1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
|
use crate::{is_zero, Line, Plane};
use euclid::{approxeq::ApproxEq, default::Point2D, Point3D, Rect, Transform3D, Trig, Vector3D};
use num_traits::{Float, One, Zero};
use std::{fmt, iter, mem, ops};
/// The projection of a `Polygon` on a line.
pub struct LineProjection<T> {
/// Projected value of each point in the polygon.
pub markers: [T; 4],
}
impl<T> LineProjection<T>
where
T: Copy + PartialOrd + ops::Sub<T, Output = T> + ops::Add<T, Output = T>,
{
/// Get the min/max of the line projection markers.
pub fn get_bounds(&self) -> (T, T) {
let (mut a, mut b, mut c, mut d) = (
self.markers[0],
self.markers[1],
self.markers[2],
self.markers[3],
);
// bitonic sort of 4 elements
// we could not just use `min/max` since they require `Ord` bound
//TODO: make it nicer
if a > c {
mem::swap(&mut a, &mut c);
}
if b > d {
mem::swap(&mut b, &mut d);
}
if a > b {
mem::swap(&mut a, &mut b);
}
if c > d {
mem::swap(&mut c, &mut d);
}
if b > c {
mem::swap(&mut b, &mut c);
}
debug_assert!(a <= b && b <= c && c <= d);
(a, d)
}
/// Check intersection with another line projection.
pub fn intersect(&self, other: &Self) -> bool {
// compute the bounds of both line projections
let span = self.get_bounds();
let other_span = other.get_bounds();
// compute the total footprint
let left = if span.0 < other_span.0 {
span.0
} else {
other_span.0
};
let right = if span.1 > other_span.1 {
span.1
} else {
other_span.1
};
// they intersect if the footprint is smaller than the sum
right - left < span.1 - span.0 + other_span.1 - other_span.0
}
}
/// Polygon intersection results.
pub enum Intersection<T> {
/// Polygons are coplanar, including the case of being on the same plane.
Coplanar,
/// Polygon planes are intersecting, but polygons are not.
Outside,
/// Polygons are actually intersecting.
Inside(T),
}
impl<T> Intersection<T> {
/// Return true if the intersection is completely outside.
pub fn is_outside(&self) -> bool {
match *self {
Intersection::Outside => true,
_ => false,
}
}
/// Return true if the intersection cuts the source polygon.
pub fn is_inside(&self) -> bool {
match *self {
Intersection::Inside(_) => true,
_ => false,
}
}
}
/// A convex polygon with 4 points lying on a plane.
#[derive(Debug, PartialEq)]
pub struct Polygon<T, U, A> {
/// Points making the polygon.
pub points: [Point3D<T, U>; 4],
/// A plane describing polygon orientation.
pub plane: Plane<T, U>,
/// A simple anchoring index to allow association of the
/// produced split polygons with the original one.
pub anchor: A,
}
impl<T: Clone, U, A: Copy> Clone for Polygon<T, U, A> {
fn clone(&self) -> Self {
Polygon {
points: [
self.points[0].clone(),
self.points[1].clone(),
self.points[2].clone(),
self.points[3].clone(),
],
plane: self.plane.clone(),
anchor: self.anchor,
}
}
}
impl<T, U, A> Polygon<T, U, A>
where
T: Copy
+ fmt::Debug
+ ApproxEq<T>
+ ops::Sub<T, Output = T>
+ ops::Add<T, Output = T>
+ ops::Mul<T, Output = T>
+ ops::Div<T, Output = T>
+ Zero
+ One
+ Float,
U: fmt::Debug,
A: Copy,
{
/// Construct a polygon from points that are already transformed.
/// Return None if the polygon doesn't contain any space.
pub fn from_points(points: [Point3D<T, U>; 4], anchor: A) -> Option<Self> {
let edge1 = points[1] - points[0];
let edge2 = points[2] - points[0];
let edge3 = points[3] - points[0];
let edge4 = points[3] - points[1];
if edge2.square_length() < T::epsilon() || edge4.square_length() < T::epsilon() {
return None;
}
// one of them can be zero for redundant polygons produced by plane splitting
//Note: this would be nicer if we used triangles instead of quads in the first place...
// see https://github.com/servo/plane-split/issues/17
let normal_rough1 = edge1.cross(edge2);
let normal_rough2 = edge2.cross(edge3);
let square_length1 = normal_rough1.square_length();
let square_length2 = normal_rough2.square_length();
let normal = if square_length1 > square_length2 {
normal_rough1 / square_length1.sqrt()
} else {
normal_rough2 / square_length2.sqrt()
};
let offset = -points[0].to_vector().dot(normal);
Some(Polygon {
points,
plane: Plane { normal, offset },
anchor,
})
}
/// Construct a polygon from a non-transformed rectangle.
pub fn from_rect(rect: Rect<T, U>, anchor: A) -> Self {
let min = rect.min();
let max = rect.max();
let _0 = T::zero();
Polygon {
points: [
min.to_3d(),
Point3D::new(max.x, min.y, _0),
max.to_3d(),
Point3D::new(min.x, max.y, _0),
],
plane: Plane {
normal: Vector3D::new(T::zero(), T::zero(), T::one()),
offset: T::zero(),
},
anchor,
}
}
/// Construct a polygon from a rectangle with 3D transform.
pub fn from_transformed_rect<V>(
rect: Rect<T, V>,
transform: Transform3D<T, V, U>,
anchor: A,
) -> Option<Self>
where
T: Trig + ops::Neg<Output = T>,
{
let min = rect.min();
let max = rect.max();
let _0 = T::zero();
let points = [
transform.transform_point3d(min.to_3d())?,
transform.transform_point3d(Point3D::new(max.x, min.y, _0))?,
transform.transform_point3d(max.to_3d())?,
transform.transform_point3d(Point3D::new(min.x, max.y, _0))?,
];
Self::from_points(points, anchor)
}
/// Construct a polygon from a rectangle with an invertible 3D transform.
pub fn from_transformed_rect_with_inverse<V>(
rect: Rect<T, V>,
transform: &Transform3D<T, V, U>,
inv_transform: &Transform3D<T, U, V>,
anchor: A,
) -> Option<Self>
where
T: Trig + ops::Neg<Output = T>,
{
let min = rect.min();
let max = rect.max();
let _0 = T::zero();
let points = [
transform.transform_point3d(min.to_3d())?,
transform.transform_point3d(Point3D::new(max.x, min.y, _0))?,
transform.transform_point3d(max.to_3d())?,
transform.transform_point3d(Point3D::new(min.x, max.y, _0))?,
];
// Compute the normal directly from the transformation. This guarantees consistent polygons
// generated from various local rectanges on the same geometry plane.
let normal_raw = Vector3D::new(inv_transform.m13, inv_transform.m23, inv_transform.m33);
let normal_sql = normal_raw.square_length();
if normal_sql.approx_eq(&T::zero()) || transform.m44.approx_eq(&T::zero()) {
None
} else {
let normal = normal_raw / normal_sql.sqrt();
let offset = -Vector3D::new(transform.m41, transform.m42, transform.m43).dot(normal)
/ transform.m44;
Some(Polygon {
points,
plane: Plane { normal, offset },
anchor,
})
}
}
/// Bring a point into the local coordinate space, returning
/// the 2D normalized coordinates.
pub fn untransform_point(&self, point: Point3D<T, U>) -> Point2D<T> {
//debug_assert!(self.contains(point));
// get axises and target vector
let a = self.points[1] - self.points[0];
let b = self.points[3] - self.points[0];
let c = point - self.points[0];
// get pair-wise dot products
let a2 = a.dot(a);
let ab = a.dot(b);
let b2 = b.dot(b);
let ca = c.dot(a);
let cb = c.dot(b);
// compute the final coordinates
let denom = ab * ab - a2 * b2;
let x = ab * cb - b2 * ca;
let y = ab * ca - a2 * cb;
Point2D::new(x, y) / denom
}
/// Transform a polygon by an affine transform (preserving straight lines).
pub fn transform<V>(&self, transform: &Transform3D<T, U, V>) -> Option<Polygon<T, V, A>>
where
T: Trig,
V: fmt::Debug,
{
let mut points = [Point3D::origin(); 4];
for (out, point) in points.iter_mut().zip(self.points.iter()) {
let mut homo = transform.transform_point3d_homogeneous(*point);
homo.w = homo.w.max(T::approx_epsilon());
*out = homo.to_point3d()?;
}
//Note: this code path could be more efficient if we had inverse-transpose
//let n4 = transform.transform_point4d(&Point4D::new(T::zero(), T::zero(), T::one(), T::zero()));
//let normal = Point3D::new(n4.x, n4.y, n4.z);
Polygon::from_points(points, self.anchor)
}
/// Check if all the points are indeed placed on the plane defined by
/// the normal and offset, and the winding order is consistent.
pub fn is_valid(&self) -> bool {
let is_planar = self
.points
.iter()
.all(|p| is_zero(self.plane.signed_distance_to(p)));
let edges = [
self.points[1] - self.points[0],
self.points[2] - self.points[1],
self.points[3] - self.points[2],
self.points[0] - self.points[3],
];
let anchor = edges[3].cross(edges[0]);
let is_winding = edges
.iter()
.zip(edges[1..].iter())
.all(|(a, &b)| a.cross(b).dot(anchor) >= T::zero());
is_planar && is_winding
}
/// Check if the polygon doesn't contain any space. This may happen
/// after a sequence of splits, and such polygons should be discarded.
pub fn is_empty(&self) -> bool {
(self.points[0] - self.points[2]).square_length() < T::epsilon()
|| (self.points[1] - self.points[3]).square_length() < T::epsilon()
}
/// Check if this polygon contains another one.
pub fn contains(&self, other: &Self) -> bool {
//TODO: actually check for inside/outside
self.plane.contains(&other.plane)
}
/// Project this polygon onto a 3D vector, returning a line projection.
/// Note: we can think of it as a projection to a ray placed at the origin.
pub fn project_on(&self, vector: &Vector3D<T, U>) -> LineProjection<T> {
LineProjection {
markers: [
vector.dot(self.points[0].to_vector()),
vector.dot(self.points[1].to_vector()),
vector.dot(self.points[2].to_vector()),
vector.dot(self.points[3].to_vector()),
],
}
}
/// Compute the line of intersection with an infinite plane.
pub fn intersect_plane(&self, other: &Plane<T, U>) -> Intersection<Line<T, U>> {
if other.are_outside(&self.points) {
log::debug!("\t\tOutside of the plane");
return Intersection::Outside;
}
match self.plane.intersect(&other) {
Some(line) => Intersection::Inside(line),
None => {
log::debug!("\t\tCoplanar");
Intersection::Coplanar
}
}
}
/// Compute the line of intersection with another polygon.
pub fn intersect(&self, other: &Self) -> Intersection<Line<T, U>> {
if self.plane.are_outside(&other.points) || other.plane.are_outside(&self.points) {
log::debug!("\t\tOne is completely outside of the other");
return Intersection::Outside;
}
match self.plane.intersect(&other.plane) {
Some(line) => {
let self_proj = self.project_on(&line.dir);
let other_proj = other.project_on(&line.dir);
if self_proj.intersect(&other_proj) {
Intersection::Inside(line)
} else {
// projections on the line don't intersect
log::debug!("\t\tProjection is outside");
Intersection::Outside
}
}
None => {
log::debug!("\t\tCoplanar");
Intersection::Coplanar
}
}
}
fn split_impl(
&mut self,
first: (usize, Point3D<T, U>),
second: (usize, Point3D<T, U>),
) -> (Option<Self>, Option<Self>) {
//TODO: can be optimized for when the polygon has a redundant 4th vertex
//TODO: can be simplified greatly if only working with triangles
log::debug!("\t\tReached complex case [{}, {}]", first.0, second.0);
let base = first.0;
assert!(base < self.points.len());
match second.0 - first.0 {
1 => {
// rect between the cut at the diagonal
let other1 = Polygon {
points: [
first.1,
second.1,
self.points[(base + 2) & 3],
self.points[base],
],
..self.clone()
};
// triangle on the near side of the diagonal
let other2 = Polygon {
points: [
self.points[(base + 2) & 3],
self.points[(base + 3) & 3],
self.points[base],
self.points[base],
],
..self.clone()
};
// triangle being cut out
self.points = [first.1, self.points[(base + 1) & 3], second.1, second.1];
(Some(other1), Some(other2))
}
2 => {
// rect on the far side
let other = Polygon {
points: [
first.1,
self.points[(base + 1) & 3],
self.points[(base + 2) & 3],
second.1,
],
..self.clone()
};
// rect on the near side
self.points = [
first.1,
second.1,
self.points[(base + 3) & 3],
self.points[base],
];
(Some(other), None)
}
3 => {
// rect between the cut at the diagonal
let other1 = Polygon {
points: [
first.1,
self.points[(base + 1) & 3],
self.points[(base + 3) & 3],
second.1,
],
..self.clone()
};
// triangle on the far side of the diagonal
let other2 = Polygon {
points: [
self.points[(base + 1) & 3],
self.points[(base + 2) & 3],
self.points[(base + 3) & 3],
self.points[(base + 3) & 3],
],
..self.clone()
};
// triangle being cut out
self.points = [first.1, second.1, self.points[base], self.points[base]];
(Some(other1), Some(other2))
}
_ => panic!("Unexpected indices {} {}", first.0, second.0),
}
}
/// Split the polygon along the specified `Line`.
/// Will do nothing if the line doesn't belong to the polygon plane.
#[deprecated(note = "Use split_with_normal instead")]
pub fn split(&mut self, line: &Line<T, U>) -> (Option<Self>, Option<Self>) {
log::debug!("\tSplitting");
// check if the cut is within the polygon plane first
if !is_zero(self.plane.normal.dot(line.dir))
|| !is_zero(self.plane.signed_distance_to(&line.origin))
{
log::debug!(
"\t\tDoes not belong to the plane, normal dot={:?}, origin distance={:?}",
self.plane.normal.dot(line.dir),
self.plane.signed_distance_to(&line.origin)
);
return (None, None);
}
// compute the intersection points for each edge
let mut cuts = [None; 4];
for ((&b, &a), cut) in self
.points
.iter()
.cycle()
.skip(1)
.zip(self.points.iter())
.zip(cuts.iter_mut())
{
if let Some(t) = line.intersect_edge(a..b) {
if t >= T::zero() && t < T::one() {
*cut = Some(a + (b - a) * t);
}
}
}
let first = match cuts.iter().position(|c| c.is_some()) {
Some(pos) => pos,
None => return (None, None),
};
let second = match cuts[first + 1..].iter().position(|c| c.is_some()) {
Some(pos) => first + 1 + pos,
None => return (None, None),
};
self.split_impl(
(first, cuts[first].unwrap()),
(second, cuts[second].unwrap()),
)
}
/// Split the polygon along the specified `Line`, with a normal to the split line provided.
/// This is useful when called by the plane splitter, since the other plane's normal
/// forms the side direction here, and figuring out the actual line of split isn't needed.
/// Will do nothing if the line doesn't belong to the polygon plane.
pub fn split_with_normal(
&mut self,
line: &Line<T, U>,
normal: &Vector3D<T, U>,
) -> (Option<Self>, Option<Self>) {
log::debug!("\tSplitting with normal");
// figure out which side of the split does each point belong to
let mut sides = [T::zero(); 4];
let (mut cut_positive, mut cut_negative) = (None, None);
for (side, point) in sides.iter_mut().zip(&self.points) {
*side = normal.dot(*point - line.origin);
}
// compute the edge intersection points
for (i, ((&side1, point1), (&side0, point0))) in sides[1..]
.iter()
.chain(iter::once(&sides[0]))
.zip(self.points[1..].iter().chain(iter::once(&self.points[0])))
.zip(sides.iter().zip(&self.points))
.enumerate()
{
// figure out if an edge between 0 and 1 needs to be cut
let cut = if side0 < T::zero() && side1 >= T::zero() {
&mut cut_positive
} else if side0 > T::zero() && side1 <= T::zero() {
&mut cut_negative
} else {
continue;
};
// compute the cut point by weighting the opposite distances
//
// Note: this algorithm is designed to not favor one end of the edge over the other.
// The previous approach of calling `intersect_edge` sometimes ended up with "t" ever
// slightly outside of [0, 1] range, since it was computing it relative to the first point only.
//
// Given that we are intersecting two straight lines, the triangles on both
// sides of intersection are alike, so distances along the [point0, point1] line
// are proportional to the side vector lengths we just computed: (side0, side1).
let point =
(*point0 * side1.abs() + point1.to_vector() * side0.abs()) / (side0 - side1).abs();
if cut.is_some() {
// We don't expect that the direction changes more than once, unless
// the polygon is close to redundant, and we hit precision issues when
// computing the sides.
log::warn!("Splitting failed due to precision issues: {:?}", sides);
break;
}
*cut = Some((i, point));
}
// form new polygons
if let (Some(first), Some(mut second)) = (cut_positive, cut_negative) {
if second.0 < first.0 {
second.0 += 4;
}
self.split_impl(first, second)
} else {
(None, None)
}
}
}
#[test]
fn test_split_precision() {
// regression test for https://bugzilla.mozilla.org/show_bug.cgi?id=1678454
let mut polygon = Polygon::<_, (), ()> {
points: [
Point3D::new(300.0102, 150.00958, 0.0),
Point3D::new(606.0, 306.0, 0.0),
Point3D::new(300.21954, 150.11946, 0.0),
Point3D::new(300.08844, 150.05064, 0.0),
],
plane: Plane {
normal: Vector3D::zero(),
offset: 0.0,
},
anchor: (),
};
let line = Line {
origin: Point3D::new(3.0690663, -5.8472385, 0.0),
dir: Vector3D::new(0.8854436, 0.46474677, -0.0),
};
let normal = Vector3D::new(0.46474662, -0.8854434, -0.0006389789);
polygon.split_with_normal(&line, &normal);
}
|