summaryrefslogtreecommitdiffstats
path: root/media/libjpeg/simd/i386/jchuff-sse2.asm
blob: d0112e61070a60f9373390ed729942bef2399745 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
;
; jchuff-sse2.asm - Huffman entropy encoding (SSE2)
;
; Copyright (C) 2009-2011, 2014-2017, D. R. Commander.
; Copyright (C) 2015, Matthieu Darbois.
;
; Based on the x86 SIMD extension for IJG JPEG library
; Copyright (C) 1999-2006, MIYASAKA Masaru.
; For conditions of distribution and use, see copyright notice in jsimdext.inc
;
; This file should be assembled with NASM (Netwide Assembler),
; can *not* be assembled with Microsoft's MASM or any compatible
; assembler (including Borland's Turbo Assembler).
; NASM is available from http://nasm.sourceforge.net/ or
; http://sourceforge.net/project/showfiles.php?group_id=6208
;
; This file contains an SSE2 implementation for Huffman coding of one block.
; The following code is based directly on jchuff.c; see jchuff.c for more
; details.

%include "jsimdext.inc"

; --------------------------------------------------------------------------
    SECTION     SEG_CONST

    alignz      32
    GLOBAL_DATA(jconst_huff_encode_one_block)
    EXTERN      EXTN(jpeg_nbits_table)

EXTN(jconst_huff_encode_one_block):

    alignz      32

; --------------------------------------------------------------------------
    SECTION     SEG_TEXT
    BITS        32

; These macros perform the same task as the emit_bits() function in the
; original libjpeg code.  In addition to reducing overhead by explicitly
; inlining the code, additional performance is achieved by taking into
; account the size of the bit buffer and waiting until it is almost full
; before emptying it.  This mostly benefits 64-bit platforms, since 6
; bytes can be stored in a 64-bit bit buffer before it has to be emptied.

%macro EMIT_BYTE 0
    sub         put_bits, 8             ; put_bits -= 8;
    mov         edx, put_buffer
    mov         ecx, put_bits
    shr         edx, cl                 ; c = (JOCTET)GETJOCTET(put_buffer >> put_bits);
    mov         byte [eax], dl          ; *buffer++ = c;
    add         eax, 1
    cmp         dl, 0xFF                ; need to stuff a zero byte?
    jne         %%.EMIT_BYTE_END
    mov         byte [eax], 0           ; *buffer++ = 0;
    add         eax, 1
%%.EMIT_BYTE_END:
%endmacro

%macro PUT_BITS 1
    add         put_bits, ecx           ; put_bits += size;
    shl         put_buffer, cl          ; put_buffer = (put_buffer << size);
    or          put_buffer, %1
%endmacro

%macro CHECKBUF15 0
    cmp         put_bits, 16            ; if (put_bits > 31) {
    jl          %%.CHECKBUF15_END
    mov         eax, POINTER [esp+buffer]
    EMIT_BYTE
    EMIT_BYTE
    mov         POINTER [esp+buffer], eax
%%.CHECKBUF15_END:
%endmacro

%macro EMIT_BITS 1
    PUT_BITS    %1
    CHECKBUF15
%endmacro

%macro kloop_prepare 37                 ;(ko, jno0, ..., jno31, xmm0, xmm1, xmm2, xmm3)
    pxor        xmm4, xmm4              ; __m128i neg = _mm_setzero_si128();
    pxor        xmm5, xmm5              ; __m128i neg = _mm_setzero_si128();
    pxor        xmm6, xmm6              ; __m128i neg = _mm_setzero_si128();
    pxor        xmm7, xmm7              ; __m128i neg = _mm_setzero_si128();
    pinsrw      %34, word [esi + %2  * SIZEOF_WORD], 0  ; xmm_shadow[0] = block[jno0];
    pinsrw      %35, word [esi + %10 * SIZEOF_WORD], 0  ; xmm_shadow[8] = block[jno8];
    pinsrw      %36, word [esi + %18 * SIZEOF_WORD], 0  ; xmm_shadow[16] = block[jno16];
    pinsrw      %37, word [esi + %26 * SIZEOF_WORD], 0  ; xmm_shadow[24] = block[jno24];
    pinsrw      %34, word [esi + %3  * SIZEOF_WORD], 1  ; xmm_shadow[1] = block[jno1];
    pinsrw      %35, word [esi + %11 * SIZEOF_WORD], 1  ; xmm_shadow[9] = block[jno9];
    pinsrw      %36, word [esi + %19 * SIZEOF_WORD], 1  ; xmm_shadow[17] = block[jno17];
    pinsrw      %37, word [esi + %27 * SIZEOF_WORD], 1  ; xmm_shadow[25] = block[jno25];
    pinsrw      %34, word [esi + %4  * SIZEOF_WORD], 2  ; xmm_shadow[2] = block[jno2];
    pinsrw      %35, word [esi + %12 * SIZEOF_WORD], 2  ; xmm_shadow[10] = block[jno10];
    pinsrw      %36, word [esi + %20 * SIZEOF_WORD], 2  ; xmm_shadow[18] = block[jno18];
    pinsrw      %37, word [esi + %28 * SIZEOF_WORD], 2  ; xmm_shadow[26] = block[jno26];
    pinsrw      %34, word [esi + %5  * SIZEOF_WORD], 3  ; xmm_shadow[3] = block[jno3];
    pinsrw      %35, word [esi + %13 * SIZEOF_WORD], 3  ; xmm_shadow[11] = block[jno11];
    pinsrw      %36, word [esi + %21 * SIZEOF_WORD], 3  ; xmm_shadow[19] = block[jno19];
    pinsrw      %37, word [esi + %29 * SIZEOF_WORD], 3  ; xmm_shadow[27] = block[jno27];
    pinsrw      %34, word [esi + %6  * SIZEOF_WORD], 4  ; xmm_shadow[4] = block[jno4];
    pinsrw      %35, word [esi + %14 * SIZEOF_WORD], 4  ; xmm_shadow[12] = block[jno12];
    pinsrw      %36, word [esi + %22 * SIZEOF_WORD], 4  ; xmm_shadow[20] = block[jno20];
    pinsrw      %37, word [esi + %30 * SIZEOF_WORD], 4  ; xmm_shadow[28] = block[jno28];
    pinsrw      %34, word [esi + %7  * SIZEOF_WORD], 5  ; xmm_shadow[5] = block[jno5];
    pinsrw      %35, word [esi + %15 * SIZEOF_WORD], 5  ; xmm_shadow[13] = block[jno13];
    pinsrw      %36, word [esi + %23 * SIZEOF_WORD], 5  ; xmm_shadow[21] = block[jno21];
    pinsrw      %37, word [esi + %31 * SIZEOF_WORD], 5  ; xmm_shadow[29] = block[jno29];
    pinsrw      %34, word [esi + %8  * SIZEOF_WORD], 6  ; xmm_shadow[6] = block[jno6];
    pinsrw      %35, word [esi + %16 * SIZEOF_WORD], 6  ; xmm_shadow[14] = block[jno14];
    pinsrw      %36, word [esi + %24 * SIZEOF_WORD], 6  ; xmm_shadow[22] = block[jno22];
    pinsrw      %37, word [esi + %32 * SIZEOF_WORD], 6  ; xmm_shadow[30] = block[jno30];
    pinsrw      %34, word [esi + %9  * SIZEOF_WORD], 7  ; xmm_shadow[7] = block[jno7];
    pinsrw      %35, word [esi + %17 * SIZEOF_WORD], 7  ; xmm_shadow[15] = block[jno15];
    pinsrw      %36, word [esi + %25 * SIZEOF_WORD], 7  ; xmm_shadow[23] = block[jno23];
%if %1 != 32
    pinsrw      %37, word [esi + %33 * SIZEOF_WORD], 7  ; xmm_shadow[31] = block[jno31];
%else
    pinsrw      %37, ecx, 7             ; xmm_shadow[31] = block[jno31];
%endif
    pcmpgtw     xmm4, %34               ; neg = _mm_cmpgt_epi16(neg, x1);
    pcmpgtw     xmm5, %35               ; neg = _mm_cmpgt_epi16(neg, x1);
    pcmpgtw     xmm6, %36               ; neg = _mm_cmpgt_epi16(neg, x1);
    pcmpgtw     xmm7, %37               ; neg = _mm_cmpgt_epi16(neg, x1);
    paddw       %34, xmm4               ; x1 = _mm_add_epi16(x1, neg);
    paddw       %35, xmm5               ; x1 = _mm_add_epi16(x1, neg);
    paddw       %36, xmm6               ; x1 = _mm_add_epi16(x1, neg);
    paddw       %37, xmm7               ; x1 = _mm_add_epi16(x1, neg);
    pxor        %34, xmm4               ; x1 = _mm_xor_si128(x1, neg);
    pxor        %35, xmm5               ; x1 = _mm_xor_si128(x1, neg);
    pxor        %36, xmm6               ; x1 = _mm_xor_si128(x1, neg);
    pxor        %37, xmm7               ; x1 = _mm_xor_si128(x1, neg);
    pxor        xmm4, %34               ; neg = _mm_xor_si128(neg, x1);
    pxor        xmm5, %35               ; neg = _mm_xor_si128(neg, x1);
    pxor        xmm6, %36               ; neg = _mm_xor_si128(neg, x1);
    pxor        xmm7, %37               ; neg = _mm_xor_si128(neg, x1);
    movdqa      XMMWORD [esp + t1 + %1 * SIZEOF_WORD], %34          ; _mm_storeu_si128((__m128i *)(t1 + ko), x1);
    movdqa      XMMWORD [esp + t1 + (%1 + 8) * SIZEOF_WORD], %35    ; _mm_storeu_si128((__m128i *)(t1 + ko + 8), x1);
    movdqa      XMMWORD [esp + t1 + (%1 + 16) * SIZEOF_WORD], %36   ; _mm_storeu_si128((__m128i *)(t1 + ko + 16), x1);
    movdqa      XMMWORD [esp + t1 + (%1 + 24) * SIZEOF_WORD], %37   ; _mm_storeu_si128((__m128i *)(t1 + ko + 24), x1);
    movdqa      XMMWORD [esp + t2 + %1 * SIZEOF_WORD], xmm4         ; _mm_storeu_si128((__m128i *)(t2 + ko), neg);
    movdqa      XMMWORD [esp + t2 + (%1 + 8) * SIZEOF_WORD], xmm5   ; _mm_storeu_si128((__m128i *)(t2 + ko + 8), neg);
    movdqa      XMMWORD [esp + t2 + (%1 + 16) * SIZEOF_WORD], xmm6  ; _mm_storeu_si128((__m128i *)(t2 + ko + 16), neg);
    movdqa      XMMWORD [esp + t2 + (%1 + 24) * SIZEOF_WORD], xmm7  ; _mm_storeu_si128((__m128i *)(t2 + ko + 24), neg);
%endmacro

;
; Encode a single block's worth of coefficients.
;
; GLOBAL(JOCTET *)
; jsimd_huff_encode_one_block_sse2(working_state *state, JOCTET *buffer,
;                                  JCOEFPTR block, int last_dc_val,
;                                  c_derived_tbl *dctbl, c_derived_tbl *actbl)
;

; eax + 8 = working_state *state
; eax + 12 = JOCTET *buffer
; eax + 16 = JCOEFPTR block
; eax + 20 = int last_dc_val
; eax + 24 = c_derived_tbl *dctbl
; eax + 28 = c_derived_tbl *actbl

%define pad         6 * SIZEOF_DWORD    ; Align to 16 bytes
%define t1          pad
%define t2          t1 + (DCTSIZE2 * SIZEOF_WORD)
%define block       t2 + (DCTSIZE2 * SIZEOF_WORD)
%define actbl       block + SIZEOF_DWORD
%define buffer      actbl + SIZEOF_DWORD
%define temp        buffer + SIZEOF_DWORD
%define temp2       temp + SIZEOF_DWORD
%define temp3       temp2 + SIZEOF_DWORD
%define temp4       temp3 + SIZEOF_DWORD
%define temp5       temp4 + SIZEOF_DWORD
%define gotptr      temp5 + SIZEOF_DWORD  ; void *gotptr
%define put_buffer  ebx
%define put_bits    edi

    align       32
    GLOBAL_FUNCTION(jsimd_huff_encode_one_block_sse2)

EXTN(jsimd_huff_encode_one_block_sse2):
    push        ebp
    mov         eax, esp                     ; eax = original ebp
    sub         esp, byte 4
    and         esp, byte (-SIZEOF_XMMWORD)  ; align to 128 bits
    mov         [esp], eax
    mov         ebp, esp                     ; ebp = aligned ebp
    sub         esp, temp5+9*SIZEOF_DWORD-pad
    push        ebx
    push        ecx
;   push        edx                     ; need not be preserved
    push        esi
    push        edi
    push        ebp

    mov         esi, POINTER [eax+8]       ; (working_state *state)
    mov         put_buffer, dword [esi+8]  ; put_buffer = state->cur.put_buffer;
    mov         put_bits, dword [esi+12]   ; put_bits = state->cur.put_bits;
    push        esi                        ; esi is now scratch

    get_GOT     edx                        ; get GOT address
    movpic      POINTER [esp+gotptr], edx  ; save GOT address

    mov         ecx, POINTER [eax+28]
    mov         edx, POINTER [eax+16]
    mov         esi, POINTER [eax+12]
    mov         POINTER [esp+actbl], ecx
    mov         POINTER [esp+block], edx
    mov         POINTER [esp+buffer], esi

    ; Encode the DC coefficient difference per section F.1.2.1
    mov         esi, POINTER [esp+block]  ; block
    movsx       ecx, word [esi]           ; temp = temp2 = block[0] - last_dc_val;
    sub         ecx, dword [eax+20]
    mov         esi, ecx

    ; This is a well-known technique for obtaining the absolute value
    ; with out a branch.  It is derived from an assembly language technique
    ; presented in "How to Optimize for the Pentium Processors",
    ; Copyright (c) 1996, 1997 by Agner Fog.
    mov         edx, ecx
    sar         edx, 31                 ; temp3 = temp >> (CHAR_BIT * sizeof(int) - 1);
    xor         ecx, edx                ; temp ^= temp3;
    sub         ecx, edx                ; temp -= temp3;

    ; For a negative input, want temp2 = bitwise complement of abs(input)
    ; This code assumes we are on a two's complement machine
    add         esi, edx                ; temp2 += temp3;
    mov         dword [esp+temp], esi   ; backup temp2 in temp

    ; Find the number of bits needed for the magnitude of the coefficient
    movpic      ebp, POINTER [esp+gotptr]                        ; load GOT address (ebp)
    movzx       edx, byte [GOTOFF(ebp, EXTN(jpeg_nbits_table) + ecx)]  ; nbits = JPEG_NBITS(temp);
    mov         dword [esp+temp2], edx                           ; backup nbits in temp2

    ; Emit the Huffman-coded symbol for the number of bits
    mov         ebp, POINTER [eax+24]         ; After this point, arguments are not accessible anymore
    mov         eax,  INT [ebp + edx * 4]     ; code = dctbl->ehufco[nbits];
    movzx       ecx, byte [ebp + edx + 1024]  ; size = dctbl->ehufsi[nbits];
    EMIT_BITS   eax                           ; EMIT_BITS(code, size)

    mov         ecx, dword [esp+temp2]        ; restore nbits

    ; Mask off any extra bits in code
    mov         eax, 1
    shl         eax, cl
    dec         eax
    and         eax, dword [esp+temp]   ; temp2 &= (((JLONG)1)<<nbits) - 1;

    ; Emit that number of bits of the value, if positive,
    ; or the complement of its magnitude, if negative.
    EMIT_BITS   eax                     ; EMIT_BITS(temp2, nbits)

    ; Prepare data
    xor         ecx, ecx
    mov         esi, POINTER [esp+block]
    kloop_prepare  0,  1,  8,  16, 9,  2,  3,  10, 17, 24, 32, 25, \
                   18, 11, 4,  5,  12, 19, 26, 33, 40, 48, 41, 34, \
                   27, 20, 13, 6,  7,  14, 21, 28, 35, \
                   xmm0, xmm1, xmm2, xmm3
    kloop_prepare  32, 42, 49, 56, 57, 50, 43, 36, 29, 22, 15, 23, \
                   30, 37, 44, 51, 58, 59, 52, 45, 38, 31, 39, 46, \
                   53, 60, 61, 54, 47, 55, 62, 63, 63, \
                   xmm0, xmm1, xmm2, xmm3

    pxor        xmm7, xmm7
    movdqa      xmm0, XMMWORD [esp + t1 + 0 * SIZEOF_WORD]   ; __m128i tmp0 = _mm_loadu_si128((__m128i *)(t1 + 0));
    movdqa      xmm1, XMMWORD [esp + t1 + 8 * SIZEOF_WORD]   ; __m128i tmp1 = _mm_loadu_si128((__m128i *)(t1 + 8));
    movdqa      xmm2, XMMWORD [esp + t1 + 16 * SIZEOF_WORD]  ; __m128i tmp2 = _mm_loadu_si128((__m128i *)(t1 + 16));
    movdqa      xmm3, XMMWORD [esp + t1 + 24 * SIZEOF_WORD]  ; __m128i tmp3 = _mm_loadu_si128((__m128i *)(t1 + 24));
    pcmpeqw     xmm0, xmm7              ; tmp0 = _mm_cmpeq_epi16(tmp0, zero);
    pcmpeqw     xmm1, xmm7              ; tmp1 = _mm_cmpeq_epi16(tmp1, zero);
    pcmpeqw     xmm2, xmm7              ; tmp2 = _mm_cmpeq_epi16(tmp2, zero);
    pcmpeqw     xmm3, xmm7              ; tmp3 = _mm_cmpeq_epi16(tmp3, zero);
    packsswb    xmm0, xmm1              ; tmp0 = _mm_packs_epi16(tmp0, tmp1);
    packsswb    xmm2, xmm3              ; tmp2 = _mm_packs_epi16(tmp2, tmp3);
    pmovmskb    edx, xmm0               ; index  = ((uint64_t)_mm_movemask_epi8(tmp0)) << 0;
    pmovmskb    ecx, xmm2               ; index  = ((uint64_t)_mm_movemask_epi8(tmp2)) << 16;
    shl         ecx, 16
    or          edx, ecx
    not         edx                     ; index = ~index;

    lea         esi, [esp+t1]
    mov         ebp, POINTER [esp+actbl]  ; ebp = actbl

.BLOOP:
    bsf         ecx, edx                ; r = __builtin_ctzl(index);
    jz          near .ELOOP
    lea         esi, [esi+ecx*2]        ; k += r;
    shr         edx, cl                 ; index >>= r;
    mov         dword [esp+temp3], edx
.BRLOOP:
    cmp         ecx, 16                       ; while (r > 15) {
    jl          near .ERLOOP
    sub         ecx, 16                       ; r -= 16;
    mov         dword [esp+temp], ecx
    mov         eax, INT [ebp + 240 * 4]      ; code_0xf0 = actbl->ehufco[0xf0];
    movzx       ecx, byte [ebp + 1024 + 240]  ; size_0xf0 = actbl->ehufsi[0xf0];
    EMIT_BITS   eax                           ; EMIT_BITS(code_0xf0, size_0xf0)
    mov         ecx, dword [esp+temp]
    jmp         .BRLOOP
.ERLOOP:
    movsx       eax, word [esi]                                  ; temp = t1[k];
    movpic      edx, POINTER [esp+gotptr]                        ; load GOT address (edx)
    movzx       eax, byte [GOTOFF(edx, EXTN(jpeg_nbits_table) + eax)]  ; nbits = JPEG_NBITS(temp);
    mov         dword [esp+temp2], eax
    ; Emit Huffman symbol for run length / number of bits
    shl         ecx, 4                        ; temp3 = (r << 4) + nbits;
    add         ecx, eax
    mov         eax,  INT [ebp + ecx * 4]     ; code = actbl->ehufco[temp3];
    movzx       ecx, byte [ebp + ecx + 1024]  ; size = actbl->ehufsi[temp3];
    EMIT_BITS   eax

    movsx       edx, word [esi+DCTSIZE2*2]    ; temp2 = t2[k];
    ; Mask off any extra bits in code
    mov         ecx, dword [esp+temp2]
    mov         eax, 1
    shl         eax, cl
    dec         eax
    and         eax, edx                ; temp2 &= (((JLONG)1)<<nbits) - 1;
    EMIT_BITS   eax                     ; PUT_BITS(temp2, nbits)
    mov         edx, dword [esp+temp3]
    add         esi, 2                  ; ++k;
    shr         edx, 1                  ; index >>= 1;

    jmp         .BLOOP
.ELOOP:
    movdqa      xmm0, XMMWORD [esp + t1 + 32 * SIZEOF_WORD]  ; __m128i tmp0 = _mm_loadu_si128((__m128i *)(t1 + 0));
    movdqa      xmm1, XMMWORD [esp + t1 + 40 * SIZEOF_WORD]  ; __m128i tmp1 = _mm_loadu_si128((__m128i *)(t1 + 8));
    movdqa      xmm2, XMMWORD [esp + t1 + 48 * SIZEOF_WORD]  ; __m128i tmp2 = _mm_loadu_si128((__m128i *)(t1 + 16));
    movdqa      xmm3, XMMWORD [esp + t1 + 56 * SIZEOF_WORD]  ; __m128i tmp3 = _mm_loadu_si128((__m128i *)(t1 + 24));
    pcmpeqw     xmm0, xmm7              ; tmp0 = _mm_cmpeq_epi16(tmp0, zero);
    pcmpeqw     xmm1, xmm7              ; tmp1 = _mm_cmpeq_epi16(tmp1, zero);
    pcmpeqw     xmm2, xmm7              ; tmp2 = _mm_cmpeq_epi16(tmp2, zero);
    pcmpeqw     xmm3, xmm7              ; tmp3 = _mm_cmpeq_epi16(tmp3, zero);
    packsswb    xmm0, xmm1              ; tmp0 = _mm_packs_epi16(tmp0, tmp1);
    packsswb    xmm2, xmm3              ; tmp2 = _mm_packs_epi16(tmp2, tmp3);
    pmovmskb    edx, xmm0               ; index  = ((uint64_t)_mm_movemask_epi8(tmp0)) << 0;
    pmovmskb    ecx, xmm2               ; index  = ((uint64_t)_mm_movemask_epi8(tmp2)) << 16;
    shl         ecx, 16
    or          edx, ecx
    not         edx                     ; index = ~index;

    lea         eax, [esp + t1 + (DCTSIZE2/2) * 2]
    sub         eax, esi
    shr         eax, 1
    bsf         ecx, edx                ; r = __builtin_ctzl(index);
    jz          near .ELOOP2
    shr         edx, cl                 ; index >>= r;
    add         ecx, eax
    lea         esi, [esi+ecx*2]        ; k += r;
    mov         dword [esp+temp3], edx
    jmp         .BRLOOP2
.BLOOP2:
    bsf         ecx, edx                ; r = __builtin_ctzl(index);
    jz          near .ELOOP2
    lea         esi, [esi+ecx*2]        ; k += r;
    shr         edx, cl                 ; index >>= r;
    mov         dword [esp+temp3], edx
.BRLOOP2:
    cmp         ecx, 16                       ; while (r > 15) {
    jl          near .ERLOOP2
    sub         ecx, 16                       ; r -= 16;
    mov         dword [esp+temp], ecx
    mov         eax, INT [ebp + 240 * 4]      ; code_0xf0 = actbl->ehufco[0xf0];
    movzx       ecx, byte [ebp + 1024 + 240]  ; size_0xf0 = actbl->ehufsi[0xf0];
    EMIT_BITS   eax                           ; EMIT_BITS(code_0xf0, size_0xf0)
    mov         ecx, dword [esp+temp]
    jmp         .BRLOOP2
.ERLOOP2:
    movsx       eax, word [esi]         ; temp = t1[k];
    bsr         eax, eax                ; nbits = 32 - __builtin_clz(temp);
    inc         eax
    mov         dword [esp+temp2], eax
    ; Emit Huffman symbol for run length / number of bits
    shl         ecx, 4                        ; temp3 = (r << 4) + nbits;
    add         ecx, eax
    mov         eax,  INT [ebp + ecx * 4]     ; code = actbl->ehufco[temp3];
    movzx       ecx, byte [ebp + ecx + 1024]  ; size = actbl->ehufsi[temp3];
    EMIT_BITS   eax

    movsx       edx, word [esi+DCTSIZE2*2]    ; temp2 = t2[k];
    ; Mask off any extra bits in code
    mov         ecx, dword [esp+temp2]
    mov         eax, 1
    shl         eax, cl
    dec         eax
    and         eax, edx                ; temp2 &= (((JLONG)1)<<nbits) - 1;
    EMIT_BITS   eax                     ; PUT_BITS(temp2, nbits)
    mov         edx, dword [esp+temp3]
    add         esi, 2                  ; ++k;
    shr         edx, 1                  ; index >>= 1;

    jmp         .BLOOP2
.ELOOP2:
    ; If the last coef(s) were zero, emit an end-of-block code
    lea         edx, [esp + t1 + (DCTSIZE2-1) * 2]  ; r = DCTSIZE2-1-k;
    cmp         edx, esi                            ; if (r > 0) {
    je          .EFN
    mov         eax,  INT [ebp]                     ; code = actbl->ehufco[0];
    movzx       ecx, byte [ebp + 1024]              ; size = actbl->ehufsi[0];
    EMIT_BITS   eax
.EFN:
    mov         eax, [esp+buffer]
    pop         esi
    ; Save put_buffer & put_bits
    mov         dword [esi+8], put_buffer  ; state->cur.put_buffer = put_buffer;
    mov         dword [esi+12], put_bits   ; state->cur.put_bits = put_bits;

    pop         ebp
    pop         edi
    pop         esi
;   pop         edx                     ; need not be preserved
    pop         ecx
    pop         ebx
    mov         esp, ebp                ; esp <- aligned ebp
    pop         esp                     ; esp <- original ebp
    pop         ebp
    ret

; For some reason, the OS X linker does not honor the request to align the
; segment unless we do this.
    align       32