) {
const LAllocation* input = ins->getOperand(0);
const LDefinition* output = ins->getDef(0);
masm.Mvn(toWRegister(output), toWOperand(input));
}
void CodeGenerator::visitBitOpI(LBitOpI* ins) {
const ARMRegister lhs = toWRegister(ins->getOperand(0));
const Operand rhs = toWOperand(ins->getOperand(1));
const ARMRegister dest = toWRegister(ins->getDef(0));
switch (ins->bitop()) {
case JSOp::BitOr:
masm.Orr(dest, lhs, rhs);
break;
case JSOp::BitXor:
masm.Eor(dest, lhs, rhs);
break;
case JSOp::BitAnd:
masm.And(dest, lhs, rhs);
break;
default:
MOZ_CRASH("unexpected binary opcode");
}
}
void CodeGenerator::visitShiftI(LShiftI* ins) {
const ARMRegister lhs = toWRegister(ins->lhs());
const LAllocation* rhs = ins->rhs();
const ARMRegister dest = toWRegister(ins->output());
if (rhs->isConstant()) {
int32_t shift = ToInt32(rhs) & 0x1F;
switch (ins->bitop()) {
case JSOp::Lsh:
masm.Lsl(dest, lhs, shift);
break;
case JSOp::Rsh:
masm.Asr(dest, lhs, shift);
break;
case JSOp::Ursh:
if (shift) {
masm.Lsr(dest, lhs, shift);
} else if (ins->mir()->toUrsh()->fallible()) {
// x >>> 0 can overflow.
masm.Ands(dest, lhs, Operand(0xFFFFFFFF));
bailoutIf(Assembler::Signed, ins->snapshot());
} else {
masm.Mov(dest, lhs);
}
break;
default:
MOZ_CRASH("Unexpected shift op");
}
} else {
const ARMRegister rhsreg = toWRegister(rhs);
switch (ins->bitop()) {
case JSOp::Lsh:
masm.Lsl(dest, lhs, rhsreg);
break;
case JSOp::Rsh:
masm.Asr(dest, lhs, rhsreg);
break;
case JSOp::Ursh:
masm.Lsr(dest, lhs, rhsreg);
if (ins->mir()->toUrsh()->fallible()) {
/// x >>> 0 can overflow.
masm.Cmp(dest, Operand(0));
bailoutIf(Assembler::LessThan, ins->snapshot());
}
break;
default:
MOZ_CRASH("Unexpected shift op");
}
}
}
void CodeGenerator::visitUrshD(LUrshD* ins) {
const ARMRegister lhs = toWRegister(ins->lhs());
const LAllocation* rhs = ins->rhs();
const FloatRegister out = ToFloatRegister(ins->output());
const Register temp = ToRegister(ins->temp());
const ARMRegister temp32 = toWRegister(ins->temp());
if (rhs->isConstant()) {
int32_t shift = ToInt32(rhs) & 0x1F;
if (shift) {
masm.Lsr(temp32, lhs, shift);
masm.convertUInt32ToDouble(temp, out);
} else {
masm.convertUInt32ToDouble(ToRegister(ins->lhs()), out);
}
} else {
masm.And(temp32, toWRegister(rhs), Operand(0x1F));
masm.Lsr(temp32, lhs, temp32);
masm.convertUInt32ToDouble(temp, out);
}
}
void CodeGenerator::visitPowHalfD(LPowHalfD* ins) {
FloatRegister input = ToFloatRegister(ins->input());
FloatRegister output = ToFloatRegister(ins->output());
ScratchDoubleScope scratch(masm);
Label done, sqrt;
if (!ins->mir()->operandIsNeverNegativeInfinity()) {
// Branch if not -Infinity.
masm.loadConstantDouble(NegativeInfinity<double>(), scratch);
Assembler::DoubleCondition cond = Assembler::DoubleNotEqualOrUnordered;
if (ins->mir()->operandIsNeverNaN()) {
cond = Assembler::DoubleNotEqual;
}
masm.branchDouble(cond, input, scratch, &sqrt);
// Math.pow(-Infinity, 0.5) == Infinity.
masm.zeroDouble(output);
masm.subDouble(scratch, output);
masm.jump(&done);
masm.bind(&sqrt);
}
if (!ins->mir()->operandIsNeverNegativeZero()) {
// Math.pow(-0, 0.5) == 0 == Math.pow(0, 0.5).
// Adding 0 converts any -0 to 0.
masm.zeroDouble(scratch);
masm.addDouble(input, scratch);
masm.sqrtDouble(scratch, output);
} else {
masm.sqrtDouble(input, output);
}
masm.bind(&done);
}
MoveOperand CodeGeneratorARM64::toMoveOperand(const LAllocation a) const {
if (a.isGeneralReg()) {
return MoveOperand(ToRegister(a));
}
if (a.isFloatReg()) {
return MoveOperand(ToFloatRegister(a));
}
MoveOperand::Kind kind =
a.isStackArea() ? MoveOperand::EFFECTIVE_ADDRESS : MoveOperand::MEMORY;
return MoveOperand(ToAddress(a), kind);
}
class js::jit::OutOfLineTableSwitch
: public OutOfLineCodeBase<CodeGeneratorARM64> {
MTableSwitch* mir_;
CodeLabel jumpLabel_;
void accept(CodeGeneratorARM64* codegen) override {
codegen->visitOutOfLineTableSwitch(this);
}
public:
explicit OutOfLineTableSwitch(MTableSwitch* mir) : mir_(mir) {}
MTableSwitch* mir() const { return mir_; }
CodeLabel* jumpLabel() { return &jumpLabel_; }
};
void CodeGeneratorARM64::visitOutOfLineTableSwitch(OutOfLineTableSwitch* ool) {
MTableSwitch* mir = ool->mir();
// Prevent nop and pools sequences to appear in the jump table.
AutoForbidPoolsAndNops afp(
&masm, (mir->numCases() + 1) * (sizeof(void*) / vixl::kInstructionSize));
masm.haltingAlign(sizeof(void*));
masm.bind(ool->jumpLabel());
masm.addCodeLabel(*ool->jumpLabel());
for (size_t i = 0; i < mir->numCases(); i++) {
LBlock* caseblock = skipTrivialBlocks(mir->getCase(i))->lir();
Label* caseheader = caseblock->label();
uint32_t caseoffset = caseheader->offset();
// The entries of the jump table need to be absolute addresses,
// and thus must be patched after codegen is finished.
CodeLabel cl;
masm.writeCodePointer(&cl);
cl.target()->bind(caseoffset);
masm.addCodeLabel(cl);
}
}
void CodeGeneratorARM64::emitTableSwitchDispatch(MTableSwitch* mir,
Register index,
Register base) {
Label* defaultcase = skipTrivialBlocks(mir->getDefault())->lir()->label();
// Let the lowest table entry be indexed at 0.
if (mir->low() != 0) {
masm.sub32(Imm32(mir->low()), index);
}
// Jump to the default case if input is out of range.
int32_t cases = mir->numCases();
masm.branch32(Assembler::AboveOrEqual, index, Imm32(cases), defaultcase);
// Because the target code has not yet been generated, we cannot know the
// instruction offsets for use as jump targets. Therefore we construct
// an OutOfLineTableSwitch that winds up holding the jump table.
//
// Because the jump table is generated as part of out-of-line code,
// it is generated after all the regular codegen, so the jump targets
// are guaranteed to exist when generating the jump table.
OutOfLineTableSwitch* ool = new (alloc()) OutOfLineTableSwitch(mir);
addOutOfLineCode(ool, mir);
// Use the index to get the address of the jump target from the table.
masm.mov(ool->jumpLabel(), base);
BaseIndex pointer(base, index, ScalePointer);
// Load the target from the jump table and branch to it.
masm.branchToComputedAddress(pointer);
}
void CodeGenerator::visitMathD(LMathD* math) {
ARMFPRegister lhs(ToFloatRegister(math->lhs()), 64);
ARMFPRegister rhs(ToFloatRegister(math->rhs()), 64);
ARMFPRegister output(ToFloatRegister(math->output()), 64);
switch (math->jsop()) {
case JSOp::Add:
masm.Fadd(output, lhs, rhs);
break;
case JSOp::Sub:
masm.Fsub(output, lhs, rhs);
break;
case JSOp::Mul:
masm.Fmul(output, lhs, rhs);
break;
case JSOp::Div:
masm.Fdiv(output, lhs, rhs);
break;
default:
MOZ_CRASH("unexpected opcode");
}
}
void CodeGenerator::visitMathF(LMathF* math) {
ARMFPRegister lhs(ToFloatRegister(math->lhs()), 32);
ARMFPRegister rhs(ToFloatRegister(math->rhs()), 32);
ARMFPRegister output(ToFloatRegister(math->output()), 32);
switch (math->jsop()) {
case JSOp::Add:
masm.Fadd(output, lhs, rhs);
break;
case JSOp::Sub:
masm.Fsub(output, lhs, rhs);
break;
case JSOp::Mul:
masm.Fmul(output, lhs, rhs);
break;
case JSOp::Div:
masm.Fdiv(output, lhs, rhs);
break;
default:
MOZ_CRASH("unexpected opcode");
}
}
void CodeGenerator::visitClzI(LClzI* lir) {
ARMRegister input = toWRegister(lir->input());
ARMRegister output = toWRegister(lir->output());
masm.Clz(output, input);
}
void CodeGenerator::visitCtzI(LCtzI* lir) {
Register input = ToRegister(lir->input());
Register output = ToRegister(lir->output());
masm.ctz32(input, output, /* knownNotZero = */ false);
}
void CodeGenerator::visitTruncateDToInt32(LTruncateDToInt32* ins) {
emitTruncateDouble(ToFloatRegister(ins->input()), ToRegister(ins->output()),
ins->mir());
}
void CodeGenerator::visitNearbyInt(LNearbyInt* lir) {
FloatRegister input = ToFloatRegister(lir->input());
FloatRegister output = ToFloatRegister(lir->output());
RoundingMode roundingMode = lir->mir()->roundingMode();
masm.nearbyIntDouble(roundingMode, input, output);
}
void CodeGenerator::visitNearbyIntF(LNearbyIntF* lir) {
FloatRegister input = ToFloatRegister(lir->input());
FloatRegister output = ToFloatRegister(lir->output());
RoundingMode roundingMode = lir->mir()->roundingMode();
masm.nearbyIntFloat32(roundingMode, input, output);
}
void CodeGenerator::visitWasmBuiltinTruncateDToInt32(
LWasmBuiltinTruncateDToInt32* lir) {
MOZ_CRASH("NYI");
}
void CodeGenerator::visitTruncateFToInt32(LTruncateFToInt32* ins) {
emitTruncateFloat32(ToFloatRegister(ins->input()), ToRegister(ins->output()),
ins->mir());
}
void CodeGenerator::visitWasmBuiltinTruncateFToInt32(
LWasmBuiltinTruncateFToInt32* lir) {
MOZ_CRASH("NYI");
}
FrameSizeClass FrameSizeClass::FromDepth(uint32_t frameDepth) {
return FrameSizeClass::None();
}
FrameSizeClass FrameSizeClass::ClassLimit() { return FrameSizeClass(0); }
uint32_t FrameSizeClass::frameSize() const {
MOZ_CRASH("arm64 does not use frame size classes");
}
ValueOperand CodeGeneratorARM64::ToValue(LInstruction* ins, size_t pos) {
return ValueOperand(ToRegister(ins->getOperand(pos)));
}
ValueOperand CodeGeneratorARM64::ToTempValue(LInstruction* ins, size_t pos) {
MOZ_CRASH("CodeGeneratorARM64::ToTempValue");
}
void CodeGenerator::visitValue(LValue* value) {
ValueOperand result = ToOutValue(value);
masm.moveValue(value->value(), result);
}
void CodeGenerator::visitBox(LBox* box) {
const LAllocation* in = box->getOperand(0);
ValueOperand result = ToOutValue(box);
masm.moveValue(TypedOrValueRegister(box->type(), ToAnyRegister(in)), result);
}
void CodeGenerator::visitUnbox(LUnbox* unbox) {
MUnbox* mir = unbox->mir();
Register result = ToRegister(unbox->output());
if (mir->fallible()) {
const ValueOperand value = ToValue(unbox, LUnbox::Input);
Label bail;
switch (mir->type()) {
case MIRType::Int32:
masm.fallibleUnboxInt32(value, result, &bail);
break;
case MIRType::Boolean:
masm.fallibleUnboxBoolean(value, result, &bail);
break;
case MIRType::Object:
masm.fallibleUnboxObject(value, result, &bail);
break;
case MIRType::String:
masm.fallibleUnboxString(value, result, &bail);
break;
case MIRType::Symbol:
masm.fallibleUnboxSymbol(value, result, &bail);
break;
case MIRType::BigInt:
masm.fallibleUnboxBigInt(value, result, &bail);
break;
default:
MOZ_CRASH("Given MIRType cannot be unboxed.");
}
bailoutFrom(&bail, unbox->snapshot());
return;
}
// Infallible unbox.
ValueOperand input = ToValue(unbox, LUnbox::Input);
#ifdef DEBUG
// Assert the types match.
JSValueTag tag = MIRTypeToTag(mir->type());
Label ok;
{
ScratchTagScope scratch(masm, input);
masm.splitTagForTest(input, scratch);
masm.cmpTag(scratch, ImmTag(tag));
}
masm.B(&ok, Assembler::Condition::Equal);
masm.assumeUnreachable("Infallible unbox type mismatch");
masm.bind(&ok);
#endif
switch (mir->type()) {
case MIRType::Int32:
masm.unboxInt32(input, result);
break;
case MIRType::Boolean:
masm.unboxBoolean(input, result);
break;
case MIRType::Object:
masm.unboxObject(input, result);
break;
case MIRType::String:
masm.unboxString(input, result);
break;
case MIRType::Symbol:
masm.unboxSymbol(input, result);
break;
case MIRType::BigInt:
masm.unboxBigInt(input, result);
break;
default:
MOZ_CRASH("Given MIRType cannot be unboxed.");
}
}
void CodeGenerator::visitDouble(LDouble* ins) {
ARMFPRegister output(ToFloatRegister(ins->getDef(0)), 64);
masm.Fmov(output, ins->getDouble());
}
void CodeGenerator::visitFloat32(LFloat32* ins) {
ARMFPRegister output(ToFloatRegister(ins->getDef(0)), 32);
masm.Fmov(output, ins->getFloat());
}
void CodeGenerator::visitTestDAndBranch(LTestDAndBranch* test) {
const LAllocation* opd = test->input();
MBasicBlock* ifTrue = test->ifTrue();
MBasicBlock* ifFalse = test->ifFalse();
masm.Fcmp(ARMFPRegister(ToFloatRegister(opd), 64), 0.0);
// If the compare set the 0 bit, then the result is definitely false.
jumpToBlock(ifFalse, Assembler::Zero);
// Overflow means one of the operands was NaN, which is also false.
jumpToBlock(ifFalse, Assembler::Overflow);
jumpToBlock(ifTrue);
}
void CodeGenerator::visitTestFAndBranch(LTestFAndBranch* test) {
const LAllocation* opd = test->input();
MBasicBlock* ifTrue = test->ifTrue();
MBasicBlock* ifFalse = test->ifFalse();
masm.Fcmp(ARMFPRegister(ToFloatRegister(opd), 32), 0.0);
// If the compare set the 0 bit, then the result is definitely false.
jumpToBlock(ifFalse, Assembler::Zero);
// Overflow means one of the operands was NaN, which is also false.
jumpToBlock(ifFalse, Assembler::Overflow);
jumpToBlock(ifTrue);
}
void CodeGenerator::visitCompareD(LCompareD* comp) {
const FloatRegister left = ToFloatRegister(comp->left());
const FloatRegister right = ToFloatRegister(comp->right());
ARMRegister output = toWRegister(comp->output());
Assembler::DoubleCondition cond = JSOpToDoubleCondition(comp->mir()->jsop());
masm.compareDouble(cond, left, right);
masm.cset(output, Assembler::ConditionFromDoubleCondition(cond));
}
void CodeGenerator::visitCompareF(LCompareF* comp) {
const FloatRegister left = ToFloatRegister(comp->left());
const FloatRegister right = ToFloatRegister(comp->right());
ARMRegister output = toWRegister(comp->output());
Assembler::DoubleCondition cond = JSOpToDoubleCondition(comp->mir()->jsop());
masm.compareFloat(cond, left, right);
masm.cset(output, Assembler::ConditionFromDoubleCondition(cond));
}
void CodeGenerator::visitCompareDAndBranch(LCompareDAndBranch* comp) {
const FloatRegister left = ToFloatRegister(comp->left());
const FloatRegister right = ToFloatRegister(comp->right());
Assembler::DoubleCondition doubleCond =
JSOpToDoubleCondition(comp->cmpMir()->jsop());
Assembler::Condition cond =
Assembler::ConditionFromDoubleCondition(doubleCond);
masm.compareDouble(doubleCond, left, right);
emitBranch(cond, comp->ifTrue(), comp->ifFalse());
}
void CodeGenerator::visitCompareFAndBranch(LCompareFAndBranch* comp) {
const FloatRegister left = ToFloatRegister(comp->left());
const FloatRegister right = ToFloatRegister(comp->right());
Assembler::DoubleCondition doubleCond =
JSOpToDoubleCondition(comp->cmpMir()->jsop());
Assembler::Condition cond =
Assembler::ConditionFromDoubleCondition(doubleCond);
masm.compareFloat(doubleCond, left, right);
emitBranch(cond, comp->ifTrue(), comp->ifFalse());
}
void CodeGenerator::visitBitAndAndBranch(LBitAndAndBranch* baab) {
if (baab->right()->isConstant()) {
masm.Tst(toWRegister(baab->left()), Operand(ToInt32(baab->right())));
} else {
masm.Tst(toWRegister(baab->left()), toWRegister(baab->right()));
}
emitBranch(baab->cond(), baab->ifTrue(), baab->ifFalse());
}
// See ../CodeGenerator.cpp for more information.
void CodeGenerator::visitWasmRegisterResult(LWasmRegisterResult* lir) {}
void CodeGenerator::visitWasmUint32ToDouble(LWasmUint32ToDouble* lir) {
masm.convertUInt32ToDouble(ToRegister(lir->input()),
ToFloatRegister(lir->output()));
}
void CodeGenerator::visitWasmUint32ToFloat32(LWasmUint32ToFloat32* lir) {
masm.convertUInt32ToFloat32(ToRegister(lir->input()),
ToFloatRegister(lir->output()));
}
void CodeGenerator::visitNotI(LNotI* ins) {
ARMRegister input = toWRegister(ins->input());
ARMRegister output = toWRegister(ins->output());
masm.Cmp(input, ZeroRegister32);
masm.Cset(output, Assembler::Zero);
}
// NZCV
// NAN -> 0011
// == -> 0110
// < -> 1000
// > -> 0010
void CodeGenerator::visitNotD(LNotD* ins) {
ARMFPRegister input(ToFloatRegister(ins->input()), 64);
ARMRegister output = toWRegister(ins->output());
// Set output to 1 if input compares equal to 0.0, else 0.
masm.Fcmp(input, 0.0);
masm.Cset(output, Assembler::Equal);
// Comparison with NaN sets V in the NZCV register.
// If the input was NaN, output must now be zero, so it can be incremented.
// The instruction is read: "output = if NoOverflow then output else 0+1".
masm.Csinc(output, output, ZeroRegister32, Assembler::NoOverflow);
}
void CodeGenerator::visitNotF(LNotF* ins) {
ARMFPRegister input(ToFloatRegister(ins->input()), 32);
ARMRegister output = toWRegister(ins->output());
// Set output to 1 input compares equal to 0.0, else 0.
masm.Fcmp(input, 0.0);
masm.Cset(output, Assembler::Equal);
// Comparison with NaN sets V in the NZCV register.
// If the input was NaN, output must now be zero, so it can be incremented.
// The instruction is read: "output = if NoOverflow then output else 0+1".
masm.Csinc(output, output, ZeroRegister32, Assembler::NoOverflow);
}
void CodeGeneratorARM64::generateInvalidateEpilogue() {
// Ensure that there is enough space in the buffer for the OsiPoint patching
// to occur. Otherwise, we could overwrite the invalidation epilogue.
for (size_t i = 0; i < sizeof(void*); i += Assembler::NopSize()) {
masm.nop();
}
masm.bind(&invalidate_);
// Push the return address of the point that we bailout out onto the stack.
masm.push(lr);
// Push the Ion script onto the stack (when we determine what that pointer
// is).
invalidateEpilogueData_ = masm.pushWithPatch(ImmWord(uintptr_t(-1)));
// Jump to the invalidator which will replace the current frame.
TrampolinePtr thunk = gen->jitRuntime()->getInvalidationThunk();
masm.jump(thunk);
}
template <class U>
Register getBase(U* mir) {
switch (mir->base()) {
case U::Heap:
return HeapReg;
}
return InvalidReg;
}
void CodeGenerator::visitAsmJSLoadHeap(LAsmJSLoadHeap* ins) {
MOZ_CRASH("visitAsmJSLoadHeap");
}
void CodeGenerator::visitAsmJSStoreHeap(LAsmJSStoreHeap* ins) {
MOZ_CRASH("visitAsmJSStoreHeap");
}
void CodeGenerator::visitWasmCompareExchangeHeap(
LWasmCompareExchangeHeap* ins) {
MOZ_CRASH("visitWasmCompareExchangeHeap");
}
void CodeGenerator::visitWasmAtomicBinopHeap(LWasmAtomicBinopHeap* ins) {
MOZ_CRASH("visitWasmAtomicBinopHeap");
}
void CodeGenerator::visitWasmStackArg(LWasmStackArg* ins) {
MOZ_CRASH("visitWasmStackArg");
}
void CodeGenerator::visitUDiv(LUDiv* ins) {
MDiv* mir = ins->mir();
Register lhs = ToRegister(ins->lhs());
Register rhs = ToRegister(ins->rhs());
Register output = ToRegister(ins->output());
ARMRegister lhs32 = ARMRegister(lhs, 32);
ARMRegister rhs32 = ARMRegister(rhs, 32);
ARMRegister output32 = ARMRegister(output, 32);
// Prevent divide by zero.
if (mir->canBeDivideByZero()) {
if (mir->isTruncated()) {
if (mir->trapOnError()) {
Label nonZero;
masm.branchTest32(Assembler::NonZero, rhs, rhs, &nonZero);
masm.wasmTrap(wasm::Trap::IntegerDivideByZero, mir->bytecodeOffset());
masm.bind(&nonZero);
} else {
// ARM64 UDIV instruction will return 0 when divided by 0.
// No need for extra tests.
}
} else {
bailoutTest32(Assembler::Zero, rhs, rhs, ins->snapshot());
}
}
// Unsigned division.
masm.Udiv(output32, lhs32, rhs32);
// If the remainder is > 0, bailout since this must be a double.
if (!mir->canTruncateRemainder()) {
Register remainder = ToRegister(ins->remainder());
ARMRegister remainder32 = ARMRegister(remainder, 32);
// Compute the remainder: remainder = lhs - (output * rhs).
masm.Msub(remainder32, output32, rhs32, lhs32);
bailoutTest32(Assembler::NonZero, remainder, remainder, ins->snapshot());
}
// Unsigned div can return a value that's not a signed int32.
// If our users aren't expecting that, bail.
if (!mir->isTruncated()) {
bailoutTest32(Assembler::Signed, output, output, ins->snapshot());
}
}
void CodeGenerator::visitUMod(LUMod* ins) {
MMod* mir = ins->mir();
ARMRegister lhs = toWRegister(ins->lhs());
ARMRegister rhs = toWRegister(ins->rhs());
ARMRegister output = toWRegister(ins->output());
Label done;
if (mir->canBeDivideByZero() && !mir->isTruncated()) {
// Non-truncated division by zero produces a non-integer.
masm.Cmp(rhs, Operand(0));
bailoutIf(Assembler::Equal, ins->snapshot());
} else if (mir->canBeDivideByZero()) {
// Truncated division by zero yields integer zero.
masm.Mov(output, rhs);
masm.Cbz(rhs, &done);
}
// Unsigned division.
masm.Udiv(output, lhs, rhs);
// Compute the remainder: output = lhs - (output * rhs).
masm.Msub(output, output, rhs, lhs);
if (!mir->isTruncated()) {
// Bail if the output would be negative.
//
// LUMod inputs may be Uint32, so care is taken to ensure the result
// is not unexpectedly signed.
bailoutCmp32(Assembler::LessThan, output, Imm32(0), ins->snapshot());
}
if (done.used()) {
masm.bind(&done);
}
}
void CodeGenerator::visitEffectiveAddress(LEffectiveAddress* ins) {
const MEffectiveAddress* mir = ins->mir();
const ARMRegister base = toWRegister(ins->base());
const ARMRegister index = toWRegister(ins->index());
const ARMRegister output = toWRegister(ins->output());
masm.Add(output, base, Operand(index, vixl::LSL, mir->scale()));
masm.Add(output, output, Operand(mir->displacement()));
}
void CodeGenerator::visitNegI(LNegI* ins) {
const ARMRegister input = toWRegister(ins->input());
const ARMRegister output = toWRegister(ins->output());
masm.Neg(output, input);
}
void CodeGenerator::visitNegD(LNegD* ins) {
const ARMFPRegister input(ToFloatRegister(ins->input()), 64);
const ARMFPRegister output(ToFloatRegister(ins->output()), 64);
masm.Fneg(output, input);
}
void CodeGenerator::visitNegF(LNegF* ins) {
const ARMFPRegister input(ToFloatRegister(ins->input()), 32);
const ARMFPRegister output(ToFloatRegister(ins->output()), 32);
masm.Fneg(output, input);
}
void CodeGenerator::visitCompareExchangeTypedArrayElement(
LCompareExchangeTypedArrayElement* lir) {
Register elements = ToRegister(lir->elements());
AnyRegister output = ToAnyRegister(lir->output());
Register temp =
lir->temp()->isBogusTemp() ? InvalidReg : ToRegister(lir->temp());
Register oldval = ToRegister(lir->oldval());
Register newval = ToRegister(lir->newval());
Scalar::Type arrayType = lir->mir()->arrayType();
size_t width = Scalar::byteSize(arrayType);
if (lir->index()->isConstant()) {
Address dest(elements, ToInt32(lir->index()) * width);
masm.compareExchangeJS(arrayType, Synchronization::Full(), dest, oldval,
newval, temp, output);
} else {
BaseIndex dest(elements, ToRegister(lir->index()),
ScaleFromElemWidth(width));
masm.compareExchangeJS(arrayType, Synchronization::Full(), dest, oldval,
newval, temp, output);
}
}
void CodeGenerator::visitAtomicExchangeTypedArrayElement(
LAtomicExchangeTypedArrayElement* lir) {
Register elements = ToRegister(lir->elements());
AnyRegister output = ToAnyRegister(lir->output());
Register temp =
lir->temp()->isBogusTemp() ? InvalidReg : ToRegister(lir->temp());
Register value = ToRegister(lir->value());
Scalar::Type arrayType = lir->mir()->arrayType();
size_t width = Scalar::byteSize(arrayType);
if (lir->index()->isConstant()) {
Address dest(elements, ToInt32(lir->index()) * width);
masm.atomicExchangeJS(arrayType, Synchronization::Full(), dest, value, temp,
output);
} else {
BaseIndex dest(elements, ToRegister(lir->index()),
ScaleFromElemWidth(width));
masm.atomicExchangeJS(arrayType, Synchronization::Full(), dest, value, temp,
output);
}
}
void CodeGenerator::visitAddI64(LAddI64*) { MOZ_CRASH("NYI"); }
void CodeGenerator::visitClzI64(LClzI64*) { MOZ_CRASH("NYI"); }
void CodeGenerator::visitCtzI64(LCtzI64*) { MOZ_CRASH("NYI"); }
void CodeGenerator::visitMulI64(LMulI64*) { MOZ_CRASH("NYI"); }
void CodeGenerator::visitNotI64(LNotI64*) { MOZ_CRASH("NYI"); }
void CodeGenerator::visitSubI64(LSubI64*) { MOZ_CRASH("NYI"); }
void CodeGenerator::visitPopcntI(LPopcntI*) { MOZ_CRASH("NYI"); }
void CodeGenerator::visitBitOpI64(LBitOpI64*) { MOZ_CRASH("NYI"); }
void CodeGenerator::visitShiftI64(LShiftI64*) { MOZ_CRASH("NYI"); }
void CodeGenerator::visitWasmHeapBase(LWasmHeapBase* ins) { MOZ_CRASH("NYI"); }
void CodeGenerator::visitWasmLoad(LWasmLoad*) { MOZ_CRASH("NYI"); }
void CodeGenerator::visitCopySignD(LCopySignD*) { MOZ_CRASH("NYI"); }
void CodeGenerator::visitCopySignF(LCopySignF*) { MOZ_CRASH("NYI"); }
void CodeGenerator::visitPopcntI64(LPopcntI64*) { MOZ_CRASH("NYI"); }
void CodeGenerator::visitRotateI64(LRotateI64*) { MOZ_CRASH("NYI"); }
void CodeGenerator::visitWasmStore(LWasmStore*) { MOZ_CRASH("NYI"); }
void CodeGenerator::visitCompareI64(LCompareI64*) { MOZ_CRASH("NYI"); }
void CodeGenerator::visitWasmSelect(LWasmSelect*) { MOZ_CRASH("NYI"); }
void CodeGenerator::visitWasmLoadI64(LWasmLoadI64*) { MOZ_CRASH("NYI"); }
void CodeGenerator::visitWasmStoreI64(LWasmStoreI64*) { MOZ_CRASH("NYI"); }
void CodeGenerator::visitMemoryBarrier(LMemoryBarrier* ins) {
masm.memoryBarrier(ins->type());
}
void CodeGenerator::visitWasmAddOffset(LWasmAddOffset*) { MOZ_CRASH("NYI"); }
void CodeGenerator::visitWasmSelectI64(LWasmSelectI64*) { MOZ_CRASH("NYI"); }
void CodeGenerator::visitSignExtendInt64(LSignExtendInt64*) {
MOZ_CRASH("NYI");
}
void CodeGenerator::visitWasmReinterpret(LWasmReinterpret*) {
MOZ_CRASH("NYI");
}
void CodeGenerator::visitWasmStackArgI64(LWasmStackArgI64*) {
MOZ_CRASH("NYI");
}
void CodeGenerator::visitTestI64AndBranch(LTestI64AndBranch*) {
MOZ_CRASH("NYI");
}
void CodeGenerator::visitWrapInt64ToInt32(LWrapInt64ToInt32*) {
MOZ_CRASH("NYI");
}
void CodeGenerator::visitExtendInt32ToInt64(LExtendInt32ToInt64*) {
MOZ_CRASH("NYI");
}
void CodeGenerator::visitCompareI64AndBranch(LCompareI64AndBranch*) {
MOZ_CRASH("NYI");
}
void CodeGenerator::visitWasmTruncateToInt32(LWasmTruncateToInt32*) {
MOZ_CRASH("NYI");
}
void CodeGenerator::visitWasmReinterpretToI64(LWasmReinterpretToI64*) {
MOZ_CRASH("NYI");
}
void CodeGenerator::visitWasmAtomicExchangeHeap(LWasmAtomicExchangeHeap*) {
MOZ_CRASH("NYI");
}
void CodeGenerator::visitWasmReinterpretFromI64(LWasmReinterpretFromI64*) {
MOZ_CRASH("NYI");
}
void CodeGenerator::visitAtomicTypedArrayElementBinop(
LAtomicTypedArrayElementBinop* lir) {
MOZ_ASSERT(lir->mir()->hasUses());
AnyRegister output = ToAnyRegister(lir->output());
Register elements = ToRegister(lir->elements());
Register flagTemp = ToRegister(lir->temp1());
Register outTemp =
lir->temp2()->isBogusTemp() ? InvalidReg : ToRegister(lir->temp2());
Register value = ToRegister(lir->value());
Scalar::Type arrayType = lir->mir()->arrayType();
size_t width = Scalar::byteSize(arrayType);
if (lir->index()->isConstant()) {
Address mem(elements, ToInt32(lir->index()) * width);
masm.atomicFetchOpJS(arrayType, Synchronization::Full(),
lir->mir()->operation(), value, mem, flagTemp, outTemp,
output);
} else {
BaseIndex mem(elements, ToRegister(lir->index()),
ScaleFromElemWidth(width));
masm.atomicFetchOpJS(arrayType, Synchronization::Full(),
lir->mir()->operation(), value, mem, flagTemp, outTemp,
output);
}
}
void CodeGenerator::visitWasmAtomicBinopHeapForEffect(
LWasmAtomicBinopHeapForEffect*) {
MOZ_CRASH("NYI");
}
void CodeGenerator::visitAtomicTypedArrayElementBinopForEffect(
LAtomicTypedArrayElementBinopForEffect*) {
MOZ_CRASH("NYI");
}
void CodeGenerator::visitSimd128(LSimd128* ins) { MOZ_CRASH("No SIMD"); }
void CodeGenerator::visitWasmBitselectSimd128(LWasmBitselectSimd128* ins) {
MOZ_CRASH("No SIMD");
}
void CodeGenerator::visitWasmBinarySimd128(LWasmBinarySimd128* ins) {
MOZ_CRASH("No SIMD");
}
void CodeGenerator::visitWasmBinarySimd128WithConstant(
LWasmBinarySimd128WithConstant* ins) {
MOZ_CRASH("No SIMD");
}
void CodeGenerator::visitWasmVariableShiftSimd128(
LWasmVariableShiftSimd128* ins) {
MOZ_CRASH("No SIMD");
}
void CodeGenerator::visitWasmConstantShiftSimd128(
LWasmConstantShiftSimd128* ins) {
MOZ_CRASH("No SIMD");
}
void CodeGenerator::visitWasmShuffleSimd128(LWasmShuffleSimd128* ins) {
MOZ_CRASH("No SIMD");
}
void CodeGenerator::visitWasmPermuteSimd128(LWasmPermuteSimd128* ins) {
MOZ_CRASH("No SIMD");
}
void CodeGenerator::visitWasmReplaceLaneSimd128(LWasmReplaceLaneSimd128* ins) {
MOZ_CRASH("No SIMD");
}
void CodeGenerator::visitWasmReplaceInt64LaneSimd128(
LWasmReplaceInt64LaneSimd128* ins) {
MOZ_CRASH("No SIMD");
}
void CodeGenerator::visitWasmScalarToSimd128(LWasmScalarToSimd128* ins) {
MOZ_CRASH("No SIMD");
}
void CodeGenerator::visitWasmInt64ToSimd128(LWasmInt64ToSimd128* ins) {
MOZ_CRASH("No SIMD");
}
void CodeGenerator::visitWasmUnarySimd128(LWasmUnarySimd128* ins) {
MOZ_CRASH("No SIMD");
}
void CodeGenerator::visitWasmReduceSimd128(LWasmReduceSimd128* ins) {
MOZ_CRASH("No SIMD");
}
void CodeGenerator::visitWasmReduceAndBranchSimd128(
LWasmReduceAndBranchSimd128* ins) {
MOZ_CRASH("No SIMD");
}
void CodeGenerator::visitWasmReduceSimd128ToInt64(
LWasmReduceSimd128ToInt64* ins) {
MOZ_CRASH("No SIMD");
}
|