summaryrefslogtreecommitdiffstats
path: root/security/manager/ssl/osclientcerts/src/backend_windows.rs
blob: a422d2e2bc4a4d6e561d6c75b0aa99cbdfa40c5d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
/* -*- Mode: rust; rust-indent-offset: 4 -*- */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#![allow(non_camel_case_types)]

use pkcs11::types::*;
use sha2::{Digest, Sha256};
use std::convert::TryInto;
use std::ffi::{c_void, CStr, CString};
use std::ops::Deref;
use std::slice;
use winapi::shared::bcrypt::*;
use winapi::shared::minwindef::{DWORD, PBYTE};
use winapi::um::errhandlingapi::GetLastError;
use winapi::um::ncrypt::*;
use winapi::um::wincrypt::{HCRYPTHASH, HCRYPTPROV, *};

use crate::manager::SlotType;
use crate::util::*;

// winapi has some support for ncrypt.h, but not for this function.
extern "system" {
    fn NCryptSignHash(
        hKey: NCRYPT_KEY_HANDLE,
        pPaddingInfo: *mut c_void,
        pbHashValue: PBYTE,
        cbHashValue: DWORD,
        pbSignature: PBYTE,
        cbSignature: DWORD,
        pcbResult: *mut DWORD,
        dwFlags: DWORD,
    ) -> SECURITY_STATUS;
}

/// Given a `CERT_INFO`, tries to return the bytes of the subject distinguished name as formatted by
/// `CertNameToStrA` using the flag `CERT_SIMPLE_NAME_STR`. This is used as the label for the
/// certificate.
fn get_cert_subject_dn(cert_info: &CERT_INFO) -> Result<Vec<u8>, ()> {
    let mut cert_info_subject = cert_info.Subject;
    let subject_dn_len = unsafe {
        CertNameToStrA(
            X509_ASN_ENCODING,
            &mut cert_info_subject,
            CERT_SIMPLE_NAME_STR,
            std::ptr::null_mut(),
            0,
        )
    };
    // subject_dn_len includes the terminating null byte.
    let mut subject_dn_string_bytes: Vec<u8> = vec![0; subject_dn_len as usize];
    let subject_dn_len = unsafe {
        CertNameToStrA(
            X509_ASN_ENCODING,
            &mut cert_info_subject,
            CERT_SIMPLE_NAME_STR,
            subject_dn_string_bytes.as_mut_ptr() as *mut i8,
            subject_dn_string_bytes.len().try_into().map_err(|_| ())?,
        )
    };
    if subject_dn_len as usize != subject_dn_string_bytes.len() {
        return Err(());
    }
    Ok(subject_dn_string_bytes)
}

/// Represents a certificate for which there exists a corresponding private key.
pub struct Cert {
    /// PKCS #11 object class. Will be `CKO_CERTIFICATE`.
    class: Vec<u8>,
    /// Whether or not this is on a token. Will be `CK_TRUE`.
    token: Vec<u8>,
    /// An identifier unique to this certificate. Must be the same as the ID for the private key.
    id: Vec<u8>,
    /// The bytes of a human-readable label for this certificate. Will be the subject DN.
    label: Vec<u8>,
    /// The DER bytes of the certificate.
    value: Vec<u8>,
    /// The DER bytes of the issuer distinguished name of the certificate.
    issuer: Vec<u8>,
    /// The DER bytes of the serial number of the certificate.
    serial_number: Vec<u8>,
    /// The DER bytes of the subject distinguished name of the certificate.
    subject: Vec<u8>,
    /// Which slot this certificate should be exposed on.
    slot_type: SlotType,
}

impl Cert {
    fn new(cert_context: PCCERT_CONTEXT) -> Result<Cert, ()> {
        let cert = unsafe { &*cert_context };
        let cert_info = unsafe { &*cert.pCertInfo };
        let value =
            unsafe { slice::from_raw_parts(cert.pbCertEncoded, cert.cbCertEncoded as usize) };
        let value = value.to_vec();
        let id = Sha256::digest(&value).to_vec();
        let label = get_cert_subject_dn(&cert_info)?;
        let issuer = unsafe {
            slice::from_raw_parts(cert_info.Issuer.pbData, cert_info.Issuer.cbData as usize)
        };
        let issuer = issuer.to_vec();
        let serial_number = read_encoded_serial_number(&value)?;
        let subject = unsafe {
            slice::from_raw_parts(cert_info.Subject.pbData, cert_info.Subject.cbData as usize)
        };
        let subject = subject.to_vec();
        Ok(Cert {
            class: serialize_uint(CKO_CERTIFICATE)?,
            token: serialize_uint(CK_TRUE)?,
            id,
            label,
            value,
            issuer,
            serial_number,
            subject,
            slot_type: SlotType::Modern,
        })
    }

    fn class(&self) -> &[u8] {
        &self.class
    }

    fn token(&self) -> &[u8] {
        &self.token
    }

    pub fn id(&self) -> &[u8] {
        &self.id
    }

    fn label(&self) -> &[u8] {
        &self.label
    }

    fn value(&self) -> &[u8] {
        &self.value
    }

    fn issuer(&self) -> &[u8] {
        &self.issuer
    }

    fn serial_number(&self) -> &[u8] {
        &self.serial_number
    }

    fn subject(&self) -> &[u8] {
        &self.subject
    }

    fn matches(&self, slot_type: SlotType, attrs: &[(CK_ATTRIBUTE_TYPE, Vec<u8>)]) -> bool {
        if slot_type != self.slot_type {
            return false;
        }
        for (attr_type, attr_value) in attrs {
            let comparison = match *attr_type {
                CKA_CLASS => self.class(),
                CKA_TOKEN => self.token(),
                CKA_LABEL => self.label(),
                CKA_ID => self.id(),
                CKA_VALUE => self.value(),
                CKA_ISSUER => self.issuer(),
                CKA_SERIAL_NUMBER => self.serial_number(),
                CKA_SUBJECT => self.subject(),
                _ => return false,
            };
            if attr_value.as_slice() != comparison {
                return false;
            }
        }
        true
    }

    fn get_attribute(&self, attribute: CK_ATTRIBUTE_TYPE) -> Option<&[u8]> {
        let result = match attribute {
            CKA_CLASS => self.class(),
            CKA_TOKEN => self.token(),
            CKA_LABEL => self.label(),
            CKA_ID => self.id(),
            CKA_VALUE => self.value(),
            CKA_ISSUER => self.issuer(),
            CKA_SERIAL_NUMBER => self.serial_number(),
            CKA_SUBJECT => self.subject(),
            _ => return None,
        };
        Some(result)
    }
}

struct CertContext(PCCERT_CONTEXT);

impl CertContext {
    fn new(cert: PCCERT_CONTEXT) -> CertContext {
        CertContext(unsafe { CertDuplicateCertificateContext(cert) })
    }
}

impl Drop for CertContext {
    fn drop(&mut self) {
        unsafe {
            CertFreeCertificateContext(self.0);
        }
    }
}

impl Deref for CertContext {
    type Target = PCCERT_CONTEXT;

    fn deref(&self) -> &Self::Target {
        &self.0
    }
}

enum KeyHandle {
    NCrypt(NCRYPT_KEY_HANDLE),
    CryptoAPI(HCRYPTPROV, DWORD),
}

impl KeyHandle {
    fn from_cert(cert: &CertContext) -> Result<KeyHandle, ()> {
        let mut key_handle = 0;
        let mut key_spec = 0;
        let mut must_free = 0;
        unsafe {
            if CryptAcquireCertificatePrivateKey(
                **cert,
                CRYPT_ACQUIRE_PREFER_NCRYPT_KEY_FLAG,
                std::ptr::null_mut(),
                &mut key_handle,
                &mut key_spec,
                &mut must_free,
            ) != 1
            {
                error!(
                    "CryptAcquireCertificatePrivateKey failed: 0x{:x}",
                    GetLastError()
                );
                return Err(());
            }
        }
        if must_free == 0 {
            error!("CryptAcquireCertificatePrivateKey returned shared key handle");
            return Err(());
        }
        if key_spec == CERT_NCRYPT_KEY_SPEC {
            Ok(KeyHandle::NCrypt(key_handle as NCRYPT_KEY_HANDLE))
        } else {
            Ok(KeyHandle::CryptoAPI(key_handle as HCRYPTPROV, key_spec))
        }
    }

    fn sign(
        &self,
        data: &[u8],
        params: &Option<CK_RSA_PKCS_PSS_PARAMS>,
        do_signature: bool,
        key_type: KeyType,
    ) -> Result<Vec<u8>, ()> {
        match &self {
            KeyHandle::NCrypt(ncrypt_handle) => {
                sign_ncrypt(ncrypt_handle, data, params, do_signature, key_type)
            }
            KeyHandle::CryptoAPI(hcryptprov, key_spec) => {
                sign_cryptoapi(hcryptprov, key_spec, data, params, do_signature)
            }
        }
    }
}

impl Drop for KeyHandle {
    fn drop(&mut self) {
        match self {
            KeyHandle::NCrypt(ncrypt_handle) => unsafe {
                let _ = NCryptFreeObject(*ncrypt_handle);
            },
            KeyHandle::CryptoAPI(hcryptprov, _) => unsafe {
                let _ = CryptReleaseContext(*hcryptprov, 0);
            },
        }
    }
}

fn sign_ncrypt(
    ncrypt_handle: &NCRYPT_KEY_HANDLE,
    data: &[u8],
    params: &Option<CK_RSA_PKCS_PSS_PARAMS>,
    do_signature: bool,
    key_type: KeyType,
) -> Result<Vec<u8>, ()> {
    let mut sign_params = SignParams::new(key_type, params)?;
    let params_ptr = sign_params.params_ptr();
    let flags = sign_params.flags();
    let mut data = data.to_vec();
    let mut signature_len = 0;
    // We call NCryptSignHash twice: the first time to get the size of the buffer we need to
    // allocate and then again to actually sign the data, if `do_signature` is `true`.
    let status = unsafe {
        NCryptSignHash(
            *ncrypt_handle,
            params_ptr,
            data.as_mut_ptr(),
            data.len().try_into().map_err(|_| ())?,
            std::ptr::null_mut(),
            0,
            &mut signature_len,
            flags,
        )
    };
    // 0 is "ERROR_SUCCESS" (but "ERROR_SUCCESS" is unsigned, whereas SECURITY_STATUS is signed)
    if status != 0 {
        error!(
            "NCryptSignHash failed trying to get signature buffer length, {}",
            status
        );
        return Err(());
    }
    let mut signature = vec![0; signature_len as usize];
    if !do_signature {
        return Ok(signature);
    }
    let mut final_signature_len = signature_len;
    let status = unsafe {
        NCryptSignHash(
            *ncrypt_handle,
            params_ptr,
            data.as_mut_ptr(),
            data.len().try_into().map_err(|_| ())?,
            signature.as_mut_ptr(),
            signature_len,
            &mut final_signature_len,
            flags,
        )
    };
    if status != 0 {
        error!("NCryptSignHash failed signing data {}", status);
        return Err(());
    }
    if final_signature_len != signature_len {
        error!(
            "NCryptSignHash: inconsistent signature lengths? {} != {}",
            final_signature_len, signature_len
        );
        return Err(());
    }
    Ok(signature)
}

fn sign_cryptoapi(
    hcryptprov: &HCRYPTPROV,
    key_spec: &DWORD,
    data: &[u8],
    params: &Option<CK_RSA_PKCS_PSS_PARAMS>,
    do_signature: bool,
) -> Result<Vec<u8>, ()> {
    if params.is_some() {
        error!("non-None signature params cannot be used with CryptoAPI");
        return Err(());
    }
    // data will be an encoded DigestInfo, which specifies the hash algorithm and bytes of the hash
    // to sign. However, CryptoAPI requires directly specifying the bytes of the hash, so it must
    // be extracted first.
    let hash_bytes = read_digest(data)?;
    let hash = HCryptHash::new(hcryptprov, hash_bytes)?;
    let mut signature_len = 0;
    if unsafe {
        CryptSignHashW(
            *hash,
            *key_spec,
            std::ptr::null_mut(),
            0,
            std::ptr::null_mut(),
            &mut signature_len,
        )
    } != 1
    {
        error!(
            "CryptSignHash failed trying to get signature buffer length: 0x{:x}",
            unsafe { GetLastError() }
        );
        return Err(());
    }
    let mut signature = vec![0; signature_len as usize];
    if !do_signature {
        return Ok(signature);
    }
    let mut final_signature_len = signature_len;
    if unsafe {
        CryptSignHashW(
            *hash,
            *key_spec,
            std::ptr::null_mut(),
            0,
            signature.as_mut_ptr(),
            &mut final_signature_len,
        )
    } != 1
    {
        error!("CryptSignHash failed signing data: 0x{:x}", unsafe {
            GetLastError()
        });
        return Err(());
    }
    if final_signature_len != signature_len {
        error!(
            "CryptSignHash: inconsistent signature lengths? {} != {}",
            final_signature_len, signature_len
        );
        return Err(());
    }
    // CryptoAPI returns the signature with the most significant byte last (little-endian),
    // whereas PKCS#11 expects the most significant byte first (big-endian).
    signature.reverse();
    Ok(signature)
}

struct HCryptHash(HCRYPTHASH);

impl HCryptHash {
    fn new(hcryptprov: &HCRYPTPROV, hash_bytes: &[u8]) -> Result<HCryptHash, ()> {
        let alg = match hash_bytes.len() {
            20 => CALG_SHA1,
            32 => CALG_SHA_256,
            48 => CALG_SHA_384,
            64 => CALG_SHA_512,
            _ => {
                error!(
                    "HCryptHash::new: invalid hash of length {}",
                    hash_bytes.len()
                );
                return Err(());
            }
        };
        let mut hash: HCRYPTHASH = 0;
        if unsafe { CryptCreateHash(*hcryptprov, alg, 0, 0, &mut hash) } != 1 {
            error!("CryptCreateHash failed: 0x{:x}", unsafe { GetLastError() });
            return Err(());
        }
        if unsafe { CryptSetHashParam(hash, HP_HASHVAL, hash_bytes.as_ptr(), 0) } != 1 {
            error!("CryptSetHashParam failed: 0x{:x}", unsafe {
                GetLastError()
            });
            return Err(());
        }
        Ok(HCryptHash(hash))
    }
}

impl Drop for HCryptHash {
    fn drop(&mut self) {
        unsafe {
            CryptDestroyHash(self.0);
        }
    }
}

impl Deref for HCryptHash {
    type Target = HCRYPTHASH;

    fn deref(&self) -> &Self::Target {
        &self.0
    }
}

// In some cases, the ncrypt API takes a pointer to a null-terminated wide-character string as a way
// of specifying an algorithm. The "right" way to do this would be to take the corresponding
// &'static str constant provided by the winapi crate, create an OsString from it, encode it as wide
// characters, and collect it into a Vec<u16>. However, since the implementation that provides this
// functionality isn't constant, we would have to manage the memory this creates and uses. Since
// rust structures generally can't be self-referrential, this memory would have to live elsewhere,
// and the nice abstractions we've created for this implementation start to break down. It's much
// simpler to hard-code the identifiers we support, since there are only four of them.
// The following arrays represent the identifiers "SHA1", "SHA256", "SHA384", and "SHA512",
// respectively.
const SHA1_ALGORITHM_STRING: &[u16] = &[83, 72, 65, 49, 0];
const SHA256_ALGORITHM_STRING: &[u16] = &[83, 72, 65, 50, 53, 54, 0];
const SHA384_ALGORITHM_STRING: &[u16] = &[83, 72, 65, 51, 56, 52, 0];
const SHA512_ALGORITHM_STRING: &[u16] = &[83, 72, 65, 53, 49, 50, 0];

enum SignParams {
    EC,
    RSA_PKCS1(BCRYPT_PKCS1_PADDING_INFO),
    RSA_PSS(BCRYPT_PSS_PADDING_INFO),
}

impl SignParams {
    fn new(key_type: KeyType, params: &Option<CK_RSA_PKCS_PSS_PARAMS>) -> Result<SignParams, ()> {
        // EC is easy, so handle that first.
        match key_type {
            KeyType::EC => return Ok(SignParams::EC),
            KeyType::RSA => {}
        }
        // If `params` is `Some`, we're doing RSA-PSS. If it is `None`, we're doing RSA-PKCS1.
        let pss_params = match params {
            Some(pss_params) => pss_params,
            None => {
                // The hash algorithm should be encoded in the data to be signed, so we don't have to
                // (and don't want to) specify a particular algorithm here.
                return Ok(SignParams::RSA_PKCS1(BCRYPT_PKCS1_PADDING_INFO {
                    pszAlgId: std::ptr::null(),
                }));
            }
        };
        let algorithm_string = match pss_params.hashAlg {
            CKM_SHA_1 => SHA1_ALGORITHM_STRING,
            CKM_SHA256 => SHA256_ALGORITHM_STRING,
            CKM_SHA384 => SHA384_ALGORITHM_STRING,
            CKM_SHA512 => SHA512_ALGORITHM_STRING,
            _ => {
                error!(
                    "unsupported algorithm to use with RSA-PSS: {}",
                    unsafe_packed_field_access!(pss_params.hashAlg)
                );
                return Err(());
            }
        };
        Ok(SignParams::RSA_PSS(BCRYPT_PSS_PADDING_INFO {
            pszAlgId: algorithm_string.as_ptr(),
            cbSalt: pss_params.sLen,
        }))
    }

    fn params_ptr(&mut self) -> *mut std::ffi::c_void {
        match self {
            SignParams::EC => std::ptr::null_mut(),
            SignParams::RSA_PKCS1(params) => {
                params as *mut BCRYPT_PKCS1_PADDING_INFO as *mut std::ffi::c_void
            }
            SignParams::RSA_PSS(params) => {
                params as *mut BCRYPT_PSS_PADDING_INFO as *mut std::ffi::c_void
            }
        }
    }

    fn flags(&self) -> u32 {
        match self {
            &SignParams::EC => 0,
            &SignParams::RSA_PKCS1(_) => NCRYPT_PAD_PKCS1_FLAG,
            &SignParams::RSA_PSS(_) => NCRYPT_PAD_PSS_FLAG,
        }
    }
}

/// A helper enum to identify a private key's type. We support EC and RSA.
#[derive(Clone, Copy, Debug)]
pub enum KeyType {
    EC,
    RSA,
}

/// Represents a private key for which there exists a corresponding certificate.
pub struct Key {
    /// A handle on the OS mechanism that represents the certificate for this key.
    cert: CertContext,
    /// PKCS #11 object class. Will be `CKO_PRIVATE_KEY`.
    class: Vec<u8>,
    /// Whether or not this is on a token. Will be `CK_TRUE`.
    token: Vec<u8>,
    /// An identifier unique to this key. Must be the same as the ID for the certificate.
    id: Vec<u8>,
    /// Whether or not this key is "private" (can it be exported?). Will be CK_TRUE (it can't be
    /// exported).
    private: Vec<u8>,
    /// PKCS #11 key type. Will be `CKK_EC` for EC, and `CKK_RSA` for RSA.
    key_type: Vec<u8>,
    /// If this is an RSA key, this is the value of the modulus as an unsigned integer.
    modulus: Option<Vec<u8>>,
    /// If this is an EC key, this is the DER bytes of the OID identifying the curve the key is on.
    ec_params: Option<Vec<u8>>,
    /// An enum identifying this key's type.
    key_type_enum: KeyType,
    /// Which slot this key should be exposed on.
    slot_type: SlotType,
}

impl Key {
    fn new(cert_context: PCCERT_CONTEXT) -> Result<Key, ()> {
        let cert = unsafe { *cert_context };
        let cert_der =
            unsafe { slice::from_raw_parts(cert.pbCertEncoded, cert.cbCertEncoded as usize) };
        let id = Sha256::digest(cert_der).to_vec();
        let id = id.to_vec();
        let cert_info = unsafe { &*cert.pCertInfo };
        let mut modulus = None;
        let mut ec_params = None;
        let spki = &cert_info.SubjectPublicKeyInfo;
        let algorithm_oid = unsafe { CStr::from_ptr(spki.Algorithm.pszObjId) }
            .to_str()
            .map_err(|_| ())?;
        let (key_type_enum, key_type_attribute) = if algorithm_oid == szOID_RSA_RSA {
            if spki.PublicKey.cUnusedBits != 0 {
                return Err(());
            }
            let public_key_bytes = unsafe {
                std::slice::from_raw_parts(spki.PublicKey.pbData, spki.PublicKey.cbData as usize)
            };
            let modulus_value = read_rsa_modulus(public_key_bytes)?;
            modulus = Some(modulus_value);
            (KeyType::RSA, CKK_RSA)
        } else if algorithm_oid == szOID_ECC_PUBLIC_KEY {
            let params = &spki.Algorithm.Parameters;
            ec_params = Some(
                unsafe { std::slice::from_raw_parts(params.pbData, params.cbData as usize) }
                    .to_vec(),
            );
            (KeyType::EC, CKK_EC)
        } else {
            return Err(());
        };
        let cert = CertContext::new(cert_context);
        Ok(Key {
            cert,
            class: serialize_uint(CKO_PRIVATE_KEY)?,
            token: serialize_uint(CK_TRUE)?,
            id,
            private: serialize_uint(CK_TRUE)?,
            key_type: serialize_uint(key_type_attribute)?,
            modulus,
            ec_params,
            key_type_enum,
            slot_type: SlotType::Modern,
        })
    }

    fn class(&self) -> &[u8] {
        &self.class
    }

    fn token(&self) -> &[u8] {
        &self.token
    }

    pub fn id(&self) -> &[u8] {
        &self.id
    }

    fn private(&self) -> &[u8] {
        &self.private
    }

    fn key_type(&self) -> &[u8] {
        &self.key_type
    }

    fn modulus(&self) -> Option<&[u8]> {
        match &self.modulus {
            Some(modulus) => Some(modulus.as_slice()),
            None => None,
        }
    }

    fn ec_params(&self) -> Option<&[u8]> {
        match &self.ec_params {
            Some(ec_params) => Some(ec_params.as_slice()),
            None => None,
        }
    }

    fn matches(&self, slot_type: SlotType, attrs: &[(CK_ATTRIBUTE_TYPE, Vec<u8>)]) -> bool {
        if slot_type != self.slot_type {
            return false;
        }
        for (attr_type, attr_value) in attrs {
            let comparison = match *attr_type {
                CKA_CLASS => self.class(),
                CKA_TOKEN => self.token(),
                CKA_ID => self.id(),
                CKA_PRIVATE => self.private(),
                CKA_KEY_TYPE => self.key_type(),
                CKA_MODULUS => {
                    if let Some(modulus) = self.modulus() {
                        modulus
                    } else {
                        return false;
                    }
                }
                CKA_EC_PARAMS => {
                    if let Some(ec_params) = self.ec_params() {
                        ec_params
                    } else {
                        return false;
                    }
                }
                _ => return false,
            };
            if attr_value.as_slice() != comparison {
                return false;
            }
        }
        true
    }

    fn get_attribute(&self, attribute: CK_ATTRIBUTE_TYPE) -> Option<&[u8]> {
        match attribute {
            CKA_CLASS => Some(self.class()),
            CKA_TOKEN => Some(self.token()),
            CKA_ID => Some(self.id()),
            CKA_PRIVATE => Some(self.private()),
            CKA_KEY_TYPE => Some(self.key_type()),
            CKA_MODULUS => self.modulus(),
            CKA_EC_PARAMS => self.ec_params(),
            _ => None,
        }
    }

    pub fn get_signature_length(
        &self,
        data: &[u8],
        params: &Option<CK_RSA_PKCS_PSS_PARAMS>,
    ) -> Result<usize, ()> {
        match self.sign_internal(data, params, false) {
            Ok(dummy_signature_bytes) => Ok(dummy_signature_bytes.len()),
            Err(()) => Err(()),
        }
    }

    pub fn sign(
        &self,
        data: &[u8],
        params: &Option<CK_RSA_PKCS_PSS_PARAMS>,
    ) -> Result<Vec<u8>, ()> {
        self.sign_internal(data, params, true)
    }

    /// data: the data to sign
    /// do_signature: if true, actually perform the signature. Otherwise, return a `Vec<u8>` of the
    /// length the signature would be, if performed.
    fn sign_internal(
        &self,
        data: &[u8],
        params: &Option<CK_RSA_PKCS_PSS_PARAMS>,
        do_signature: bool,
    ) -> Result<Vec<u8>, ()> {
        // Acquiring a handle on the key can cause the OS to show some UI to the user, so we do this
        // as late as possible (i.e. here).
        let key = KeyHandle::from_cert(&self.cert)?;
        key.sign(data, params, do_signature, self.key_type_enum)
    }
}

/// A helper enum that represents the two types of PKCS #11 objects we support: certificates and
/// keys.
pub enum Object {
    Cert(Cert),
    Key(Key),
}

impl Object {
    pub fn matches(&self, slot_type: SlotType, attrs: &[(CK_ATTRIBUTE_TYPE, Vec<u8>)]) -> bool {
        match self {
            Object::Cert(cert) => cert.matches(slot_type, attrs),
            Object::Key(key) => key.matches(slot_type, attrs),
        }
    }

    pub fn get_attribute(&self, attribute: CK_ATTRIBUTE_TYPE) -> Option<&[u8]> {
        match self {
            Object::Cert(cert) => cert.get_attribute(attribute),
            Object::Key(key) => key.get_attribute(attribute),
        }
    }
}

struct CertStore {
    handle: HCERTSTORE,
}

impl Drop for CertStore {
    fn drop(&mut self) {
        if !self.handle.is_null() {
            unsafe {
                CertCloseStore(self.handle, 0);
            }
        }
    }
}

impl Deref for CertStore {
    type Target = HCERTSTORE;

    fn deref(&self) -> &Self::Target {
        &self.handle
    }
}

impl CertStore {
    fn new(handle: HCERTSTORE) -> CertStore {
        CertStore { handle }
    }
}

pub const SUPPORTED_ATTRIBUTES: &[CK_ATTRIBUTE_TYPE] = &[
    CKA_CLASS,
    CKA_TOKEN,
    CKA_LABEL,
    CKA_ID,
    CKA_VALUE,
    CKA_ISSUER,
    CKA_SERIAL_NUMBER,
    CKA_SUBJECT,
    CKA_PRIVATE,
    CKA_KEY_TYPE,
    CKA_MODULUS,
    CKA_EC_PARAMS,
];

// Given a pointer to a CERT_CHAIN_CONTEXT, enumerates each chain in the context and each element
// in each chain to gather every CERT_CONTEXT pointed to by the CERT_CHAIN_CONTEXT.
// https://docs.microsoft.com/en-us/windows/win32/api/wincrypt/ns-wincrypt-cert_chain_context says
// that the 0th element of the 0th chain will be the end-entity certificate. This certificate (if
// present), will be the 0th element of the returned Vec.
fn gather_cert_contexts(cert_chain_context: *const CERT_CHAIN_CONTEXT) -> Vec<*const CERT_CONTEXT> {
    let mut cert_contexts = Vec::new();
    if cert_chain_context.is_null() {
        return cert_contexts;
    }
    let cert_chain_context = unsafe { &*cert_chain_context };
    let cert_chains = unsafe {
        std::slice::from_raw_parts(
            cert_chain_context.rgpChain,
            cert_chain_context.cChain as usize,
        )
    };
    for cert_chain in cert_chains {
        // First dereference the borrow.
        let cert_chain = *cert_chain;
        if cert_chain.is_null() {
            continue;
        }
        // Then dereference the pointer.
        let cert_chain = unsafe { &*cert_chain };
        let chain_elements = unsafe {
            std::slice::from_raw_parts(cert_chain.rgpElement, cert_chain.cElement as usize)
        };
        for chain_element in chain_elements {
            let chain_element = *chain_element; // dereference borrow
            if chain_element.is_null() {
                continue;
            }
            let chain_element = unsafe { &*chain_element }; // dereference pointer
            cert_contexts.push(chain_element.pCertContext);
        }
    }
    cert_contexts
}

/// Attempts to enumerate certificates with private keys exposed by the OS. Currently only looks in
/// the "My" cert store of the current user. In the future this may look in more locations.
pub fn list_objects() -> Vec<Object> {
    let mut objects = Vec::new();
    let location_flags = CERT_SYSTEM_STORE_CURRENT_USER // TODO: loop over multiple locations
        | CERT_STORE_OPEN_EXISTING_FLAG
        | CERT_STORE_READONLY_FLAG;
    let store_name = match CString::new("My") {
        Ok(store_name) => store_name,
        Err(null_error) => {
            error!("CString::new given input with a null byte: {}", null_error);
            return objects;
        }
    };
    let store = CertStore::new(unsafe {
        CertOpenStore(
            CERT_STORE_PROV_SYSTEM_REGISTRY_A,
            0,
            0,
            location_flags,
            store_name.as_ptr() as *const winapi::ctypes::c_void,
        )
    });
    if store.is_null() {
        error!("CertOpenStore failed");
        return objects;
    }
    let find_params = CERT_CHAIN_FIND_ISSUER_PARA {
        cbSize: std::mem::size_of::<CERT_CHAIN_FIND_ISSUER_PARA>() as u32,
        pszUsageIdentifier: std::ptr::null(),
        dwKeySpec: 0,
        dwAcquirePrivateKeyFlags: 0,
        cIssuer: 0,
        rgIssuer: std::ptr::null_mut(),
        pfnFindCallback: None,
        pvFindArg: std::ptr::null_mut(),
        pdwIssuerChainIndex: std::ptr::null_mut(),
        pdwIssuerElementIndex: std::ptr::null_mut(),
    };
    let mut cert_chain_context: PCCERT_CHAIN_CONTEXT = std::ptr::null_mut();
    loop {
        // CertFindChainInStore finds all certificates with private keys in the store. It also
        // attempts to build a verified certificate chain to a trust anchor for each certificate.
        // We gather and hold onto these extra certificates so that gecko can use them when
        // filtering potential client certificates according to the acceptable CAs list sent by
        // servers when they request client certificates.
        cert_chain_context = unsafe {
            CertFindChainInStore(
                *store,
                X509_ASN_ENCODING,
                CERT_CHAIN_FIND_BY_ISSUER_CACHE_ONLY_FLAG
                    | CERT_CHAIN_FIND_BY_ISSUER_CACHE_ONLY_URL_FLAG,
                CERT_CHAIN_FIND_BY_ISSUER,
                &find_params as *const CERT_CHAIN_FIND_ISSUER_PARA as *const winapi::ctypes::c_void,
                cert_chain_context,
            )
        };
        if cert_chain_context.is_null() {
            break;
        }
        let cert_contexts = gather_cert_contexts(cert_chain_context);
        // The 0th CERT_CONTEXT is the end-entity (i.e. the certificate with the private key we're
        // after).
        match cert_contexts.get(0) {
            Some(cert_context) => {
                let key = match Key::new(*cert_context) {
                    Ok(key) => key,
                    Err(()) => continue,
                };
                let cert = match Cert::new(*cert_context) {
                    Ok(cert) => cert,
                    Err(()) => continue,
                };
                objects.push(Object::Cert(cert));
                objects.push(Object::Key(key));
            }
            None => {}
        };
        for cert_context in cert_contexts.iter().skip(1) {
            if let Ok(cert) = Cert::new(*cert_context) {
                objects.push(Object::Cert(cert));
            }
        }
    }
    objects
}