1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set ts=8 sts=2 et sw=2 tw=80:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef vm_Scope_h
#define vm_Scope_h
#include "mozilla/Assertions.h" // MOZ_ASSERT, MOZ_ASSERT_IF
#include "mozilla/Attributes.h" // MOZ_IMPLICIT, MOZ_INIT_OUTSIDE_CTOR, MOZ_STACK_CLASS
#include "mozilla/Casting.h" // mozilla::AssertedCast
#include "mozilla/Maybe.h" // mozilla::Maybe
#include "mozilla/MemoryReporting.h" // mozilla::MallocSizeOf
#include <algorithm> // std::fill_n
#include <stddef.h> // size_t
#include <stdint.h> // uint8_t, uint16_t, uint32_t, uintptr_t
#include <type_traits> // std::is_same_v
#include "builtin/ModuleObject.h" // ModuleObject, HandleModuleObject
#include "frontend/ParserAtom.h" // frontend::TaggedParserAtomIndex
#include "gc/Allocator.h" // AllowGC
#include "gc/Barrier.h" // HeapPtr
#include "gc/Cell.h" // TenuredCellWithNonGCPointer
#include "gc/MaybeRooted.h" // MaybeRooted
#include "gc/Rooting.h" // HandleScope, HandleShape, MutableHandleShape
#include "js/GCPolicyAPI.h" // GCPolicy, IgnoreGCPolicy
#include "js/HeapAPI.h" // CellFlagBitsReservedForGC
#include "js/RootingAPI.h" // Handle, MutableHandle
#include "js/TraceKind.h" // JS::TraceKind
#include "js/TypeDecls.h" // HandleFunction
#include "js/UbiNode.h" // ubi::*
#include "js/UniquePtr.h" // UniquePtr
#include "util/Poison.h" // AlwaysPoison, JS_SCOPE_DATA_TRAILING_NAMES_PATTERN, MemCheckKind
#include "vm/BytecodeUtil.h" // LOCALNO_LIMIT, ENVCOORD_SLOT_LIMIT
#include "vm/JSFunction.h" // JSFunction
#include "vm/ScopeKind.h" // ScopeKind
#include "vm/Shape.h" // Shape
#include "vm/Xdr.h" // XDRResult, XDRState
#include "wasm/WasmJS.h" // WasmInstanceObject
class JSAtom;
class JSFreeOp;
class JSFunction;
class JSScript;
class JSTracer;
struct JSContext;
namespace JS {
class Zone;
} // namespace JS
namespace js {
class GenericPrinter;
namespace frontend {
struct CompilationAtomCache;
class ScopeStencil;
class ParserAtom;
} // namespace frontend
template <typename NameT>
class AbstractBaseScopeData;
template <typename NameT>
class BaseAbstractBindingIter;
template <typename NameT>
class AbstractBindingIter;
using BindingIter = AbstractBindingIter<JSAtom>;
class AbstractScopePtr;
static inline bool ScopeKindIsCatch(ScopeKind kind) {
return kind == ScopeKind::SimpleCatch || kind == ScopeKind::Catch;
}
static inline bool ScopeKindIsInBody(ScopeKind kind) {
return kind == ScopeKind::Lexical || kind == ScopeKind::SimpleCatch ||
kind == ScopeKind::Catch || kind == ScopeKind::With ||
kind == ScopeKind::FunctionLexical ||
kind == ScopeKind::FunctionBodyVar || kind == ScopeKind::ClassBody;
}
const char* BindingKindString(BindingKind kind);
const char* ScopeKindString(ScopeKind kind);
template <typename NameT>
class AbstractBindingName;
template <>
class AbstractBindingName<JSAtom> {
public:
using NameT = JSAtom;
using NamePointerT = NameT*;
private:
// A JSAtom* with its low bit used as a tag for the:
// * whether it is closed over (i.e., exists in the environment shape)
// * whether it is a top-level function binding in global or eval scope,
// instead of var binding (both are in the same range in Scope data)
uintptr_t bits_;
static constexpr uintptr_t ClosedOverFlag = 0x1;
// TODO: We should reuse this bit for let vs class distinction to
// show the better redeclaration error message (bug 1428672).
static constexpr uintptr_t TopLevelFunctionFlag = 0x2;
static constexpr uintptr_t FlagMask = 0x3;
public:
AbstractBindingName() : bits_(0) {}
AbstractBindingName(NameT* name, bool closedOver,
bool isTopLevelFunction = false)
: bits_(uintptr_t(name) | (closedOver ? ClosedOverFlag : 0x0) |
(isTopLevelFunction ? TopLevelFunctionFlag : 0x0)) {}
private:
// For fromXDR.
AbstractBindingName(NameT* name, uint8_t flags)
: bits_(uintptr_t(name) | flags) {
static_assert(FlagMask < alignof(NameT),
"Flags should fit into unused low bits of atom repr");
MOZ_ASSERT((flags & FlagMask) == flags);
}
public:
static AbstractBindingName<NameT> fromXDR(NameT* name, uint8_t flags) {
return AbstractBindingName<NameT>(name, flags);
}
uint8_t flagsForXDR() const { return static_cast<uint8_t>(bits_ & FlagMask); }
NamePointerT name() const {
return reinterpret_cast<NameT*>(bits_ & ~FlagMask);
}
bool closedOver() const { return bits_ & ClosedOverFlag; }
private:
friend class BaseAbstractBindingIter<NameT>;
// This method should be called only for binding names in `vars` range in
// BindingIter.
bool isTopLevelFunction() const { return bits_ & TopLevelFunctionFlag; }
public:
void trace(JSTracer* trc);
};
template <>
class AbstractBindingName<frontend::TaggedParserAtomIndex> {
uint32_t bits_;
using TaggedParserAtomIndex = frontend::TaggedParserAtomIndex;
public:
using NameT = TaggedParserAtomIndex;
using NamePointerT = NameT;
private:
static constexpr size_t TaggedIndexBit = TaggedParserAtomIndex::IndexBit + 2;
static constexpr size_t FlagShift = TaggedIndexBit;
static constexpr size_t FlagBit = 2;
static constexpr uint32_t FlagMask = BitMask(FlagBit) << FlagShift;
static constexpr uint32_t ClosedOverFlag = 1 << FlagShift;
static constexpr uint32_t TopLevelFunctionFlag = 2 << FlagShift;
public:
AbstractBindingName() : bits_(TaggedParserAtomIndex::NullTag) {
// TaggedParserAtomIndex's tags shouldn't overlap with flags.
static_assert((TaggedParserAtomIndex::NullTag & FlagMask) == 0);
static_assert((TaggedParserAtomIndex::ParserAtomIndexTag & FlagMask) == 0);
static_assert((TaggedParserAtomIndex::WellKnownTag & FlagMask) == 0);
}
AbstractBindingName(TaggedParserAtomIndex name, bool closedOver,
bool isTopLevelFunction = false)
: bits_(*name.rawData() | (closedOver ? ClosedOverFlag : 0x0) |
(isTopLevelFunction ? TopLevelFunctionFlag : 0x0)) {}
public:
uint32_t* rawData() { return &bits_; }
NamePointerT name() const {
return TaggedParserAtomIndex::fromRaw(bits_ & ~FlagMask);
}
bool closedOver() const { return bits_ & ClosedOverFlag; }
AbstractBindingName<JSAtom> copyWithNewAtom(JSAtom* newName) const {
return AbstractBindingName<JSAtom>(newName, closedOver(),
isTopLevelFunction());
}
private:
friend class BaseAbstractBindingIter<TaggedParserAtomIndex>;
friend class frontend::ScopeStencil;
// This method should be called only for binding names in `vars` range in
// BindingIter.
bool isTopLevelFunction() const { return bits_ & TopLevelFunctionFlag; }
};
using BindingName = AbstractBindingName<JSAtom>;
const size_t ScopeDataAlignBytes = size_t(1) << gc::CellFlagBitsReservedForGC;
/**
* Empty base class for scope {Runtime,Parser}Data classes to inherit from.
*
* Scope GC things store a pointer to these in their first word so they must be
* suitably aligned to allow storing GC flags in the low bits.
*/
template <typename NameT>
class AbstractBaseScopeData {
public:
using NameType = NameT;
};
using BaseScopeData = AbstractBaseScopeData<JSAtom>;
inline void PoisonNames(AbstractBindingName<JSAtom>* data, size_t nameCount) {
AlwaysPoison(data, JS_SCOPE_DATA_TRAILING_NAMES_PATTERN,
sizeof(AbstractBindingName<JSAtom>) * nameCount,
MemCheckKind::MakeUndefined);
}
// frontend::TaggedParserAtomIndex doesn't require poison value.
// Fill with null value instead.
inline void PoisonNames(
AbstractBindingName<frontend::TaggedParserAtomIndex>* data,
size_t nameCount) {
std::fill_n(data, nameCount,
AbstractBindingName<frontend::TaggedParserAtomIndex>());
}
/**
* The various {Global,Module,...}Scope::{Runtime,Parser}Data classes consist
* of always-present bits, then a trailing array of BindingNames. The various
* {Runtime,Parser}Data classes all end in a TrailingNamesArray that contains
* sized/aligned space for *one* BindingName. {Runtime,Parser}Data instances
* that contain N BindingNames, are then allocated in
* sizeof({Runtime,Parser}Data) + (space for (N - 1) BindingNames).
* Because this class's |data_| field is properly sized/aligned, the
* N-BindingName array can start at |data_|.
*
* This is concededly a very low-level representation, but we want to only
* allocate once for data+bindings both, and this does so approximately as
* elegantly as C++ allows.
*
* The names array is implemented in terms of an generic type that
* allows specialization between a (JSAtom*) BindingName and a
* ParserAtom
*/
template <typename NameT>
class AbstractTrailingNamesArray {
using BindingNameT = AbstractBindingName<NameT>;
private:
alignas(BindingNameT) unsigned char data_[sizeof(BindingNameT)];
private:
// Some versions of GCC treat it as a -Wstrict-aliasing violation (ergo a
// -Werror compile error) to reinterpret_cast<> |data_| to |T*|, even
// through |void*|. Placing the latter cast in these separate functions
// breaks the chain such that affected GCC versions no longer warn/error.
void* ptr() { return data_; }
public:
// Explicitly ensure no one accidentally allocates scope data without
// poisoning its trailing names.
AbstractTrailingNamesArray() = delete;
explicit AbstractTrailingNamesArray(size_t nameCount) {
if (nameCount) {
PoisonNames(reinterpret_cast<BindingNameT*>(&data_), nameCount);
}
}
BindingNameT* start() { return reinterpret_cast<BindingNameT*>(ptr()); }
BindingNameT& get(size_t i) { return start()[i]; }
BindingNameT& operator[](size_t i) { return get(i); }
};
//
// Allow using is<T> and as<T> on Rooted<Scope*> and Handle<Scope*>.
//
template <typename Wrapper>
class WrappedPtrOperations<Scope*, Wrapper> {
public:
template <class U>
JS::Handle<U*> as() const {
const Wrapper& self = *static_cast<const Wrapper*>(this);
MOZ_ASSERT_IF(self, self->template is<U>());
return Handle<U*>::fromMarkedLocation(
reinterpret_cast<U* const*>(self.address()));
}
};
//
// The base class of all Scopes.
//
class Scope : public gc::TenuredCellWithNonGCPointer<BaseScopeData> {
friend class GCMarker;
friend class frontend::ScopeStencil;
friend class js::AbstractBindingIter<JSAtom>;
protected:
// The raw data pointer, stored in the cell header.
BaseScopeData* rawData() { return headerPtr(); }
const BaseScopeData* rawData() const { return headerPtr(); }
// The kind determines data_.
const ScopeKind kind_;
// If there are any aliased bindings, the shape for the
// EnvironmentObject. Otherwise nullptr.
const HeapPtr<Shape*> environmentShape_;
// The enclosing scope or nullptr.
HeapPtr<Scope*> enclosingScope_;
Scope(ScopeKind kind, Scope* enclosing, Shape* environmentShape)
: TenuredCellWithNonGCPointer(nullptr),
kind_(kind),
environmentShape_(environmentShape),
enclosingScope_(enclosing) {}
static Scope* create(JSContext* cx, ScopeKind kind, HandleScope enclosing,
HandleShape envShape);
template <typename ConcreteScope, XDRMode mode>
static XDRResult XDRSizedBindingNames(
XDRState<mode>* xdr, Handle<ConcreteScope*> scope,
MutableHandle<typename ConcreteScope::RuntimeData*> data);
Shape* maybeCloneEnvironmentShape(JSContext* cx);
template <typename ConcreteScope>
void initData(
MutableHandle<UniquePtr<typename ConcreteScope::RuntimeData>> data);
template <typename F>
void applyScopeDataTyped(F&& f);
template <typename EnvironmentT>
static bool updateEnvShapeIfRequired(JSContext* cx, MutableHandleShape shape,
bool needsEnvironment);
template <typename EnvironmentT>
static bool updateEnvShapeIfRequired(JSContext* cx,
mozilla::Maybe<uint32_t>* envShape,
bool needsEnvironment);
public:
template <typename ConcreteScope>
static ConcreteScope* create(
JSContext* cx, ScopeKind kind, HandleScope enclosing,
HandleShape envShape,
MutableHandle<UniquePtr<typename ConcreteScope::RuntimeData>> data);
static const JS::TraceKind TraceKind = JS::TraceKind::Scope;
template <typename T>
bool is() const {
return kind_ == T::classScopeKind_;
}
template <typename T>
T& as() {
MOZ_ASSERT(this->is<T>());
return *static_cast<T*>(this);
}
template <typename T>
const T& as() const {
MOZ_ASSERT(this->is<T>());
return *static_cast<const T*>(this);
}
ScopeKind kind() const { return kind_; }
Shape* environmentShape() const { return environmentShape_; }
Scope* enclosing() const { return enclosingScope_; }
static bool hasEnvironment(ScopeKind kind, bool environmentShape) {
switch (kind) {
case ScopeKind::With:
case ScopeKind::Global:
case ScopeKind::NonSyntactic:
return true;
default:
// If there's a shape, an environment must be created for this scope.
return environmentShape;
}
}
bool hasEnvironment() const {
return hasEnvironment(kind_, environmentShape());
}
uint32_t firstFrameSlot() const;
uint32_t chainLength() const;
uint32_t environmentChainLength() const;
template <typename T>
bool hasOnChain() const {
for (const Scope* it = this; it; it = it->enclosing()) {
if (it->is<T>()) {
return true;
}
}
return false;
}
bool hasOnChain(ScopeKind kind) const {
for (const Scope* it = this; it; it = it->enclosing()) {
if (it->kind() == kind) {
return true;
}
}
return false;
}
static Scope* clone(JSContext* cx, HandleScope scope, HandleScope enclosing);
void traceChildren(JSTracer* trc);
void finalize(JSFreeOp* fop);
size_t sizeOfExcludingThis(mozilla::MallocSizeOf mallocSizeOf) const;
void dump();
#if defined(DEBUG) || defined(JS_JITSPEW)
static bool dumpForDisassemble(JSContext* cx, JS::Handle<Scope*> scope,
GenericPrinter& out, const char* indent);
#endif /* defined(DEBUG) || defined(JS_JITSPEW) */
};
template <class DataT>
inline size_t SizeOfScopeData(uint32_t numBindings) {
using BindingT = AbstractBindingName<typename DataT::NameType>;
#if JS_BITS_PER_WORD == 64
static_assert(
sizeof(DataT) == offsetof(DataT, trailingNames) + sizeof(BindingT),
"Unexpected default number of inlined elements");
// -1 because AbstractTrailingNamesArray (trailingNames field in DataT)
// contains one inlined element in data_ field.
return sizeof(DataT) +
((numBindings ? numBindings - 1 : 0) * sizeof(BindingT));
#else
// RuntimeData has alignas(ScopeDataAlignBytes), that is 8-bytes.
// RuntimeData on 32-bit arch may have 4-bytes trailing padding after
// trailingNames, and in that case there are effectively 2 inlined elements
// inside sizeof(DataT).
static_assert(
sizeof(DataT) == offsetof(DataT, trailingNames) + sizeof(BindingT) ||
sizeof(DataT) ==
offsetof(DataT, trailingNames) + 2 * sizeof(BindingT),
"Unexpected default number of inlined elements");
if constexpr (sizeof(DataT) ==
offsetof(DataT, trailingNames) + sizeof(BindingT)) {
// There's no trailing padding, and there's only one inlined element.
// This is RuntimeData without padding, or ParserData.
return sizeof(DataT) +
((numBindings ? numBindings - 1 : 0) * sizeof(BindingT));
}
// There's trailing padding, and there are two inlined elements.
return sizeof(DataT) +
((numBindings > 2 ? numBindings - 2 : 0) * sizeof(BindingT));
#endif
}
//
// A useful typedef for selecting between a gc-aware wrappers
// around pointers to BaseScopeData-derived types, and around raw
// pointer wrappers around BaseParserScopeData-derived types.
//
template <typename ScopeT, typename AtomT>
using AbstractScopeData = typename ScopeT::template AbstractData<AtomT>;
template <typename ScopeT, typename AtomT>
using MaybeRootedScopeData = std::conditional_t<
std::is_same_v<AtomT, JSAtom>,
MaybeRooted<UniquePtr<typename ScopeT::RuntimeData>, AllowGC::CanGC>,
MaybeRooted<AbstractScopeData<ScopeT, AtomT>*, AllowGC::NoGC>>;
template <typename SlotInfo>
struct ParserScopeData
: public AbstractBaseScopeData<frontend::TaggedParserAtomIndex> {
SlotInfo slotInfo;
AbstractTrailingNamesArray<frontend::TaggedParserAtomIndex> trailingNames;
explicit ParserScopeData(size_t nameCount) : trailingNames(nameCount) {}
ParserScopeData() = delete;
};
//
// A lexical scope that holds let and const bindings. There are 4 kinds of
// LexicalScopes.
//
// Lexical
// A plain lexical scope.
//
// SimpleCatch
// Holds the single catch parameter of a catch block.
//
// Catch
// Holds the catch parameters (and only the catch parameters) of a catch
// block.
//
// NamedLambda
// StrictNamedLambda
// Holds the single name of the callee for a named lambda expression.
//
// All kinds of LexicalScopes correspond to LexicalEnvironmentObjects on the
// environment chain.
//
class LexicalScope : public Scope {
friend class Scope;
friend class AbstractBindingIter<JSAtom>;
friend class GCMarker;
friend class frontend::ScopeStencil;
public:
struct SlotInfo {
// Frame slots [0, nextFrameSlot) are live when this is the innermost
// scope.
uint32_t nextFrameSlot = 0;
// Bindings are sorted by kind in both frames and environments.
//
// lets - [0, constStart)
// consts - [constStart, length)
uint32_t constStart = 0;
uint32_t length = 0;
};
struct alignas(ScopeDataAlignBytes) RuntimeData
: public AbstractBaseScopeData<JSAtom> {
SlotInfo slotInfo;
AbstractTrailingNamesArray<JSAtom> trailingNames;
explicit RuntimeData(size_t nameCount) : trailingNames(nameCount) {}
RuntimeData() = delete;
void trace(JSTracer* trc);
};
using ParserData = ParserScopeData<SlotInfo>;
template <typename NameT>
using AbstractData =
typename std::conditional_t<std::is_same<NameT, JSAtom>::value,
RuntimeData, ParserData>;
template <XDRMode mode>
static XDRResult XDR(XDRState<mode>* xdr, ScopeKind kind,
HandleScope enclosing, MutableHandleScope scope);
private:
static LexicalScope* createWithData(
JSContext* cx, ScopeKind kind, MutableHandle<UniquePtr<RuntimeData>> data,
uint32_t firstFrameSlot, HandleScope enclosing);
template <typename AtomT, typename ShapeT>
static bool prepareForScopeCreation(
JSContext* cx, ScopeKind kind, uint32_t firstFrameSlot,
typename MaybeRootedScopeData<LexicalScope, AtomT>::MutableHandleType
data,
ShapeT envShape);
RuntimeData& data() { return *static_cast<RuntimeData*>(rawData()); }
const RuntimeData& data() const {
return *static_cast<const RuntimeData*>(rawData());
}
static uint32_t nextFrameSlot(Scope* scope);
public:
uint32_t nextFrameSlot() const { return data().slotInfo.nextFrameSlot; }
// Returns an empty shape for extensible global and non-syntactic lexical
// scopes.
static Shape* getEmptyExtensibleEnvironmentShape(JSContext* cx);
};
template <>
inline bool Scope::is<LexicalScope>() const {
return kind_ == ScopeKind::Lexical || kind_ == ScopeKind::SimpleCatch ||
kind_ == ScopeKind::Catch || kind_ == ScopeKind::NamedLambda ||
kind_ == ScopeKind::StrictNamedLambda ||
kind_ == ScopeKind::FunctionLexical || kind_ == ScopeKind::ClassBody;
}
//
// Scope corresponding to a function. Holds formal parameter names, special
// internal names (see FunctionScope::isSpecialName), and, if the function
// parameters contain no expressions that might possibly be evaluated, the
// function's var bindings. For example, in these functions, the FunctionScope
// will store a/b/c bindings but not d/e/f bindings:
//
// function f1(a, b) {
// var c;
// let e;
// const f = 3;
// }
// function f2([a], b = 4, ...c) {
// var d, e, f; // stored in VarScope
// }
//
// Corresponds to CallObject on environment chain.
//
class FunctionScope : public Scope {
friend class GCMarker;
friend class AbstractBindingIter<JSAtom>;
friend class PositionalFormalParameterIter;
friend class Scope;
friend class AbstractScopePtr;
static const ScopeKind classScopeKind_ = ScopeKind::Function;
public:
struct SlotInfo {
// Frame slots [0, nextFrameSlot) are live when this is the innermost
// scope.
uint32_t nextFrameSlot = 0;
// Flag bits.
// This uses uint32_t in order to make this struct packed.
uint32_t flags = 0;
// If parameter expressions are present, parameters act like lexical
// bindings.
static constexpr uint32_t HasParameterExprsFlag = 1;
// Bindings are sorted by kind in both frames and environments.
//
// Positional formal parameter names are those that are not
// destructured. They may be referred to by argument slots if
// !script()->hasParameterExprs().
//
// An argument slot that needs to be skipped due to being destructured
// or having defaults will have a nullptr name in the name array to
// advance the argument slot.
//
// Rest parameter binding is also included in positional formals.
// This also becomes nullptr if destructuring.
//
// The number of positional formals is equal to function.length if
// there's no rest, function.length+1 otherwise.
//
// Destructuring parameters and destructuring rest are included in
// "other formals" below.
//
// "vars" contains the following:
// * function's top level vars if !script()->hasParameterExprs()
// * special internal names (arguments, .this, .generator) if
// they're used.
//
// positional formals - [0, nonPositionalFormalStart)
// other formals - [nonPositionalParamStart, varStart)
// vars - [varStart, length)
uint16_t nonPositionalFormalStart = 0;
uint16_t varStart = 0;
uint32_t length = 0;
bool hasParameterExprs() const { return flags & HasParameterExprsFlag; }
void setHasParameterExprs() { flags |= HasParameterExprsFlag; }
};
struct alignas(ScopeDataAlignBytes) RuntimeData
: public AbstractBaseScopeData<JSAtom> {
// The canonical function of the scope, as during a scope walk we
// often query properties of the JSFunction (e.g., is the function an
// arrow).
HeapPtr<JSFunction*> canonicalFunction = {};
SlotInfo slotInfo;
AbstractTrailingNamesArray<JSAtom> trailingNames;
explicit RuntimeData(size_t nameCount) : trailingNames(nameCount) {}
RuntimeData() = delete;
void trace(JSTracer* trc);
};
using ParserData = ParserScopeData<SlotInfo>;
template <typename NameT>
using AbstractData =
typename std::conditional_t<std::is_same<NameT, JSAtom>::value,
RuntimeData, ParserData>;
template <typename AtomT, typename ShapeT>
static bool prepareForScopeCreation(
JSContext* cx,
typename MaybeRootedScopeData<FunctionScope, AtomT>::MutableHandleType
data,
bool hasParameterExprs, bool needsEnvironment, HandleFunction fun,
ShapeT envShape);
static FunctionScope* clone(JSContext* cx, Handle<FunctionScope*> scope,
HandleFunction fun, HandleScope enclosing);
template <XDRMode mode>
static XDRResult XDR(XDRState<mode>* xdr, HandleFunction fun,
HandleScope enclosing, MutableHandleScope scope);
private:
static FunctionScope* createWithData(
JSContext* cx, MutableHandle<UniquePtr<RuntimeData>> data,
bool hasParameterExprs, bool needsEnvironment, HandleFunction fun,
HandleScope enclosing);
RuntimeData& data() { return *static_cast<RuntimeData*>(rawData()); }
const RuntimeData& data() const {
return *static_cast<const RuntimeData*>(rawData());
}
public:
uint32_t nextFrameSlot() const { return data().slotInfo.nextFrameSlot; }
JSFunction* canonicalFunction() const { return data().canonicalFunction; }
JSScript* script() const;
bool hasParameterExprs() const { return data().slotInfo.hasParameterExprs(); }
uint32_t numPositionalFormalParameters() const {
return data().slotInfo.nonPositionalFormalStart;
}
static bool isSpecialName(JSContext* cx, JSAtom* name);
static bool isSpecialName(JSContext* cx,
frontend::TaggedParserAtomIndex name);
};
//
// Scope holding only vars. There is a single kind of VarScopes.
//
// FunctionBodyVar
// Corresponds to the extra var scope present in functions with parameter
// expressions. See examples in comment above FunctionScope.
//
// Corresponds to VarEnvironmentObject on environment chain.
//
class VarScope : public Scope {
friend class GCMarker;
friend class AbstractBindingIter<JSAtom>;
friend class Scope;
friend class frontend::ScopeStencil;
public:
struct SlotInfo {
// Frame slots [0, nextFrameSlot) are live when this is the innermost
// scope.
uint32_t nextFrameSlot = 0;
// All bindings are vars.
//
// vars - [0, length)
uint32_t length = 0;
};
struct alignas(ScopeDataAlignBytes) RuntimeData
: public AbstractBaseScopeData<JSAtom> {
SlotInfo slotInfo;
AbstractTrailingNamesArray<JSAtom> trailingNames;
explicit RuntimeData(size_t nameCount) : trailingNames(nameCount) {}
RuntimeData() = delete;
void trace(JSTracer* trc);
};
using ParserData = ParserScopeData<SlotInfo>;
template <typename NameT>
using AbstractData =
typename std::conditional_t<std::is_same<NameT, JSAtom>::value,
RuntimeData, ParserData>;
template <XDRMode mode>
static XDRResult XDR(XDRState<mode>* xdr, ScopeKind kind,
HandleScope enclosing, MutableHandleScope scope);
private:
static VarScope* createWithData(JSContext* cx, ScopeKind kind,
MutableHandle<UniquePtr<RuntimeData>> data,
uint32_t firstFrameSlot,
bool needsEnvironment, HandleScope enclosing);
template <typename AtomT, typename ShapeT>
static bool prepareForScopeCreation(
JSContext* cx, ScopeKind kind,
typename MaybeRootedScopeData<VarScope, AtomT>::MutableHandleType data,
uint32_t firstFrameSlot, bool needsEnvironment, ShapeT envShape);
RuntimeData& data() { return *static_cast<RuntimeData*>(rawData()); }
const RuntimeData& data() const {
return *static_cast<const RuntimeData*>(rawData());
}
public:
uint32_t nextFrameSlot() const { return data().slotInfo.nextFrameSlot; }
};
template <>
inline bool Scope::is<VarScope>() const {
return kind_ == ScopeKind::FunctionBodyVar;
}
//
// Scope corresponding to both the global object scope and the global lexical
// scope.
//
// Both are extensible and are singletons across <script> tags, so these
// scopes are a fragment of the names in global scope. In other words, two
// global scripts may have two different GlobalScopes despite having the same
// GlobalObject.
//
// There are 2 kinds of GlobalScopes.
//
// Global
// Corresponds to a GlobalObject and its global LexicalEnvironmentObject on
// the environment chain.
//
// NonSyntactic
// Corresponds to a non-GlobalObject created by the embedding on the
// environment chain. This distinction is important for optimizations.
//
class GlobalScope : public Scope {
friend class Scope;
friend class AbstractBindingIter<JSAtom>;
friend class GCMarker;
public:
struct SlotInfo {
// Bindings are sorted by kind.
// `vars` includes top-level functions which is distinguished by a bit
// on the BindingName.
//
// vars - [0, letStart)
// lets - [letStart, constStart)
// consts - [constStart, length)
uint32_t letStart = 0;
uint32_t constStart = 0;
uint32_t length = 0;
};
struct alignas(ScopeDataAlignBytes) RuntimeData
: public AbstractBaseScopeData<JSAtom> {
SlotInfo slotInfo;
AbstractTrailingNamesArray<JSAtom> trailingNames;
explicit RuntimeData(size_t nameCount) : trailingNames(nameCount) {}
RuntimeData() = delete;
void trace(JSTracer* trc);
};
using ParserData = ParserScopeData<SlotInfo>;
template <typename NameT>
using AbstractData =
typename std::conditional_t<std::is_same<NameT, JSAtom>::value,
RuntimeData, ParserData>;
static GlobalScope* create(JSContext* cx, ScopeKind kind,
Handle<RuntimeData*> data);
static GlobalScope* createEmpty(JSContext* cx, ScopeKind kind) {
return create(cx, kind, nullptr);
}
static GlobalScope* clone(JSContext* cx, Handle<GlobalScope*> scope,
ScopeKind kind);
template <XDRMode mode>
static XDRResult XDR(XDRState<mode>* xdr, ScopeKind kind,
MutableHandleScope scope);
private:
static GlobalScope* createWithData(
JSContext* cx, ScopeKind kind,
MutableHandle<UniquePtr<RuntimeData>> data);
RuntimeData& data() { return *static_cast<RuntimeData*>(rawData()); }
const RuntimeData& data() const {
return *static_cast<const RuntimeData*>(rawData());
}
public:
bool isSyntactic() const { return kind() != ScopeKind::NonSyntactic; }
bool hasBindings() const { return data().slotInfo.length > 0; }
};
template <>
inline bool Scope::is<GlobalScope>() const {
return kind_ == ScopeKind::Global || kind_ == ScopeKind::NonSyntactic;
}
//
// Scope of a 'with' statement. Has no bindings.
//
// Corresponds to a WithEnvironmentObject on the environment chain.
class WithScope : public Scope {
friend class Scope;
friend class AbstractScopePtr;
static const ScopeKind classScopeKind_ = ScopeKind::With;
public:
static WithScope* create(JSContext* cx, HandleScope enclosing);
template <XDRMode mode>
static XDRResult XDR(XDRState<mode>* xdr, HandleScope enclosing,
MutableHandleScope scope);
};
//
// Scope of an eval. Holds var bindings. There are 2 kinds of EvalScopes.
//
// StrictEval
// A strict eval. Corresponds to a VarEnvironmentObject, where its var
// bindings lives.
//
// Eval
// A sloppy eval. This is an empty scope, used only in the frontend, to
// detect redeclaration errors. It has no Environment. Any `var`s declared
// in the eval code are bound on the nearest enclosing var environment.
//
class EvalScope : public Scope {
friend class Scope;
friend class AbstractBindingIter<JSAtom>;
friend class GCMarker;
friend class frontend::ScopeStencil;
public:
struct SlotInfo {
// Frame slots [0, nextFrameSlot) are live when this is the innermost
// scope.
uint32_t nextFrameSlot = 0;
// All bindings in an eval script are 'var' bindings. The implicit
// lexical scope around the eval is present regardless of strictness
// and is its own LexicalScope.
// `vars` includes top-level functions which is distinguished by a bit
// on the BindingName.
//
// vars - [0, length)
uint32_t length = 0;
};
struct alignas(ScopeDataAlignBytes) RuntimeData
: public AbstractBaseScopeData<JSAtom> {
SlotInfo slotInfo;
AbstractTrailingNamesArray<JSAtom> trailingNames;
explicit RuntimeData(size_t nameCount) : trailingNames(nameCount) {}
RuntimeData() = delete;
void trace(JSTracer* trc);
};
using ParserData = ParserScopeData<SlotInfo>;
template <typename NameT>
using AbstractData =
typename std::conditional_t<std::is_same<NameT, JSAtom>::value,
RuntimeData, ParserData>;
template <XDRMode mode>
static XDRResult XDR(XDRState<mode>* xdr, ScopeKind kind,
HandleScope enclosing, MutableHandleScope scope);
private:
static EvalScope* createWithData(JSContext* cx, ScopeKind kind,
MutableHandle<UniquePtr<RuntimeData>> data,
HandleScope enclosing);
template <typename AtomT, typename ShapeT>
static bool prepareForScopeCreation(
JSContext* cx, ScopeKind scopeKind,
typename MaybeRootedScopeData<EvalScope, AtomT>::MutableHandleType data,
ShapeT envShape);
RuntimeData& data() { return *static_cast<RuntimeData*>(rawData()); }
const RuntimeData& data() const {
return *static_cast<const RuntimeData*>(rawData());
}
public:
// Starting a scope, the nearest var scope that a direct eval can
// introduce vars on.
static Scope* nearestVarScopeForDirectEval(Scope* scope);
uint32_t nextFrameSlot() const { return data().slotInfo.nextFrameSlot; }
bool strict() const { return kind() == ScopeKind::StrictEval; }
bool hasBindings() const { return data().slotInfo.length > 0; }
bool isNonGlobal() const {
if (strict()) {
return true;
}
return !nearestVarScopeForDirectEval(enclosing())->is<GlobalScope>();
}
};
template <>
inline bool Scope::is<EvalScope>() const {
return kind_ == ScopeKind::Eval || kind_ == ScopeKind::StrictEval;
}
//
// Scope corresponding to the toplevel script in an ES module.
//
// Like GlobalScopes, these scopes contain both vars and lexical bindings, as
// the treating of imports and exports requires putting them in one scope.
//
// Corresponds to a ModuleEnvironmentObject on the environment chain.
//
class ModuleScope : public Scope {
friend class GCMarker;
friend class AbstractBindingIter<JSAtom>;
friend class Scope;
friend class AbstractScopePtr;
friend class frontend::ScopeStencil;
static const ScopeKind classScopeKind_ = ScopeKind::Module;
public:
struct SlotInfo {
// Frame slots [0, nextFrameSlot) are live when this is the innermost
// scope.
uint32_t nextFrameSlot = 0;
// Bindings are sorted by kind.
//
// imports - [0, varStart)
// vars - [varStart, letStart)
// lets - [letStart, constStart)
// consts - [constStart, length)
uint32_t varStart = 0;
uint32_t letStart = 0;
uint32_t constStart = 0;
uint32_t length = 0;
};
struct alignas(ScopeDataAlignBytes) RuntimeData
: public AbstractBaseScopeData<JSAtom> {
// The module of the scope.
HeapPtr<ModuleObject*> module = {};
SlotInfo slotInfo;
AbstractTrailingNamesArray<JSAtom> trailingNames;
explicit RuntimeData(size_t nameCount);
RuntimeData() = delete;
void trace(JSTracer* trc);
};
using ParserData = ParserScopeData<SlotInfo>;
template <typename NameT>
using AbstractData =
typename std::conditional_t<std::is_same<NameT, JSAtom>::value,
RuntimeData, ParserData>;
template <XDRMode mode>
static XDRResult XDR(XDRState<mode>* xdr, HandleModuleObject module,
HandleScope enclosing, MutableHandleScope scope);
private:
static ModuleScope* createWithData(JSContext* cx,
MutableHandle<UniquePtr<RuntimeData>> data,
Handle<ModuleObject*> module,
HandleScope enclosing);
template <typename AtomT, typename ShapeT>
static bool prepareForScopeCreation(
JSContext* cx,
typename MaybeRootedScopeData<ModuleScope, AtomT>::MutableHandleType data,
HandleModuleObject module, ShapeT envShape);
RuntimeData& data() { return *static_cast<RuntimeData*>(rawData()); }
const RuntimeData& data() const {
return *static_cast<const RuntimeData*>(rawData());
}
public:
uint32_t nextFrameSlot() const { return data().slotInfo.nextFrameSlot; }
ModuleObject* module() const { return data().module; }
// Off-thread compilation needs to calculate environmentChainLength for
// an emptyGlobalScope where the global may not be available.
static const size_t EnclosingEnvironmentChainLength = 1;
};
class WasmInstanceScope : public Scope {
friend class AbstractBindingIter<JSAtom>;
friend class Scope;
friend class GCMarker;
friend class AbstractScopePtr;
static const ScopeKind classScopeKind_ = ScopeKind::WasmInstance;
public:
struct SlotInfo {
// Frame slots [0, nextFrameSlot) are live when this is the innermost
// scope.
uint32_t nextFrameSlot = 0;
// Bindings list the WASM memories and globals.
//
// memories - [0, globalsStart)
// globals - [globalsStart, length)
uint32_t globalsStart = 0;
uint32_t length = 0;
};
struct alignas(ScopeDataAlignBytes) RuntimeData
: public AbstractBaseScopeData<JSAtom> {
// The wasm instance of the scope.
HeapPtr<WasmInstanceObject*> instance = {};
SlotInfo slotInfo;
AbstractTrailingNamesArray<JSAtom> trailingNames;
explicit RuntimeData(size_t nameCount);
RuntimeData() = delete;
void trace(JSTracer* trc);
};
using ParserData = ParserScopeData<SlotInfo>;
template <typename NameT>
using AbstractData =
typename std::conditional_t<std::is_same<NameT, JSAtom>::value,
RuntimeData, ParserData>;
static WasmInstanceScope* create(JSContext* cx, WasmInstanceObject* instance);
private:
RuntimeData& data() { return *static_cast<RuntimeData*>(rawData()); }
const RuntimeData& data() const {
return *static_cast<const RuntimeData*>(rawData());
}
public:
WasmInstanceObject* instance() const { return data().instance; }
uint32_t memoriesStart() const { return 0; }
uint32_t globalsStart() const { return data().slotInfo.globalsStart; }
uint32_t namesCount() const { return data().slotInfo.length; }
};
// Scope corresponding to the wasm function. A WasmFunctionScope is used by
// Debugger only, and not for wasm execution.
//
class WasmFunctionScope : public Scope {
friend class AbstractBindingIter<JSAtom>;
friend class Scope;
friend class GCMarker;
friend class AbstractScopePtr;
static const ScopeKind classScopeKind_ = ScopeKind::WasmFunction;
public:
struct SlotInfo {
// Frame slots [0, nextFrameSlot) are live when this is the innermost
// scope.
uint32_t nextFrameSlot = 0;
// Bindings are the local variable names.
//
// vars - [0, length)
uint32_t length = 0;
};
struct alignas(ScopeDataAlignBytes) RuntimeData
: public AbstractBaseScopeData<JSAtom> {
SlotInfo slotInfo;
AbstractTrailingNamesArray<JSAtom> trailingNames;
explicit RuntimeData(size_t nameCount) : trailingNames(nameCount) {}
RuntimeData() = delete;
void trace(JSTracer* trc);
};
using ParserData = ParserScopeData<SlotInfo>;
template <typename NameT>
using AbstractData =
typename std::conditional_t<std::is_same<NameT, JSAtom>::value,
RuntimeData, ParserData>;
static WasmFunctionScope* create(JSContext* cx, HandleScope enclosing,
uint32_t funcIndex);
private:
RuntimeData& data() { return *static_cast<RuntimeData*>(rawData()); }
const RuntimeData& data() const {
return *static_cast<const RuntimeData*>(rawData());
}
};
template <typename F>
void Scope::applyScopeDataTyped(F&& f) {
switch (kind()) {
case ScopeKind::Function: {
f(&as<FunctionScope>().data());
break;
case ScopeKind::FunctionBodyVar:
f(&as<VarScope>().data());
break;
case ScopeKind::Lexical:
case ScopeKind::SimpleCatch:
case ScopeKind::Catch:
case ScopeKind::NamedLambda:
case ScopeKind::StrictNamedLambda:
case ScopeKind::FunctionLexical:
case ScopeKind::ClassBody:
f(&as<LexicalScope>().data());
break;
case ScopeKind::With:
// With scopes do not have data.
break;
case ScopeKind::Eval:
case ScopeKind::StrictEval:
f(&as<EvalScope>().data());
break;
case ScopeKind::Global:
case ScopeKind::NonSyntactic:
f(&as<GlobalScope>().data());
break;
case ScopeKind::Module:
f(&as<ModuleScope>().data());
break;
case ScopeKind::WasmInstance:
f(&as<WasmInstanceScope>().data());
break;
case ScopeKind::WasmFunction:
f(&as<WasmFunctionScope>().data());
break;
}
}
}
//
// An iterator for a Scope's bindings. This is the source of truth for frame
// and environment object layout.
//
// It may be placed in GC containers; for example:
//
// for (Rooted<BindingIter> bi(cx, BindingIter(scope)); bi; bi++) {
// use(bi);
// SomeMayGCOperation();
// use(bi);
// }
//
template <typename NameT>
class BaseAbstractBindingIter {
protected:
// Bindings are sorted by kind. Because different Scopes have differently
// laid out {Runtime,Parser}Data for packing, BindingIter must handle all
// binding kinds.
//
// Kind ranges:
//
// imports - [0, positionalFormalStart)
// positional formals - [positionalFormalStart, nonPositionalFormalStart)
// other formals - [nonPositionalParamStart, varStart)
// vars - [varStart, letStart)
// lets - [letStart, constStart)
// consts - [constStart, length)
//
// Access method when not closed over:
//
// imports - name
// positional formals - argument slot
// other formals - frame slot
// vars - frame slot
// lets - frame slot
// consts - frame slot
//
// Access method when closed over:
//
// imports - name
// positional formals - environment slot or name
// other formals - environment slot or name
// vars - environment slot or name
// lets - environment slot or name
// consts - environment slot or name
MOZ_INIT_OUTSIDE_CTOR uint32_t positionalFormalStart_;
MOZ_INIT_OUTSIDE_CTOR uint32_t nonPositionalFormalStart_;
MOZ_INIT_OUTSIDE_CTOR uint32_t varStart_;
MOZ_INIT_OUTSIDE_CTOR uint32_t letStart_;
MOZ_INIT_OUTSIDE_CTOR uint32_t constStart_;
MOZ_INIT_OUTSIDE_CTOR uint32_t length_;
MOZ_INIT_OUTSIDE_CTOR uint32_t index_;
enum Flags : uint8_t {
CannotHaveSlots = 0,
CanHaveArgumentSlots = 1 << 0,
CanHaveFrameSlots = 1 << 1,
CanHaveEnvironmentSlots = 1 << 2,
// See comment in settle below.
HasFormalParameterExprs = 1 << 3,
IgnoreDestructuredFormalParameters = 1 << 4,
// Truly I hate named lambdas.
IsNamedLambda = 1 << 5
};
static const uint8_t CanHaveSlotsMask = 0x7;
MOZ_INIT_OUTSIDE_CTOR uint8_t flags_;
MOZ_INIT_OUTSIDE_CTOR uint16_t argumentSlot_;
MOZ_INIT_OUTSIDE_CTOR uint32_t frameSlot_;
MOZ_INIT_OUTSIDE_CTOR uint32_t environmentSlot_;
MOZ_INIT_OUTSIDE_CTOR AbstractBindingName<NameT>* names_;
void init(uint32_t positionalFormalStart, uint32_t nonPositionalFormalStart,
uint32_t varStart, uint32_t letStart, uint32_t constStart,
uint8_t flags, uint32_t firstFrameSlot,
uint32_t firstEnvironmentSlot, AbstractBindingName<NameT>* names,
uint32_t length) {
positionalFormalStart_ = positionalFormalStart;
nonPositionalFormalStart_ = nonPositionalFormalStart;
varStart_ = varStart;
letStart_ = letStart;
constStart_ = constStart;
length_ = length;
index_ = 0;
flags_ = flags;
argumentSlot_ = 0;
frameSlot_ = firstFrameSlot;
environmentSlot_ = firstEnvironmentSlot;
names_ = names;
settle();
}
void init(LexicalScope::AbstractData<NameT>& data, uint32_t firstFrameSlot,
uint8_t flags);
void init(FunctionScope::AbstractData<NameT>& data, uint8_t flags);
void init(VarScope::AbstractData<NameT>& data, uint32_t firstFrameSlot);
void init(GlobalScope::AbstractData<NameT>& data);
void init(EvalScope::AbstractData<NameT>& data, bool strict);
void init(ModuleScope::AbstractData<NameT>& data);
void init(WasmInstanceScope::AbstractData<NameT>& data);
void init(WasmFunctionScope::AbstractData<NameT>& data);
bool hasFormalParameterExprs() const {
return flags_ & HasFormalParameterExprs;
}
bool ignoreDestructuredFormalParameters() const {
return flags_ & IgnoreDestructuredFormalParameters;
}
bool isNamedLambda() const { return flags_ & IsNamedLambda; }
void increment() {
MOZ_ASSERT(!done());
if (flags_ & CanHaveSlotsMask) {
if (canHaveArgumentSlots()) {
if (index_ < nonPositionalFormalStart_) {
MOZ_ASSERT(index_ >= positionalFormalStart_);
argumentSlot_++;
}
}
if (closedOver()) {
// Imports must not be given known slots. They are
// indirect bindings.
MOZ_ASSERT(kind() != BindingKind::Import);
MOZ_ASSERT(canHaveEnvironmentSlots());
environmentSlot_++;
} else if (canHaveFrameSlots()) {
// Usually positional formal parameters don't have frame
// slots, except when there are parameter expressions, in
// which case they act like lets.
if (index_ >= nonPositionalFormalStart_ ||
(hasFormalParameterExprs() && name())) {
frameSlot_++;
}
}
}
index_++;
}
void settle() {
if (ignoreDestructuredFormalParameters()) {
while (!done() && !name()) {
increment();
}
}
}
BaseAbstractBindingIter() = default;
public:
BaseAbstractBindingIter(LexicalScope::AbstractData<NameT>& data,
uint32_t firstFrameSlot, bool isNamedLambda) {
init(data, firstFrameSlot, isNamedLambda ? IsNamedLambda : 0);
}
BaseAbstractBindingIter(FunctionScope::AbstractData<NameT>& data,
bool hasParameterExprs) {
init(data, IgnoreDestructuredFormalParameters |
(hasParameterExprs ? HasFormalParameterExprs : 0));
}
BaseAbstractBindingIter(VarScope::AbstractData<NameT>& data,
uint32_t firstFrameSlot) {
init(data, firstFrameSlot);
}
explicit BaseAbstractBindingIter(GlobalScope::AbstractData<NameT>& data) {
init(data);
}
explicit BaseAbstractBindingIter(ModuleScope::AbstractData<NameT>& data) {
init(data);
}
explicit BaseAbstractBindingIter(
WasmFunctionScope::AbstractData<NameT>& data) {
init(data);
}
BaseAbstractBindingIter(EvalScope::AbstractData<NameT>& data, bool strict) {
init(data, strict);
}
MOZ_IMPLICIT BaseAbstractBindingIter(
const BaseAbstractBindingIter<NameT>& bi) = default;
bool done() const { return index_ == length_; }
explicit operator bool() const { return !done(); }
void operator++(int) {
increment();
settle();
}
bool isLast() const {
MOZ_ASSERT(!done());
return index_ + 1 == length_;
}
bool canHaveArgumentSlots() const { return flags_ & CanHaveArgumentSlots; }
bool canHaveFrameSlots() const { return flags_ & CanHaveFrameSlots; }
bool canHaveEnvironmentSlots() const {
return flags_ & CanHaveEnvironmentSlots;
}
typename AbstractBindingName<NameT>::NamePointerT name() const {
MOZ_ASSERT(!done());
return names_[index_].name();
}
bool closedOver() const {
MOZ_ASSERT(!done());
return names_[index_].closedOver();
}
BindingLocation location() const {
MOZ_ASSERT(!done());
if (!(flags_ & CanHaveSlotsMask)) {
return BindingLocation::Global();
}
if (index_ < positionalFormalStart_) {
return BindingLocation::Import();
}
if (closedOver()) {
MOZ_ASSERT(canHaveEnvironmentSlots());
return BindingLocation::Environment(environmentSlot_);
}
if (index_ < nonPositionalFormalStart_ && canHaveArgumentSlots()) {
return BindingLocation::Argument(argumentSlot_);
}
if (canHaveFrameSlots()) {
return BindingLocation::Frame(frameSlot_);
}
MOZ_ASSERT(isNamedLambda());
return BindingLocation::NamedLambdaCallee();
}
BindingKind kind() const {
MOZ_ASSERT(!done());
if (index_ < positionalFormalStart_) {
return BindingKind::Import;
}
if (index_ < varStart_) {
// When the parameter list has expressions, the parameters act
// like lexical bindings and have TDZ.
if (hasFormalParameterExprs()) {
return BindingKind::Let;
}
return BindingKind::FormalParameter;
}
if (index_ < letStart_) {
return BindingKind::Var;
}
if (index_ < constStart_) {
return BindingKind::Let;
}
if (isNamedLambda()) {
return BindingKind::NamedLambdaCallee;
}
return BindingKind::Const;
}
bool isTopLevelFunction() const {
MOZ_ASSERT(!done());
bool result = names_[index_].isTopLevelFunction();
MOZ_ASSERT_IF(result, kind() == BindingKind::Var);
return result;
}
bool hasArgumentSlot() const {
MOZ_ASSERT(!done());
if (hasFormalParameterExprs()) {
return false;
}
return index_ >= positionalFormalStart_ &&
index_ < nonPositionalFormalStart_;
}
uint16_t argumentSlot() const {
MOZ_ASSERT(canHaveArgumentSlots());
return mozilla::AssertedCast<uint16_t>(index_);
}
uint32_t nextFrameSlot() const {
MOZ_ASSERT(canHaveFrameSlots());
return frameSlot_;
}
uint32_t nextEnvironmentSlot() const {
MOZ_ASSERT(canHaveEnvironmentSlots());
return environmentSlot_;
}
};
template <typename NameT>
class AbstractBindingIter;
template <>
class AbstractBindingIter<JSAtom> : public BaseAbstractBindingIter<JSAtom> {
using Base = BaseAbstractBindingIter<JSAtom>;
public:
AbstractBindingIter<JSAtom>(ScopeKind kind, BaseScopeData* data,
uint32_t firstFrameSlot);
explicit AbstractBindingIter<JSAtom>(Scope* scope);
explicit AbstractBindingIter<JSAtom>(JSScript* script);
using Base::Base;
void trace(JSTracer* trc);
};
template <>
class AbstractBindingIter<frontend::TaggedParserAtomIndex>
: public BaseAbstractBindingIter<frontend::TaggedParserAtomIndex> {
using Base = BaseAbstractBindingIter<frontend::TaggedParserAtomIndex>;
public:
using Base::Base;
};
void DumpBindings(JSContext* cx, Scope* scope);
JSAtom* FrameSlotName(JSScript* script, jsbytecode* pc);
Shape* EmptyEnvironmentShape(JSContext* cx, const JSClass* cls,
uint32_t numSlots, uint32_t baseShapeFlags);
template <class T>
Shape* EmptyEnvironmentShape(JSContext* cx) {
return EmptyEnvironmentShape(cx, &T::class_, T::RESERVED_SLOTS,
T::BASESHAPE_FLAGS);
}
//
// A refinement BindingIter that only iterates over positional formal
// parameters of a function.
//
class PositionalFormalParameterIter : public BindingIter {
void settle() {
if (index_ >= nonPositionalFormalStart_) {
index_ = length_;
}
}
public:
explicit PositionalFormalParameterIter(Scope* scope);
explicit PositionalFormalParameterIter(JSScript* script);
void operator++(int) {
BindingIter::operator++(1);
settle();
}
bool isDestructured() const { return !name(); }
};
//
// Iterator for walking the scope chain.
//
// It may be placed in GC containers; for example:
//
// for (Rooted<ScopeIter> si(cx, ScopeIter(scope)); si; si++) {
// use(si);
// SomeMayGCOperation();
// use(si);
// }
//
class MOZ_STACK_CLASS ScopeIter {
Scope* scope_;
public:
explicit ScopeIter(Scope* scope) : scope_(scope) {}
explicit ScopeIter(JSScript* script);
explicit ScopeIter(const ScopeIter& si) = default;
bool done() const { return !scope_; }
explicit operator bool() const { return !done(); }
void operator++(int) {
MOZ_ASSERT(!done());
scope_ = scope_->enclosing();
}
Scope* scope() const {
MOZ_ASSERT(!done());
return scope_;
}
ScopeKind kind() const {
MOZ_ASSERT(!done());
return scope_->kind();
}
// Returns the shape of the environment if it is known. It is possible to
// hasSyntacticEnvironment and to have no known shape, e.g., eval.
Shape* environmentShape() const { return scope()->environmentShape(); }
// Returns whether this scope has a syntactic environment (i.e., an
// Environment that isn't a non-syntactic With or NonSyntacticVariables)
// on the environment chain.
bool hasSyntacticEnvironment() const;
void trace(JSTracer* trc) {
if (scope_) {
TraceRoot(trc, &scope_, "scope iter scope");
}
}
};
//
// Specializations of Rooted containers for the iterators.
//
template <typename Wrapper>
class WrappedPtrOperations<BindingIter, Wrapper> {
const BindingIter& iter() const {
return static_cast<const Wrapper*>(this)->get();
}
public:
bool done() const { return iter().done(); }
explicit operator bool() const { return !done(); }
bool isLast() const { return iter().isLast(); }
bool canHaveArgumentSlots() const { return iter().canHaveArgumentSlots(); }
bool canHaveFrameSlots() const { return iter().canHaveFrameSlots(); }
bool canHaveEnvironmentSlots() const {
return iter().canHaveEnvironmentSlots();
}
JSAtom* name() const { return iter().name(); }
bool closedOver() const { return iter().closedOver(); }
BindingLocation location() const { return iter().location(); }
BindingKind kind() const { return iter().kind(); }
bool isTopLevelFunction() const { return iter().isTopLevelFunction(); }
bool hasArgumentSlot() const { return iter().hasArgumentSlot(); }
uint16_t argumentSlot() const { return iter().argumentSlot(); }
uint32_t nextFrameSlot() const { return iter().nextFrameSlot(); }
uint32_t nextEnvironmentSlot() const { return iter().nextEnvironmentSlot(); }
};
template <typename Wrapper>
class MutableWrappedPtrOperations<BindingIter, Wrapper>
: public WrappedPtrOperations<BindingIter, Wrapper> {
BindingIter& iter() { return static_cast<Wrapper*>(this)->get(); }
public:
void operator++(int) { iter().operator++(1); }
};
template <typename Wrapper>
class WrappedPtrOperations<ScopeIter, Wrapper> {
const ScopeIter& iter() const {
return static_cast<const Wrapper*>(this)->get();
}
public:
bool done() const { return iter().done(); }
explicit operator bool() const { return !done(); }
Scope* scope() const { return iter().scope(); }
ScopeKind kind() const { return iter().kind(); }
Shape* environmentShape() const { return iter().environmentShape(); }
bool hasSyntacticEnvironment() const {
return iter().hasSyntacticEnvironment();
}
};
template <typename Wrapper>
class MutableWrappedPtrOperations<ScopeIter, Wrapper>
: public WrappedPtrOperations<ScopeIter, Wrapper> {
ScopeIter& iter() { return static_cast<Wrapper*>(this)->get(); }
public:
void operator++(int) { iter().operator++(1); }
};
Shape* CreateEnvironmentShape(JSContext* cx, BindingIter& bi,
const JSClass* cls, uint32_t numSlots,
uint32_t baseShapeFlags);
Shape* CreateEnvironmentShape(
JSContext* cx, frontend::CompilationAtomCache& atomCache,
AbstractBindingIter<frontend::TaggedParserAtomIndex>& bi,
const JSClass* cls, uint32_t numSlots, uint32_t baseShapeFlags);
Shape* EmptyEnvironmentShape(JSContext* cx, const JSClass* cls,
uint32_t numSlots, uint32_t baseShapeFlags);
} // namespace js
namespace JS {
template <>
struct GCPolicy<js::ScopeKind> : public IgnoreGCPolicy<js::ScopeKind> {};
template <typename T>
struct ScopeDataGCPolicy : public NonGCPointerPolicy<T> {};
#define DEFINE_SCOPE_DATA_GCPOLICY(Data) \
template <> \
struct MapTypeToRootKind<Data*> { \
static const RootKind kind = RootKind::Traceable; \
}; \
template <> \
struct GCPolicy<Data*> : public ScopeDataGCPolicy<Data*> {}
DEFINE_SCOPE_DATA_GCPOLICY(js::LexicalScope::RuntimeData);
DEFINE_SCOPE_DATA_GCPOLICY(js::FunctionScope::RuntimeData);
DEFINE_SCOPE_DATA_GCPOLICY(js::VarScope::RuntimeData);
DEFINE_SCOPE_DATA_GCPOLICY(js::GlobalScope::RuntimeData);
DEFINE_SCOPE_DATA_GCPOLICY(js::EvalScope::RuntimeData);
DEFINE_SCOPE_DATA_GCPOLICY(js::ModuleScope::RuntimeData);
DEFINE_SCOPE_DATA_GCPOLICY(js::WasmFunctionScope::RuntimeData);
#undef DEFINE_SCOPE_DATA_GCPOLICY
namespace ubi {
template <>
class Concrete<js::Scope> : TracerConcrete<js::Scope> {
protected:
explicit Concrete(js::Scope* ptr) : TracerConcrete<js::Scope>(ptr) {}
public:
static void construct(void* storage, js::Scope* ptr) {
new (storage) Concrete(ptr);
}
CoarseType coarseType() const final { return CoarseType::Script; }
Size size(mozilla::MallocSizeOf mallocSizeOf) const override;
const char16_t* typeName() const override { return concreteTypeName; }
static const char16_t concreteTypeName[];
};
} // namespace ubi
} // namespace JS
#endif // vm_Scope_h
|