1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
|
//! ThinVec is exactly the same as Vec, except that it stores its `len` and `capacity` in the buffer
//! it allocates.
//!
//! This makes the memory footprint of ThinVecs lower; notably in cases where space is reserved for
//! a non-existence ThinVec<T>. So `Vec<ThinVec<T>>` and `Option<ThinVec<T>>::None` will waste less
//! space. Being pointer-sized also means it can be passed/stored in registers.
//!
//! Of course, any actually constructed ThinVec will theoretically have a bigger allocation, but
//! the fuzzy nature of allocators means that might not actually be the case.
//!
//! Properties of Vec that are preserved:
//! * `ThinVec::new()` doesn't allocate (it points to a statically allocated singleton)
//! * reallocation can be done in place
//! * `size_of::<ThinVec<T>>()` == `size_of::<Option<ThinVec<T>>>()`
//!
//! Properties of Vec that aren't preserved:
//! * `ThinVec<T>` can't ever be zero-cost roundtripped to a `Box<[T]>`, `String`, or `*mut T`
//! * `from_raw_parts` doesn't exist
//! * ThinVec currently doesn't bother to not-allocate for Zero Sized Types (e.g. `ThinVec<()>`),
//! but it could be done if someone cared enough to implement it.
//!
//!
//!
//! # Gecko FFI
//!
//! If you enable the gecko-ffi feature, ThinVec will verbatim bridge with the nsTArray type in
//! Gecko (Firefox). That is, ThinVec and nsTArray have identical layouts *but not ABIs*,
//! so nsTArrays/ThinVecs an be natively manipulated by C++ and Rust, and ownership can be
//! transferred across the FFI boundary (**IF YOU ARE CAREFUL, SEE BELOW!!**).
//!
//! While this feature is handy, it is also inherently dangerous to use because Rust and C++ do not
//! know about eachother. Specifically, this can be an issue with non-POD types (types which
//! have destructors, move constructors, or are `!Copy`).
//!
//! ## Do Not Pass By Value
//!
//! The biggest thing to keep in mind is that **FFI functions cannot pass ThinVec/nsTArray
//! by-value**. That is, these are busted APIs:
//!
//! ```rust,ignore
//! // BAD WRONG
//! extern fn process_data(data: ThinVec<u32>) { ... }
//! // BAD WRONG
//! extern fn get_data() -> ThinVec<u32> { ... }
//! ```
//!
//! You must instead pass by-reference:
//!
//! ```rust
//! # use thin_vec::*;
//! # use std::mem;
//!
//! // Read-only access, ok!
//! extern fn process_data(data: &ThinVec<u32>) {
//! for val in data {
//! println!("{}", val);
//! }
//! }
//!
//! // Replace with empty instance to take ownership, ok!
//! extern fn consume_data(data: &mut ThinVec<u32>) {
//! let owned = mem::replace(data, ThinVec::new());
//! mem::drop(owned);
//! }
//!
//! // Mutate input, ok!
//! extern fn add_data(dataset: &mut ThinVec<u32>) {
//! dataset.push(37);
//! dataset.push(12);
//! }
//!
//! // Return via out-param, usually ok!
//! //
//! // WARNING: output must be initialized! (Empty nsTArrays are free, so just do it!)
//! extern fn get_data(output: &mut ThinVec<u32>) {
//! *output = thin_vec![1, 2, 3, 4, 5];
//! }
//! ```
//!
//! Ignorable Explanation For Those Who Really Want To Know Why:
//!
//! > The fundamental issue is that Rust and C++ can't currently communicate about destructors, and
//! > the semantics of C++ require destructors of function arguments to be run when the function
//! > returns. Whether the callee or caller is responsible for this is also platform-specific, so
//! > trying to hack around it manually would be messy.
//! >
//! > Also a type having a destructor changes its C++ ABI, because that type must actually exist
//! > in memory (unlike a trivial struct, which is often passed in registers). We don't currently
//! > have a way to communicate to Rust that this is happening, so even if we worked out the
//! > destructor issue with say, MaybeUninit, it would still be a non-starter without some RFCs
//! > to add explicit rustc support.
//! >
//! > Realistically, the best answer here is to have a "heavier" bindgen that can secretly
//! > generate FFI glue so we can pass things "by value" and have it generate by-reference code
//! > behind our back (like the cxx crate does). This would muddy up debugging/searchfox though.
//!
//! ## Types Should Be Trivially Relocatable
//!
//! Types in Rust are always trivially relocatable (unless suitably borrowed/[pinned][]/hidden).
//! This means all Rust types are legal to relocate with a bitwise copy, you cannot provide
//! copy or move constructors to execute when this happens, and the old location won't have its
//! destructor run. This will cause problems for types which have a significant location
//! (types that intrusively point into themselves or have their location registered with a service).
//!
//! While relocations are generally predictable if you're very careful, **you should avoid using
//! types with significant locations with Rust FFI**.
//!
//! Specifically, ThinVec will trivially relocate its contents whenever it needs to reallocate its
//! buffer to change its capacity. This is the default reallocation strategy for nsTArray, and is
//! suitable for the vast majority of types. Just be aware of this limitation!
//!
//! ## Auto Arrays Are Dangerous
//!
//! ThinVec has *some* support for handling auto arrays which store their buffer on the stack,
//! but this isn't well tested.
//!
//! Regardless of how much support we provide, Rust won't be aware of the buffer's limited lifetime,
//! so standard auto array safety caveats apply about returning/storing them! ThinVec won't ever
//! produce an auto array on its own, so this is only an issue for transferring an nsTArray into
//! Rust.
//!
//! ## Other Issues
//!
//! Standard FFI caveats also apply:
//!
//! * Rust is more strict about POD types being initialized (use MaybeUninit if you must)
//! * `ThinVec<T>` has no idea if the C++ version of `T` has move/copy/assign/delete overloads
//! * `nsTArray<T>` has no idea if the Rust version of `T` has a Drop/Clone impl
//! * C++ can do all sorts of unsound things that Rust can't catch
//! * C++ and Rust don't agree on how zero-sized/empty types should be handled
//!
//! The gecko-ffi feature will not work if you aren't linking with code that has nsTArray
//! defined. Specifically, we must share the symbol for nsTArray's empty singleton. You will get
//! linking errors if that isn't defined.
//!
//! The gecko-ffi feature also limits ThinVec to the legacy behaviors of nsTArray. Most notably,
//! nsTArray has a maximum capacity of i32::MAX (~2.1 billion items). Probably not an issue.
//! Probably.
//!
//! [pinned]: https://doc.rust-lang.org/std/pin/index.html
use std::{fmt, io, ptr, mem, slice};
use std::collections::Bound;
use std::iter::FromIterator;
use std::slice::IterMut;
use std::ops::{Deref, DerefMut, RangeBounds};
use std::marker::PhantomData;
use std::alloc::*;
use std::cmp::*;
use std::hash::*;
use std::borrow::*;
use std::ptr::NonNull;
use impl_details::*;
// modules: a simple way to cfg a whole bunch of impl details at once
#[cfg(not(feature = "gecko-ffi"))]
mod impl_details {
pub type SizeType = usize;
pub const MAX_CAP: usize = !0;
#[inline(always)]
pub fn assert_size(x: usize) -> SizeType { x }
}
#[cfg(feature = "gecko-ffi")]
mod impl_details {
// Support for briding a gecko nsTArray verbatim into a ThinVec.
//
// ThinVec can't see copy/move/delete implementations
// from C++
//
// The actual layout of an nsTArray is:
//
// ```cpp
// struct {
// uint32_t mLength;
// uint32_t mCapacity: 31;
// uint32_t mIsAutoArray: 1;
// }
// ```
//
// Rust doesn't natively support bit-fields, so we manually mask
// and shift the bit. When the "auto" bit is set, the header and buffer
// are actually on the stack, meaning the ThinVec pointer-to-header
// is essentially an "owned borrow", and therefore dangerous to handle.
// There are no safety guards for this situation.
//
// On little-endian platforms, the auto bit will be the high-bit of
// our capacity u32. On big-endian platforms, it will be the low bit.
// Hence we need some platform-specific CFGs for the necessary masking/shifting.
//
// ThinVec won't ever construct an auto array. They only happen when
// bridging from C++. This means we don't need to ever set/preserve the bit.
// We just need to be able to read and handle it if it happens to be there.
//
// Handling the auto bit mostly just means not freeing/reallocating the buffer.
pub type SizeType = u32;
pub const MAX_CAP: usize = i32::max_value() as usize;
// Little endian: the auto bit is the high bit, and the capacity is
// verbatim. So we just need to mask off the high bit. Note that
// this masking is unnecessary when packing, because assert_size
// guards against the high bit being set.
#[cfg(target_endian = "little")]
pub fn pack_capacity(cap: SizeType) -> SizeType {
cap as SizeType
}
#[cfg(target_endian = "little")]
pub fn unpack_capacity(cap: SizeType) -> usize {
(cap as usize) & !(1 << 31)
}
#[cfg(target_endian = "little")]
pub fn is_auto(cap: SizeType) -> bool {
(cap & (1 << 31)) != 0
}
// Big endian: the auto bit is the low bit, and the capacity is
// shifted up one bit. Masking out the auto bit is unnecessary,
// as rust shifts always shift in 0's for unsigned integers.
#[cfg(target_endian = "big")]
pub fn pack_capacity(cap: SizeType) -> SizeType {
(cap as SizeType) << 1
}
#[cfg(target_endian = "big")]
pub fn unpack_capacity(cap: SizeType) -> usize {
(cap >> 1) as usize
}
#[cfg(target_endian = "big")]
pub fn is_auto(cap: SizeType) -> bool {
(cap & 1) != 0
}
#[inline]
pub fn assert_size(x: usize) -> SizeType {
if x > MAX_CAP as usize {
panic!("nsTArray size may not exceed the capacity of a 32-bit sized int");
}
x as SizeType
}
}
/// The header of a ThinVec.
///
/// The _cap can be a bitfield, so use accessors to avoid trouble.
#[repr(C)]
struct Header {
_len: SizeType,
_cap: SizeType,
}
impl Header {
fn len(&self) -> usize {
self._len as usize
}
fn set_len(&mut self, len: usize) {
self._len = assert_size(len);
}
fn data<T>(&self) -> *mut T {
let header_size = mem::size_of::<Header>();
let padding = padding::<T>();
let ptr = self as *const Header as *mut Header as *mut u8;
unsafe {
if padding > 0 && self.len() == 0 {
// The empty header isn't well-aligned, just make an aligned one up
NonNull::dangling().as_ptr()
} else {
ptr.offset(header_size as isize) as *mut T
}
}
}
}
#[cfg(feature = "gecko-ffi")]
impl Header {
fn cap(&self) -> usize {
unpack_capacity(self._cap)
}
fn set_cap(&mut self, cap: usize) {
// debug check that our packing is working
debug_assert_eq!(unpack_capacity(pack_capacity(cap as SizeType)), cap);
// FIXME: this assert is busted because it reads uninit memory
// debug_assert!(!self.uses_stack_allocated_buffer());
// NOTE: this always stores a cleared auto bit, because set_cap
// is only invoked by Rust, and Rust doesn't create auto arrays.
self._cap = pack_capacity(assert_size(cap));
}
fn uses_stack_allocated_buffer(&self) -> bool {
is_auto(self._cap)
}
}
#[cfg(not(feature = "gecko-ffi"))]
impl Header {
fn cap(&self) -> usize {
self._cap as usize
}
fn set_cap(&mut self, cap: usize) {
self._cap = assert_size(cap);
}
}
/// Singleton that all empty collections share.
/// Note: can't store non-zero ZSTs, we allocate in that case. We could
/// optimize everything to not do that (basically, make ptr == len and branch
/// on size == 0 in every method), but it's a bunch of work for something that
/// doesn't matter much.
#[cfg(any(not(feature = "gecko-ffi"), test))]
static EMPTY_HEADER: Header = Header { _len: 0, _cap: 0 };
#[cfg(all(feature = "gecko-ffi", not(test)))]
extern {
#[link_name = "sEmptyTArrayHeader"]
static EMPTY_HEADER: Header;
}
// TODO: overflow checks everywhere
// Utils for computing layouts of allocations
fn alloc_size<T>(cap: usize) -> usize {
// Compute "real" header size with pointer math
let header_size = mem::size_of::<Header>();
let elem_size = mem::size_of::<T>();
let padding = padding::<T>();
// TODO: care about isize::MAX overflow?
let data_size = elem_size.checked_mul(cap).expect("capacity overflow");
data_size.checked_add(header_size + padding).expect("capacity overflow")
}
fn padding<T>() -> usize {
let alloc_align = alloc_align::<T>();
let header_size = mem::size_of::<Header>();
if alloc_align > header_size {
if cfg!(feature = "gecko-ffi") {
panic!("nsTArray does not handle alignment above > {} correctly",
header_size);
}
alloc_align - header_size
} else {
0
}
}
fn alloc_align<T>() -> usize {
max(mem::align_of::<T>(), mem::align_of::<Header>())
}
fn layout<T>(cap: usize) -> Layout {
unsafe {
Layout::from_size_align_unchecked(
alloc_size::<T>(cap),
alloc_align::<T>(),
)
}
}
fn header_with_capacity<T>(cap: usize) -> NonNull<Header> {
debug_assert!(cap > 0);
unsafe {
let layout = layout::<T>(cap);
let header = alloc(layout) as *mut Header;
if header.is_null() { handle_alloc_error(layout) }
// "Infinite" capacity for zero-sized types:
(*header).set_cap(if mem::size_of::<T>() == 0 { MAX_CAP } else { cap });
(*header).set_len(0);
NonNull::new_unchecked(header)
}
}
/// See the crate's top level documentation for a description of this type.
#[repr(C)]
pub struct ThinVec<T> {
ptr: NonNull<Header>,
boo: PhantomData<T>,
}
/// Creates a `ThinVec` containing the arguments.
///
/// ```
/// #[macro_use] extern crate thin_vec;
///
/// fn main() {
/// let v = thin_vec![1, 2, 3];
/// assert_eq!(v.len(), 3);
/// assert_eq!(v[0], 1);
/// assert_eq!(v[1], 2);
/// assert_eq!(v[2], 3);
///
/// let v = thin_vec![1; 3];
/// assert_eq!(v, [1, 1, 1]);
/// }
/// ```
#[macro_export]
macro_rules! thin_vec {
(@UNIT $($t:tt)*) => (());
($elem:expr; $n:expr) => ({
let mut vec = $crate::ThinVec::new();
vec.resize($n, $elem);
vec
});
() => {$crate::ThinVec::new()};
($($x:expr),*) => ({
let len = [$(thin_vec!(@UNIT $x)),*].len();
let mut vec = $crate::ThinVec::with_capacity(len);
$(vec.push($x);)*
vec
});
($($x:expr,)*) => (thin_vec![$($x),*]);
}
impl<T> ThinVec<T> {
pub fn new() -> ThinVec<T> {
unsafe {
ThinVec {
ptr: NonNull::new_unchecked(&EMPTY_HEADER
as *const Header
as *mut Header),
boo: PhantomData,
}
}
}
pub fn with_capacity(cap: usize) -> ThinVec<T> {
if cap == 0 {
ThinVec::new()
} else {
ThinVec {
ptr: header_with_capacity::<T>(cap),
boo: PhantomData,
}
}
}
// Accessor conveniences
fn ptr(&self) -> *mut Header { self.ptr.as_ptr() }
fn header(&self) -> &Header { unsafe { self.ptr.as_ref() } }
fn data_raw(&self) -> *mut T { self.header().data() }
// This is unsafe when the header is EMPTY_HEADER.
unsafe fn header_mut(&mut self) -> &mut Header { &mut *self.ptr() }
pub fn len(&self) -> usize { self.header().len() }
pub fn is_empty(&self) -> bool { self.len() == 0 }
pub fn capacity(&self) -> usize { self.header().cap() }
pub unsafe fn set_len(&mut self, len: usize) { self.header_mut().set_len(len) }
pub fn push(&mut self, val: T) {
let old_len = self.len();
if old_len == self.capacity() {
self.reserve(1);
}
unsafe {
ptr::write(self.data_raw().offset(old_len as isize), val);
self.set_len(old_len + 1);
}
}
pub fn pop(&mut self) -> Option<T> {
let old_len = self.len();
if old_len == 0 { return None }
unsafe {
self.set_len(old_len - 1);
Some(ptr::read(self.data_raw().offset(old_len as isize - 1)))
}
}
pub fn insert(&mut self, idx: usize, elem: T) {
let old_len = self.len();
assert!(idx <= old_len, "Index out of bounds");
if old_len == self.capacity() {
self.reserve(1);
}
unsafe {
let ptr = self.data_raw();
ptr::copy(ptr.offset(idx as isize), ptr.offset(idx as isize + 1), old_len - idx);
ptr::write(ptr.offset(idx as isize), elem);
self.set_len(old_len + 1);
}
}
pub fn remove(&mut self, idx: usize) -> T {
let old_len = self.len();
assert!(idx < old_len, "Index out of bounds");
unsafe {
self.set_len(old_len - 1);
let ptr = self.data_raw();
let val = ptr::read(self.data_raw().offset(idx as isize));
ptr::copy(ptr.offset(idx as isize + 1), ptr.offset(idx as isize),
old_len - idx - 1);
val
}
}
pub fn swap_remove(&mut self, idx: usize) -> T {
let old_len = self.len();
assert!(idx < old_len, "Index out of bounds");
unsafe {
let ptr = self.data_raw();
ptr::swap(ptr.offset(idx as isize), ptr.offset(old_len as isize - 1));
self.set_len(old_len - 1);
ptr::read(ptr.offset(old_len as isize - 1))
}
}
pub fn truncate(&mut self, len: usize) {
unsafe {
// drop any extra elements
while len < self.len() {
// decrement len before the drop_in_place(), so a panic on Drop
// doesn't re-drop the just-failed value.
let new_len = self.len() - 1;
self.set_len(new_len);
ptr::drop_in_place(self.get_unchecked_mut(new_len));
}
}
}
pub fn clear(&mut self) {
unsafe {
ptr::drop_in_place(&mut self[..]);
// Don't mutate the empty singleton!
if self.len() != 0 {
self.set_len(0);
}
}
}
pub fn as_slice(&self) -> &[T] {
unsafe {
slice::from_raw_parts(self.data_raw(), self.len())
}
}
pub fn as_mut_slice(&mut self) -> &mut [T] {
unsafe {
slice::from_raw_parts_mut(self.data_raw(), self.len())
}
}
/// Reserve capacity for at least `additional` more elements to be inserted.
///
/// May reserve more space than requested, to avoid frequent reallocations.
///
/// Panics if the new capacity overflows `usize`.
///
/// Re-allocates only if `self.capacity() < self.len() + additional`.
#[cfg(not(feature = "gecko-ffi"))]
pub fn reserve(&mut self, additional: usize) {
let len = self.len();
let old_cap = self.capacity();
let min_cap = len.checked_add(additional).expect("capacity overflow");
if min_cap <= old_cap {
return
}
// Ensure the new capacity is at least double, to guarantee exponential growth.
let double_cap = if old_cap == 0 {
// skip to 4 because tiny ThinVecs are dumb; but not if that would cause overflow
if mem::size_of::<T>() > (!0) / 8 { 1 } else { 4 }
} else {
old_cap.saturating_mul(2)
};
let new_cap = max(min_cap, double_cap);
unsafe {
self.reallocate(new_cap);
}
}
/// Reserve capacity for at least `additional` more elements to be inserted.
///
/// This method mimics the growth algorithm used by the C++ implementation
/// of nsTArray.
#[cfg(feature = "gecko-ffi")]
pub fn reserve(&mut self, additional: usize) {
let elem_size = mem::size_of::<T>();
let len = self.len();
let old_cap = self.capacity();
let min_cap = len.checked_add(additional).expect("capacity overflow");
if min_cap <= old_cap {
return
}
// The growth logic can't handle zero-sized types, so we have to exit
// early here.
if elem_size == 0 {
unsafe {
self.reallocate(min_cap);
}
return;
}
let min_cap_bytes = assert_size(min_cap)
.checked_mul(assert_size(elem_size))
.and_then(|x| x.checked_add(assert_size(mem::size_of::<Header>())))
.unwrap();
// Perform some checked arithmetic to ensure all of the numbers we
// compute will end up in range.
let will_fit = min_cap_bytes.checked_mul(2).is_some();
if !will_fit {
panic!("Exceeded maximum nsTArray size");
}
const SLOW_GROWTH_THRESHOLD: usize = 8 * 1024 * 1024;
let bytes = if min_cap > SLOW_GROWTH_THRESHOLD {
// Grow by a minimum of 1.125x
let old_cap_bytes = old_cap * elem_size + mem::size_of::<Header>();
let min_growth = old_cap_bytes + (old_cap_bytes >> 3);
let growth = max(min_growth, min_cap_bytes as usize);
// Round up to the next megabyte.
const MB: usize = 1 << 20;
MB * ((growth + MB - 1) / MB)
} else {
// Try to allocate backing buffers in powers of two.
min_cap_bytes.next_power_of_two() as usize
};
let cap = (bytes - std::mem::size_of::<Header>()) / elem_size;
unsafe {
self.reallocate(cap);
}
}
/// Reserves the minimum capacity for `additional` more elements to be inserted.
///
/// Panics if the new capacity overflows `usize`.
///
/// Re-allocates only if `self.capacity() < self.len() + additional`.
pub fn reserve_exact(&mut self, additional: usize) {
let new_cap = self.len().checked_add(additional).expect("capacity overflow");
let old_cap = self.capacity();
if new_cap > old_cap {
unsafe {
self.reallocate(new_cap);
}
}
}
pub fn shrink_to_fit(&mut self) {
let old_cap = self.capacity();
let new_cap = self.len();
if new_cap < old_cap {
if new_cap == 0 {
*self = ThinVec::new();
} else {
unsafe {
self.reallocate(new_cap);
}
}
}
}
/// Retains only the elements specified by the predicate.
///
/// In other words, remove all elements `e` such that `f(&e)` returns `false`.
/// This method operates in place and preserves the order of the retained
/// elements.
///
/// # Examples
///
/// ```
/// # #[macro_use] extern crate thin_vec;
/// # fn main() {
/// let mut vec = thin_vec![1, 2, 3, 4];
/// vec.retain(|&x| x%2 == 0);
/// assert_eq!(vec, [2, 4]);
/// # }
/// ```
pub fn retain<F>(&mut self, mut f: F) where F: FnMut(&T) -> bool {
let len = self.len();
let mut del = 0;
{
let v = &mut self[..];
for i in 0..len {
if !f(&v[i]) {
del += 1;
} else if del > 0 {
v.swap(i - del, i);
}
}
}
if del > 0 {
self.truncate(len - del);
}
}
/// Removes consecutive elements in the vector that resolve to the same key.
///
/// If the vector is sorted, this removes all duplicates.
///
/// # Examples
///
/// ```
/// # #[macro_use] extern crate thin_vec;
/// # fn main() {
/// let mut vec = thin_vec![10, 20, 21, 30, 20];
///
/// vec.dedup_by_key(|i| *i / 10);
///
/// assert_eq!(vec, [10, 20, 30, 20]);
/// # }
/// ```
pub fn dedup_by_key<F, K>(&mut self, mut key: F) where F: FnMut(&mut T) -> K, K: PartialEq<K> {
self.dedup_by(|a, b| key(a) == key(b))
}
/// Removes consecutive elements in the vector according to a predicate.
///
/// The `same_bucket` function is passed references to two elements from the vector, and
/// returns `true` if the elements compare equal, or `false` if they do not. Only the first
/// of adjacent equal items is kept.
///
/// If the vector is sorted, this removes all duplicates.
///
/// # Examples
///
/// ```
/// # #[macro_use] extern crate thin_vec;
/// # fn main() {
/// let mut vec = thin_vec!["foo", "bar", "Bar", "baz", "bar"];
///
/// vec.dedup_by(|a, b| a.eq_ignore_ascii_case(b));
///
/// assert_eq!(vec, ["foo", "bar", "baz", "bar"]);
/// # }
/// ```
pub fn dedup_by<F>(&mut self, mut same_bucket: F) where F: FnMut(&mut T, &mut T) -> bool {
// See the comments in `Vec::dedup` for a detailed explanation of this code.
unsafe {
let ln = self.len();
if ln <= 1 {
return;
}
// Avoid bounds checks by using raw pointers.
let p = self.as_mut_ptr();
let mut r: usize = 1;
let mut w: usize = 1;
while r < ln {
let p_r = p.offset(r as isize);
let p_wm1 = p.offset((w - 1) as isize);
if !same_bucket(&mut *p_r, &mut *p_wm1) {
if r != w {
let p_w = p_wm1.offset(1);
mem::swap(&mut *p_r, &mut *p_w);
}
w += 1;
}
r += 1;
}
self.truncate(w);
}
}
pub fn split_off(&mut self, at: usize) -> ThinVec<T> {
let old_len = self.len();
let new_vec_len = old_len - at;
assert!(at <= old_len, "Index out of bounds");
unsafe {
let mut new_vec = ThinVec::with_capacity(new_vec_len);
ptr::copy_nonoverlapping(self.data_raw().offset(at as isize),
new_vec.data_raw(),
new_vec_len);
// Don't mutate the empty singleton!
if new_vec_len != 0 {
new_vec.set_len(new_vec_len);
}
if old_len != 0 {
self.set_len(at);
}
new_vec
}
}
pub fn append(&mut self, other: &mut ThinVec<T>) {
self.extend(other.drain(..))
}
pub fn drain<R>(&mut self, range: R) -> Drain<T>
where R: RangeBounds<usize>
{
let len = self.len();
let start = match range.start_bound() {
Bound::Included(&n) => n,
Bound::Excluded(&n) => n + 1,
Bound::Unbounded => 0,
};
let end = match range.end_bound() {
Bound::Included(&n) => n + 1,
Bound::Excluded(&n) => n,
Bound::Unbounded => len,
};
assert!(start <= end);
assert!(end <= len);
unsafe {
// Set our length to the start bound
// Don't mutate the empty singleton!
if len != 0 {
self.set_len(start);
}
let iter = slice::from_raw_parts_mut(
self.data_raw().offset(start as isize),
end - start,
).iter_mut();
Drain {
iter: iter,
vec: self,
end: end,
tail: len - end,
}
}
}
unsafe fn deallocate(&mut self) {
if self.has_allocation() {
dealloc(
self.ptr() as *mut u8,
layout::<T>(self.capacity()),
)
}
}
/// Resize the buffer and update its capacity, without changing the length.
/// Unsafe because it can cause length to be greater than capacity.
unsafe fn reallocate(&mut self, new_cap: usize) {
debug_assert!(new_cap > 0);
if self.has_allocation() {
let old_cap = self.capacity();
let ptr = realloc(
self.ptr() as *mut u8,
layout::<T>(old_cap),
alloc_size::<T>(new_cap),
) as *mut Header;
if ptr.is_null() { handle_alloc_error(layout::<T>(new_cap)) }
(*ptr).set_cap(new_cap);
self.ptr = NonNull::new_unchecked(ptr);
} else {
let mut new_header = header_with_capacity::<T>(new_cap);
// If we get here and have a non-zero len, then we must be handling
// a gecko auto array, and we have items in a stack buffer. We shouldn't
// free it, but we should memcopy the contents out of it and mark it as empty.
//
// T is assumed to be trivially relocatable, as this is ~required
// for Rust compatibility anyway. Furthermore, we assume C++ won't try
// to unconditionally destroy the contents of the stack allocated buffer
// (i.e. it's obfuscated behind a union).
//
// In effect, we are partially reimplementing the auto array move constructor
// by leaving behind a valid empty instance.
let len = self.len();
if cfg!(feature = "gecko-ffi") && len > 0 {
new_header.as_mut().data::<T>().copy_from_nonoverlapping(self.data_raw(), len);
self.set_len(0);
}
self.ptr = new_header;
}
}
#[cfg(feature = "gecko-ffi")]
#[inline]
fn has_allocation(&self) -> bool {
unsafe {
self.ptr.as_ptr() as *const Header != &EMPTY_HEADER &&
!self.ptr.as_ref().uses_stack_allocated_buffer()
}
}
#[cfg(not(feature = "gecko-ffi"))]
#[inline]
fn has_allocation(&self) -> bool {
self.ptr.as_ptr() as *const Header != &EMPTY_HEADER
}
}
impl<T: Clone> ThinVec<T> {
/// Resizes the `Vec` in-place so that `len()` is equal to `new_len`.
///
/// If `new_len` is greater than `len()`, the `Vec` is extended by the
/// difference, with each additional slot filled with `value`.
/// If `new_len` is less than `len()`, the `Vec` is simply truncated.
///
/// # Examples
///
/// ```
/// # #[macro_use] extern crate thin_vec;
/// # fn main() {
/// let mut vec = thin_vec!["hello"];
/// vec.resize(3, "world");
/// assert_eq!(vec, ["hello", "world", "world"]);
///
/// let mut vec = thin_vec![1, 2, 3, 4];
/// vec.resize(2, 0);
/// assert_eq!(vec, [1, 2]);
/// # }
/// ```
pub fn resize(&mut self, new_len: usize, value: T) {
let old_len = self.len();
if new_len > old_len {
let additional = new_len - old_len;
self.reserve(additional);
for _ in 1..additional {
self.push(value.clone());
}
// We can write the last element directly without cloning needlessly
if additional > 0 {
self.push(value);
}
} else if new_len < old_len {
self.truncate(new_len);
}
}
pub fn extend_from_slice(&mut self, other: &[T]) {
self.extend(other.iter().cloned())
}
}
impl<T: PartialEq> ThinVec<T> {
/// Removes consecutive repeated elements in the vector.
///
/// If the vector is sorted, this removes all duplicates.
///
/// # Examples
///
/// ```
/// # #[macro_use] extern crate thin_vec;
/// # fn main() {
/// let mut vec = thin_vec![1, 2, 2, 3, 2];
///
/// vec.dedup();
///
/// assert_eq!(vec, [1, 2, 3, 2]);
/// # }
/// ```
pub fn dedup(&mut self) {
self.dedup_by(|a, b| a == b)
}
}
impl<T> Drop for ThinVec<T> {
fn drop(&mut self) {
unsafe {
ptr::drop_in_place(&mut self [..]);
self.deallocate();
}
}
}
impl<T> Deref for ThinVec<T> {
type Target = [T];
fn deref(&self) -> &[T] {
self.as_slice()
}
}
impl<T> DerefMut for ThinVec<T> {
fn deref_mut(&mut self) -> &mut [T] {
self.as_mut_slice()
}
}
impl<T> Borrow<[T]> for ThinVec<T> {
fn borrow(&self) -> &[T] {
self.as_slice()
}
}
impl<T> BorrowMut<[T]> for ThinVec<T> {
fn borrow_mut(&mut self) -> &mut [T] {
self.as_mut_slice()
}
}
impl<T> AsRef<[T]> for ThinVec<T> {
fn as_ref(&self) -> &[T] {
self.as_slice()
}
}
impl<T> Extend<T> for ThinVec<T> {
fn extend<I>(&mut self, iter: I) where I: IntoIterator<Item=T> {
let iter = iter.into_iter();
self.reserve(iter.size_hint().0);
for x in iter {
self.push(x);
}
}
}
impl<T: fmt::Debug> fmt::Debug for ThinVec<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Debug::fmt(&**self, f)
}
}
impl<T> Hash for ThinVec<T> where T: Hash {
fn hash<H>(&self, state: &mut H) where H: Hasher {
self[..].hash(state);
}
}
impl<T> PartialOrd for ThinVec<T> where T: PartialOrd {
#[inline]
fn partial_cmp(&self, other: &ThinVec<T>) -> Option<Ordering> {
self[..].partial_cmp(&other[..])
}
}
impl<T> Ord for ThinVec<T> where T: Ord {
#[inline]
fn cmp(&self, other: &ThinVec<T>) -> Ordering {
self[..].cmp(&other[..])
}
}
impl<A, B> PartialEq<ThinVec<B>> for ThinVec<A> where A: PartialEq<B> {
#[inline]
fn eq(&self, other: &ThinVec<B>) -> bool { self[..] == other[..] }
#[inline]
fn ne(&self, other: &ThinVec<B>) -> bool { self[..] != other[..] }
}
impl<A, B> PartialEq<Vec<B>> for ThinVec<A> where A: PartialEq<B> {
#[inline]
fn eq(&self, other: &Vec<B>) -> bool { self[..] == other[..] }
#[inline]
fn ne(&self, other: &Vec<B>) -> bool { self[..] != other[..] }
}
impl<A, B> PartialEq<[B]> for ThinVec<A> where A: PartialEq<B> {
#[inline]
fn eq(&self, other: &[B]) -> bool { self[..] == other[..] }
#[inline]
fn ne(&self, other: &[B]) -> bool { self[..] != other[..] }
}
impl<'a, A, B> PartialEq<&'a [B]> for ThinVec<A> where A: PartialEq<B> {
#[inline]
fn eq(&self, other: &&'a [B]) -> bool { self[..] == other[..] }
#[inline]
fn ne(&self, other: &&'a [B]) -> bool { self[..] != other[..] }
}
macro_rules! array_impls {
($($N:expr)*) => {$(
impl<A, B> PartialEq<[B; $N]> for ThinVec<A> where A: PartialEq<B> {
#[inline]
fn eq(&self, other: &[B; $N]) -> bool { self[..] == other[..] }
#[inline]
fn ne(&self, other: &[B; $N]) -> bool { self[..] != other[..] }
}
impl<'a, A, B> PartialEq<&'a [B; $N]> for ThinVec<A> where A: PartialEq<B> {
#[inline]
fn eq(&self, other: &&'a [B; $N]) -> bool { self[..] == other[..] }
#[inline]
fn ne(&self, other: &&'a [B; $N]) -> bool { self[..] != other[..] }
}
)*}
}
array_impls! {
0 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19
20 21 22 23 24 25 26 27 28 29
30 31 32
}
impl<T> Eq for ThinVec<T> where T: Eq {}
impl<T> IntoIterator for ThinVec<T> {
type Item = T;
type IntoIter = IntoIter<T>;
fn into_iter(self) -> IntoIter<T> {
IntoIter { vec: self, start: 0 }
}
}
impl<'a, T> IntoIterator for &'a ThinVec<T> {
type Item = &'a T;
type IntoIter = slice::Iter<'a, T>;
fn into_iter(self) -> slice::Iter<'a, T> {
self.iter()
}
}
impl<'a, T> IntoIterator for &'a mut ThinVec<T> {
type Item = &'a mut T;
type IntoIter = slice::IterMut<'a, T>;
fn into_iter(self) -> slice::IterMut<'a, T> {
self.iter_mut()
}
}
impl<T> Clone for ThinVec<T> where T: Clone {
fn clone(&self) -> ThinVec<T> {
let mut new_vec = ThinVec::with_capacity(self.len());
new_vec.extend(self.iter().cloned());
new_vec
}
}
impl<T> Default for ThinVec<T> {
fn default() -> ThinVec<T> {
ThinVec::new()
}
}
impl<T> FromIterator<T> for ThinVec<T> {
#[inline]
fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> ThinVec<T> {
let mut vec = ThinVec::new();
vec.extend(iter.into_iter());
vec
}
}
pub struct IntoIter<T> {
vec: ThinVec<T>,
start: usize,
}
pub struct Drain<'a, T: 'a> {
iter: IterMut<'a, T>,
vec: *mut ThinVec<T>,
end: usize,
tail: usize,
}
impl<T> Iterator for IntoIter<T> {
type Item = T;
fn next(&mut self) -> Option<T> {
if self.start == self.vec.len() {
None
} else {
unsafe {
let old_start = self.start;
self.start += 1;
Some(ptr::read(self.vec.data_raw().offset(old_start as isize)))
}
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
let len = self.vec.len() - self.start;
(len, Some(len))
}
}
impl<T> DoubleEndedIterator for IntoIter<T> {
fn next_back(&mut self) -> Option<T> {
if self.start == self.vec.len() {
None
} else {
// FIXME?: extra bounds check
self.vec.pop()
}
}
}
impl<T> Drop for IntoIter<T> {
fn drop(&mut self) {
unsafe {
let old_len = self.vec.len();
let mut vec = mem::replace(&mut self.vec, ThinVec::new());
ptr::drop_in_place(&mut vec[self.start..]);
// Don't mutate the empty singleton!
if old_len != 0 {
vec.set_len(0)
}
}
}
}
impl<'a, T> Iterator for Drain<'a, T> {
type Item = T;
fn next(&mut self) -> Option<T> {
self.iter.next().map(|x| unsafe {
ptr::read(x)
})
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.iter.size_hint()
}
}
impl<'a, T> DoubleEndedIterator for Drain<'a, T> {
fn next_back(&mut self) -> Option<T> {
self.iter.next_back().map(|x| unsafe {
ptr::read(x)
})
}
}
impl<'a, T> ExactSizeIterator for Drain<'a, T> {}
impl<'a, T> Drop for Drain<'a, T> {
fn drop(&mut self) {
// Consume the rest of the iterator.
while let Some(_) = self.next() {}
// Move the tail over the drained items, and update the length.
unsafe {
let vec = &mut *self.vec;
// Don't mutate the empty singleton!
if vec.has_allocation() {
let old_len = vec.len();
let start = vec.data_raw().offset(old_len as isize);
let end = vec.data_raw().offset(self.end as isize);
ptr::copy(end, start, self.tail);
vec.set_len(old_len + self.tail);
}
}
}
}
/// Write is implemented for `ThinVec<u8>` by appending to the vector.
/// The vector will grow as needed.
/// This implementation is identical to the one for `Vec<u8>`.
impl io::Write for ThinVec<u8> {
#[inline]
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
self.extend_from_slice(buf);
Ok(buf.len())
}
#[inline]
fn write_all(&mut self, buf: &[u8]) -> io::Result<()> {
self.extend_from_slice(buf);
Ok(())
}
#[inline]
fn flush(&mut self) -> io::Result<()> { Ok(()) }
}
// TODO: a million Index impls
#[cfg(test)]
mod tests {
use super::{ThinVec, MAX_CAP};
#[test]
fn test_size_of() {
use std::mem::size_of;
assert_eq!(size_of::<ThinVec<u8>>(), size_of::<&u8>());
assert_eq!(size_of::<Option<ThinVec<u8>>>(), size_of::<&u8>());
}
#[test]
fn test_drop_empty() {
ThinVec::<u8>::new();
}
#[test]
fn test_partial_eq() {
assert_eq!(thin_vec![0], thin_vec![0]);
assert_ne!(thin_vec![0], thin_vec![1]);
assert_eq!(thin_vec![1,2,3], vec![1,2,3]);
}
#[test]
fn test_alloc() {
let mut v = ThinVec::new();
assert!(!v.has_allocation());
v.push(1);
assert!(v.has_allocation());
v.pop();
assert!(v.has_allocation());
v.shrink_to_fit();
assert!(!v.has_allocation());
v.reserve(64);
assert!(v.has_allocation());
v = ThinVec::with_capacity(64);
assert!(v.has_allocation());
v = ThinVec::with_capacity(0);
assert!(!v.has_allocation());
}
#[test]
fn test_drain_items() {
let mut vec = thin_vec![1, 2, 3];
let mut vec2 = thin_vec![];
for i in vec.drain(..) {
vec2.push(i);
}
assert_eq!(vec, []);
assert_eq!(vec2, [1, 2, 3]);
}
#[test]
fn test_drain_items_reverse() {
let mut vec = thin_vec![1, 2, 3];
let mut vec2 = thin_vec![];
for i in vec.drain(..).rev() {
vec2.push(i);
}
assert_eq!(vec, []);
assert_eq!(vec2, [3, 2, 1]);
}
#[test]
fn test_drain_items_zero_sized() {
let mut vec = thin_vec![(), (), ()];
let mut vec2 = thin_vec![];
for i in vec.drain(..) {
vec2.push(i);
}
assert_eq!(vec, []);
assert_eq!(vec2, [(), (), ()]);
}
#[test]
#[should_panic]
fn test_drain_out_of_bounds() {
let mut v = thin_vec![1, 2, 3, 4, 5];
v.drain(5..6);
}
#[test]
fn test_drain_range() {
let mut v = thin_vec![1, 2, 3, 4, 5];
for _ in v.drain(4..) {
}
assert_eq!(v, &[1, 2, 3, 4]);
let mut v: ThinVec<_> = (1..6).map(|x| x.to_string()).collect();
for _ in v.drain(1..4) {
}
assert_eq!(v, &[1.to_string(), 5.to_string()]);
let mut v: ThinVec<_> = (1..6).map(|x| x.to_string()).collect();
for _ in v.drain(1..4).rev() {
}
assert_eq!(v, &[1.to_string(), 5.to_string()]);
let mut v: ThinVec<_> = thin_vec![(); 5];
for _ in v.drain(1..4).rev() {
}
assert_eq!(v, &[(), ()]);
}
#[test]
fn test_drain_max_vec_size() {
let mut v = ThinVec::<()>::with_capacity(MAX_CAP);
unsafe { v.set_len(MAX_CAP); }
for _ in v.drain(MAX_CAP - 1..) {
}
assert_eq!(v.len(), MAX_CAP - 1);
}
}
#[cfg(test)]
mod std_tests {
use super::*;
use std::mem::size_of;
use std::usize;
struct DropCounter<'a> {
count: &'a mut u32,
}
impl<'a> Drop for DropCounter<'a> {
fn drop(&mut self) {
*self.count += 1;
}
}
#[test]
fn test_small_vec_struct() {
assert!(size_of::<ThinVec<u8>>() == size_of::<usize>());
}
#[test]
fn test_double_drop() {
struct TwoVec<T> {
x: ThinVec<T>,
y: ThinVec<T>,
}
let (mut count_x, mut count_y) = (0, 0);
{
let mut tv = TwoVec {
x: ThinVec::new(),
y: ThinVec::new(),
};
tv.x.push(DropCounter { count: &mut count_x });
tv.y.push(DropCounter { count: &mut count_y });
// If ThinVec had a drop flag, here is where it would be zeroed.
// Instead, it should rely on its internal state to prevent
// doing anything significant when dropped multiple times.
drop(tv.x);
// Here tv goes out of scope, tv.y should be dropped, but not tv.x.
}
assert_eq!(count_x, 1);
assert_eq!(count_y, 1);
}
#[test]
fn test_reserve() {
let mut v = ThinVec::new();
assert_eq!(v.capacity(), 0);
v.reserve(2);
assert!(v.capacity() >= 2);
for i in 0..16 {
v.push(i);
}
assert!(v.capacity() >= 16);
v.reserve(16);
assert!(v.capacity() >= 32);
v.push(16);
v.reserve(16);
assert!(v.capacity() >= 33)
}
#[test]
fn test_extend() {
let mut v = ThinVec::<usize>::new();
let mut w = ThinVec::new();
v.extend(w.clone());
assert_eq!(v, &[]);
v.extend(0..3);
for i in 0..3 {
w.push(i)
}
assert_eq!(v, w);
v.extend(3..10);
for i in 3..10 {
w.push(i)
}
assert_eq!(v, w);
v.extend(w.clone()); // specializes to `append`
assert!(v.iter().eq(w.iter().chain(w.iter())));
// Zero sized types
#[derive(PartialEq, Debug)]
struct Foo;
let mut a = ThinVec::new();
let b = thin_vec![Foo, Foo];
a.extend(b);
assert_eq!(a, &[Foo, Foo]);
// Double drop
let mut count_x = 0;
{
let mut x = ThinVec::new();
let y = thin_vec![DropCounter { count: &mut count_x }];
x.extend(y);
}
assert_eq!(count_x, 1);
}
/* TODO: implement extend for Iter<&Copy>
#[test]
fn test_extend_ref() {
let mut v = thin_vec![1, 2];
v.extend(&[3, 4, 5]);
assert_eq!(v.len(), 5);
assert_eq!(v, [1, 2, 3, 4, 5]);
let w = thin_vec![6, 7];
v.extend(&w);
assert_eq!(v.len(), 7);
assert_eq!(v, [1, 2, 3, 4, 5, 6, 7]);
}
*/
#[test]
fn test_slice_from_mut() {
let mut values = thin_vec![1, 2, 3, 4, 5];
{
let slice = &mut values[2..];
assert!(slice == [3, 4, 5]);
for p in slice {
*p += 2;
}
}
assert!(values == [1, 2, 5, 6, 7]);
}
#[test]
fn test_slice_to_mut() {
let mut values = thin_vec![1, 2, 3, 4, 5];
{
let slice = &mut values[..2];
assert!(slice == [1, 2]);
for p in slice {
*p += 1;
}
}
assert!(values == [2, 3, 3, 4, 5]);
}
#[test]
fn test_split_at_mut() {
let mut values = thin_vec![1, 2, 3, 4, 5];
{
let (left, right) = values.split_at_mut(2);
{
let left: &[_] = left;
assert!(&left[..left.len()] == &[1, 2]);
}
for p in left {
*p += 1;
}
{
let right: &[_] = right;
assert!(&right[..right.len()] == &[3, 4, 5]);
}
for p in right {
*p += 2;
}
}
assert_eq!(values, [2, 3, 5, 6, 7]);
}
#[test]
fn test_clone() {
let v: ThinVec<i32> = thin_vec![];
let w = thin_vec![1, 2, 3];
assert_eq!(v, v.clone());
let z = w.clone();
assert_eq!(w, z);
// they should be disjoint in memory.
assert!(w.as_ptr() != z.as_ptr())
}
#[test]
fn test_clone_from() {
let mut v = thin_vec![];
let three: ThinVec<Box<_>> = thin_vec![Box::new(1), Box::new(2), Box::new(3)];
let two: ThinVec<Box<_>> = thin_vec![Box::new(4), Box::new(5)];
// zero, long
v.clone_from(&three);
assert_eq!(v, three);
// equal
v.clone_from(&three);
assert_eq!(v, three);
// long, short
v.clone_from(&two);
assert_eq!(v, two);
// short, long
v.clone_from(&three);
assert_eq!(v, three)
}
#[test]
fn test_retain() {
let mut vec = thin_vec![1, 2, 3, 4];
vec.retain(|&x| x % 2 == 0);
assert_eq!(vec, [2, 4]);
}
#[test]
fn test_dedup() {
fn case(a: ThinVec<i32>, b: ThinVec<i32>) {
let mut v = a;
v.dedup();
assert_eq!(v, b);
}
case(thin_vec![], thin_vec![]);
case(thin_vec![1], thin_vec![1]);
case(thin_vec![1, 1], thin_vec![1]);
case(thin_vec![1, 2, 3], thin_vec![1, 2, 3]);
case(thin_vec![1, 1, 2, 3], thin_vec![1, 2, 3]);
case(thin_vec![1, 2, 2, 3], thin_vec![1, 2, 3]);
case(thin_vec![1, 2, 3, 3], thin_vec![1, 2, 3]);
case(thin_vec![1, 1, 2, 2, 2, 3, 3], thin_vec![1, 2, 3]);
}
#[test]
fn test_dedup_by_key() {
fn case(a: ThinVec<i32>, b: ThinVec<i32>) {
let mut v = a;
v.dedup_by_key(|i| *i / 10);
assert_eq!(v, b);
}
case(thin_vec![], thin_vec![]);
case(thin_vec![10], thin_vec![10]);
case(thin_vec![10, 11], thin_vec![10]);
case(thin_vec![10, 20, 30], thin_vec![10, 20, 30]);
case(thin_vec![10, 11, 20, 30], thin_vec![10, 20, 30]);
case(thin_vec![10, 20, 21, 30], thin_vec![10, 20, 30]);
case(thin_vec![10, 20, 30, 31], thin_vec![10, 20, 30]);
case(thin_vec![10, 11, 20, 21, 22, 30, 31], thin_vec![10, 20, 30]);
}
#[test]
fn test_dedup_by() {
let mut vec = thin_vec!["foo", "bar", "Bar", "baz", "bar"];
vec.dedup_by(|a, b| a.eq_ignore_ascii_case(b));
assert_eq!(vec, ["foo", "bar", "baz", "bar"]);
let mut vec = thin_vec![("foo", 1), ("foo", 2), ("bar", 3), ("bar", 4), ("bar", 5)];
vec.dedup_by(|a, b| a.0 == b.0 && { b.1 += a.1; true });
assert_eq!(vec, [("foo", 3), ("bar", 12)]);
}
#[test]
fn test_dedup_unique() {
let mut v0: ThinVec<Box<_>> = thin_vec![Box::new(1), Box::new(1), Box::new(2), Box::new(3)];
v0.dedup();
let mut v1: ThinVec<Box<_>> = thin_vec![Box::new(1), Box::new(2), Box::new(2), Box::new(3)];
v1.dedup();
let mut v2: ThinVec<Box<_>> = thin_vec![Box::new(1), Box::new(2), Box::new(3), Box::new(3)];
v2.dedup();
// If the boxed pointers were leaked or otherwise misused, valgrind
// and/or rt should raise errors.
}
#[test]
fn zero_sized_values() {
let mut v = ThinVec::new();
assert_eq!(v.len(), 0);
v.push(());
assert_eq!(v.len(), 1);
v.push(());
assert_eq!(v.len(), 2);
assert_eq!(v.pop(), Some(()));
assert_eq!(v.pop(), Some(()));
assert_eq!(v.pop(), None);
assert_eq!(v.iter().count(), 0);
v.push(());
assert_eq!(v.iter().count(), 1);
v.push(());
assert_eq!(v.iter().count(), 2);
for &() in &v {}
assert_eq!(v.iter_mut().count(), 2);
v.push(());
assert_eq!(v.iter_mut().count(), 3);
v.push(());
assert_eq!(v.iter_mut().count(), 4);
for &mut () in &mut v {}
unsafe {
v.set_len(0);
}
assert_eq!(v.iter_mut().count(), 0);
}
#[test]
fn test_partition() {
assert_eq!(thin_vec![].into_iter().partition(|x: &i32| *x < 3),
(thin_vec![], thin_vec![]));
assert_eq!(thin_vec![1, 2, 3].into_iter().partition(|x| *x < 4),
(thin_vec![1, 2, 3], thin_vec![]));
assert_eq!(thin_vec![1, 2, 3].into_iter().partition(|x| *x < 2),
(thin_vec![1], thin_vec![2, 3]));
assert_eq!(thin_vec![1, 2, 3].into_iter().partition(|x| *x < 0),
(thin_vec![], thin_vec![1, 2, 3]));
}
#[test]
fn test_zip_unzip() {
let z1 = thin_vec![(1, 4), (2, 5), (3, 6)];
let (left, right): (ThinVec<_>, ThinVec<_>) = z1.iter().cloned().unzip();
assert_eq!((1, 4), (left[0], right[0]));
assert_eq!((2, 5), (left[1], right[1]));
assert_eq!((3, 6), (left[2], right[2]));
}
#[test]
fn test_vec_truncate_drop() {
static mut DROPS: u32 = 0;
struct Elem(i32);
impl Drop for Elem {
fn drop(&mut self) {
unsafe {
DROPS += 1;
}
}
}
let mut v = thin_vec![Elem(1), Elem(2), Elem(3), Elem(4), Elem(5)];
assert_eq!(unsafe { DROPS }, 0);
v.truncate(3);
assert_eq!(unsafe { DROPS }, 2);
v.truncate(0);
assert_eq!(unsafe { DROPS }, 5);
}
#[test]
#[should_panic]
fn test_vec_truncate_fail() {
struct BadElem(i32);
impl Drop for BadElem {
fn drop(&mut self) {
let BadElem(ref mut x) = *self;
if *x == 0xbadbeef {
panic!("BadElem panic: 0xbadbeef")
}
}
}
let mut v = thin_vec![BadElem(1), BadElem(2), BadElem(0xbadbeef), BadElem(4)];
v.truncate(0);
}
#[test]
fn test_index() {
let vec = thin_vec![1, 2, 3];
assert!(vec[1] == 2);
}
#[test]
#[should_panic]
fn test_index_out_of_bounds() {
let vec = thin_vec![1, 2, 3];
let _ = vec[3];
}
#[test]
#[should_panic]
fn test_slice_out_of_bounds_1() {
let x = thin_vec![1, 2, 3, 4, 5];
&x[!0..];
}
#[test]
#[should_panic]
fn test_slice_out_of_bounds_2() {
let x = thin_vec![1, 2, 3, 4, 5];
&x[..6];
}
#[test]
#[should_panic]
fn test_slice_out_of_bounds_3() {
let x = thin_vec![1, 2, 3, 4, 5];
&x[!0..4];
}
#[test]
#[should_panic]
fn test_slice_out_of_bounds_4() {
let x = thin_vec![1, 2, 3, 4, 5];
&x[1..6];
}
#[test]
#[should_panic]
fn test_slice_out_of_bounds_5() {
let x = thin_vec![1, 2, 3, 4, 5];
&x[3..2];
}
#[test]
#[should_panic]
fn test_swap_remove_empty() {
let mut vec = ThinVec::<i32>::new();
vec.swap_remove(0);
}
#[test]
fn test_move_items() {
let vec = thin_vec![1, 2, 3];
let mut vec2 = thin_vec![];
for i in vec {
vec2.push(i);
}
assert_eq!(vec2, [1, 2, 3]);
}
#[test]
fn test_move_items_reverse() {
let vec = thin_vec![1, 2, 3];
let mut vec2 = thin_vec![];
for i in vec.into_iter().rev() {
vec2.push(i);
}
assert_eq!(vec2, [3, 2, 1]);
}
#[test]
fn test_move_items_zero_sized() {
let vec = thin_vec![(), (), ()];
let mut vec2 = thin_vec![];
for i in vec {
vec2.push(i);
}
assert_eq!(vec2, [(), (), ()]);
}
#[test]
fn test_drain_items() {
let mut vec = thin_vec![1, 2, 3];
let mut vec2 = thin_vec![];
for i in vec.drain(..) {
vec2.push(i);
}
assert_eq!(vec, []);
assert_eq!(vec2, [1, 2, 3]);
}
#[test]
fn test_drain_items_reverse() {
let mut vec = thin_vec![1, 2, 3];
let mut vec2 = thin_vec![];
for i in vec.drain(..).rev() {
vec2.push(i);
}
assert_eq!(vec, []);
assert_eq!(vec2, [3, 2, 1]);
}
#[test]
fn test_drain_items_zero_sized() {
let mut vec = thin_vec![(), (), ()];
let mut vec2 = thin_vec![];
for i in vec.drain(..) {
vec2.push(i);
}
assert_eq!(vec, []);
assert_eq!(vec2, [(), (), ()]);
}
#[test]
#[should_panic]
fn test_drain_out_of_bounds() {
let mut v = thin_vec![1, 2, 3, 4, 5];
v.drain(5..6);
}
#[test]
fn test_drain_range() {
let mut v = thin_vec![1, 2, 3, 4, 5];
for _ in v.drain(4..) {
}
assert_eq!(v, &[1, 2, 3, 4]);
let mut v: ThinVec<_> = (1..6).map(|x| x.to_string()).collect();
for _ in v.drain(1..4) {
}
assert_eq!(v, &[1.to_string(), 5.to_string()]);
let mut v: ThinVec<_> = (1..6).map(|x| x.to_string()).collect();
for _ in v.drain(1..4).rev() {
}
assert_eq!(v, &[1.to_string(), 5.to_string()]);
let mut v: ThinVec<_> = thin_vec![(); 5];
for _ in v.drain(1..4).rev() {
}
assert_eq!(v, &[(), ()]);
}
#[test]
fn test_drain_inclusive_range() {
let mut v = thin_vec!['a', 'b', 'c', 'd', 'e'];
for _ in v.drain(1..=3) {
}
assert_eq!(v, &['a', 'e']);
let mut v: ThinVec<_> = (0..=5).map(|x| x.to_string()).collect();
for _ in v.drain(1..=5) {
}
assert_eq!(v, &["0".to_string()]);
let mut v: ThinVec<String> = (0..=5).map(|x| x.to_string()).collect();
for _ in v.drain(0..=5) {
}
assert_eq!(v, ThinVec::<String>::new());
let mut v: ThinVec<_> = (0..=5).map(|x| x.to_string()).collect();
for _ in v.drain(0..=3) {
}
assert_eq!(v, &["4".to_string(), "5".to_string()]);
let mut v: ThinVec<_> = (0..=1).map(|x| x.to_string()).collect();
for _ in v.drain(..=0) {
}
assert_eq!(v, &["1".to_string()]);
}
#[test]
#[cfg(not(feature = "gecko-ffi"))]
fn test_drain_max_vec_size() {
let mut v = ThinVec::<()>::with_capacity(usize::max_value());
unsafe { v.set_len(usize::max_value()); }
for _ in v.drain(usize::max_value() - 1..) {
}
assert_eq!(v.len(), usize::max_value() - 1);
let mut v = ThinVec::<()>::with_capacity(usize::max_value());
unsafe { v.set_len(usize::max_value()); }
for _ in v.drain(usize::max_value() - 1..=usize::max_value() - 1) {
}
assert_eq!(v.len(), usize::max_value() - 1);
}
#[test]
#[should_panic]
fn test_drain_inclusive_out_of_bounds() {
let mut v = thin_vec![1, 2, 3, 4, 5];
v.drain(5..=5);
}
/* TODO: implement splice?
#[test]
fn test_splice() {
let mut v = thin_vec![1, 2, 3, 4, 5];
let a = [10, 11, 12];
v.splice(2..4, a.iter().cloned());
assert_eq!(v, &[1, 2, 10, 11, 12, 5]);
v.splice(1..3, Some(20));
assert_eq!(v, &[1, 20, 11, 12, 5]);
}
#[test]
fn test_splice_inclusive_range() {
let mut v = thin_vec![1, 2, 3, 4, 5];
let a = [10, 11, 12];
let t1: ThinVec<_> = v.splice(2..=3, a.iter().cloned()).collect();
assert_eq!(v, &[1, 2, 10, 11, 12, 5]);
assert_eq!(t1, &[3, 4]);
let t2: ThinVec<_> = v.splice(1..=2, Some(20)).collect();
assert_eq!(v, &[1, 20, 11, 12, 5]);
assert_eq!(t2, &[2, 10]);
}
#[test]
#[should_panic]
fn test_splice_out_of_bounds() {
let mut v = thin_vec![1, 2, 3, 4, 5];
let a = [10, 11, 12];
v.splice(5..6, a.iter().cloned());
}
#[test]
#[should_panic]
fn test_splice_inclusive_out_of_bounds() {
let mut v = thin_vec![1, 2, 3, 4, 5];
let a = [10, 11, 12];
v.splice(5..=5, a.iter().cloned());
}
#[test]
fn test_splice_items_zero_sized() {
let mut vec = thin_vec![(), (), ()];
let vec2 = thin_vec![];
let t: ThinVec<_> = vec.splice(1..2, vec2.iter().cloned()).collect();
assert_eq!(vec, &[(), ()]);
assert_eq!(t, &[()]);
}
#[test]
fn test_splice_unbounded() {
let mut vec = thin_vec![1, 2, 3, 4, 5];
let t: ThinVec<_> = vec.splice(.., None).collect();
assert_eq!(vec, &[]);
assert_eq!(t, &[1, 2, 3, 4, 5]);
}
#[test]
fn test_splice_forget() {
let mut v = thin_vec![1, 2, 3, 4, 5];
let a = [10, 11, 12];
::std::mem::forget(v.splice(2..4, a.iter().cloned()));
assert_eq!(v, &[1, 2]);
}
*/
/* probs won't ever impl this
#[test]
fn test_into_boxed_slice() {
let xs = thin_vec![1, 2, 3];
let ys = xs.into_boxed_slice();
assert_eq!(&*ys, [1, 2, 3]);
}
*/
#[test]
fn test_append() {
let mut vec = thin_vec![1, 2, 3];
let mut vec2 = thin_vec![4, 5, 6];
vec.append(&mut vec2);
assert_eq!(vec, [1, 2, 3, 4, 5, 6]);
assert_eq!(vec2, []);
}
#[test]
fn test_split_off() {
let mut vec = thin_vec![1, 2, 3, 4, 5, 6];
let vec2 = vec.split_off(4);
assert_eq!(vec, [1, 2, 3, 4]);
assert_eq!(vec2, [5, 6]);
}
/* TODO: implement into_iter methods?
#[test]
fn test_into_iter_as_slice() {
let vec = thin_vec!['a', 'b', 'c'];
let mut into_iter = vec.into_iter();
assert_eq!(into_iter.as_slice(), &['a', 'b', 'c']);
let _ = into_iter.next().unwrap();
assert_eq!(into_iter.as_slice(), &['b', 'c']);
let _ = into_iter.next().unwrap();
let _ = into_iter.next().unwrap();
assert_eq!(into_iter.as_slice(), &[]);
}
#[test]
fn test_into_iter_as_mut_slice() {
let vec = thin_vec!['a', 'b', 'c'];
let mut into_iter = vec.into_iter();
assert_eq!(into_iter.as_slice(), &['a', 'b', 'c']);
into_iter.as_mut_slice()[0] = 'x';
into_iter.as_mut_slice()[1] = 'y';
assert_eq!(into_iter.next().unwrap(), 'x');
assert_eq!(into_iter.as_slice(), &['y', 'c']);
}
#[test]
fn test_into_iter_debug() {
let vec = thin_vec!['a', 'b', 'c'];
let into_iter = vec.into_iter();
let debug = format!("{:?}", into_iter);
assert_eq!(debug, "IntoIter(['a', 'b', 'c'])");
}
#[test]
fn test_into_iter_count() {
assert_eq!(thin_vec![1, 2, 3].into_iter().count(), 3);
}
#[test]
fn test_into_iter_clone() {
fn iter_equal<I: Iterator<Item = i32>>(it: I, slice: &[i32]) {
let v: ThinVec<i32> = it.collect();
assert_eq!(&v[..], slice);
}
let mut it = thin_vec![1, 2, 3].into_iter();
iter_equal(it.clone(), &[1, 2, 3]);
assert_eq!(it.next(), Some(1));
let mut it = it.rev();
iter_equal(it.clone(), &[3, 2]);
assert_eq!(it.next(), Some(3));
iter_equal(it.clone(), &[2]);
assert_eq!(it.next(), Some(2));
iter_equal(it.clone(), &[]);
assert_eq!(it.next(), None);
}
*/
/* TODO: implement CoW interop?
#[test]
fn test_cow_from() {
let borrowed: &[_] = &["borrowed", "(slice)"];
let owned = thin_vec!["owned", "(vec)"];
match (Cow::from(owned.clone()), Cow::from(borrowed)) {
(Cow::Owned(o), Cow::Borrowed(b)) => assert!(o == owned && b == borrowed),
_ => panic!("invalid `Cow::from`"),
}
}
#[test]
fn test_from_cow() {
let borrowed: &[_] = &["borrowed", "(slice)"];
let owned = thin_vec!["owned", "(vec)"];
assert_eq!(ThinVec::from(Cow::Borrowed(borrowed)), thin_vec!["borrowed", "(slice)"]);
assert_eq!(ThinVec::from(Cow::Owned(owned)), thin_vec!["owned", "(vec)"]);
}
*/
/* TODO: make drain covariant
#[allow(dead_code)]
fn assert_covariance() {
fn drain<'new>(d: Drain<'static, &'static str>) -> Drain<'new, &'new str> {
d
}
fn into_iter<'new>(i: IntoIter<&'static str>) -> IntoIter<&'new str> {
i
}
}
*/
/* TODO: specialize vec.into_iter().collect::<ThinVec<_>>();
#[test]
fn from_into_inner() {
let vec = thin_vec![1, 2, 3];
let ptr = vec.as_ptr();
let vec = vec.into_iter().collect::<ThinVec<_>>();
assert_eq!(vec, [1, 2, 3]);
assert_eq!(vec.as_ptr(), ptr);
let ptr = &vec[1] as *const _;
let mut it = vec.into_iter();
it.next().unwrap();
let vec = it.collect::<ThinVec<_>>();
assert_eq!(vec, [2, 3]);
assert!(ptr != vec.as_ptr());
}
*/
/* TODO: implement higher than 16 alignment
#[test]
fn overaligned_allocations() {
#[repr(align(256))]
struct Foo(usize);
let mut v = thin_vec![Foo(273)];
for i in 0..0x1000 {
v.reserve_exact(i);
assert!(v[0].0 == 273);
assert!(v.as_ptr() as usize & 0xff == 0);
v.shrink_to_fit();
assert!(v[0].0 == 273);
assert!(v.as_ptr() as usize & 0xff == 0);
}
}
*/
/* TODO: implement drain_filter?
#[test]
fn drain_filter_empty() {
let mut vec: ThinVec<i32> = thin_vec![];
{
let mut iter = vec.drain_filter(|_| true);
assert_eq!(iter.size_hint(), (0, Some(0)));
assert_eq!(iter.next(), None);
assert_eq!(iter.size_hint(), (0, Some(0)));
assert_eq!(iter.next(), None);
assert_eq!(iter.size_hint(), (0, Some(0)));
}
assert_eq!(vec.len(), 0);
assert_eq!(vec, thin_vec![]);
}
#[test]
fn drain_filter_zst() {
let mut vec = thin_vec![(), (), (), (), ()];
let initial_len = vec.len();
let mut count = 0;
{
let mut iter = vec.drain_filter(|_| true);
assert_eq!(iter.size_hint(), (0, Some(initial_len)));
while let Some(_) = iter.next() {
count += 1;
assert_eq!(iter.size_hint(), (0, Some(initial_len - count)));
}
assert_eq!(iter.size_hint(), (0, Some(0)));
assert_eq!(iter.next(), None);
assert_eq!(iter.size_hint(), (0, Some(0)));
}
assert_eq!(count, initial_len);
assert_eq!(vec.len(), 0);
assert_eq!(vec, thin_vec![]);
}
#[test]
fn drain_filter_false() {
let mut vec = thin_vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
let initial_len = vec.len();
let mut count = 0;
{
let mut iter = vec.drain_filter(|_| false);
assert_eq!(iter.size_hint(), (0, Some(initial_len)));
for _ in iter.by_ref() {
count += 1;
}
assert_eq!(iter.size_hint(), (0, Some(0)));
assert_eq!(iter.next(), None);
assert_eq!(iter.size_hint(), (0, Some(0)));
}
assert_eq!(count, 0);
assert_eq!(vec.len(), initial_len);
assert_eq!(vec, thin_vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10]);
}
#[test]
fn drain_filter_true() {
let mut vec = thin_vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
let initial_len = vec.len();
let mut count = 0;
{
let mut iter = vec.drain_filter(|_| true);
assert_eq!(iter.size_hint(), (0, Some(initial_len)));
while let Some(_) = iter.next() {
count += 1;
assert_eq!(iter.size_hint(), (0, Some(initial_len - count)));
}
assert_eq!(iter.size_hint(), (0, Some(0)));
assert_eq!(iter.next(), None);
assert_eq!(iter.size_hint(), (0, Some(0)));
}
assert_eq!(count, initial_len);
assert_eq!(vec.len(), 0);
assert_eq!(vec, thin_vec![]);
}
#[test]
fn drain_filter_complex() {
{ // [+xxx++++++xxxxx++++x+x++]
let mut vec = thin_vec![1,
2, 4, 6,
7, 9, 11, 13, 15, 17,
18, 20, 22, 24, 26,
27, 29, 31, 33,
34,
35,
36,
37, 39];
let removed = vec.drain_filter(|x| *x % 2 == 0).collect::<ThinVec<_>>();
assert_eq!(removed.len(), 10);
assert_eq!(removed, thin_vec![2, 4, 6, 18, 20, 22, 24, 26, 34, 36]);
assert_eq!(vec.len(), 14);
assert_eq!(vec, thin_vec![1, 7, 9, 11, 13, 15, 17, 27, 29, 31, 33, 35, 37, 39]);
}
{ // [xxx++++++xxxxx++++x+x++]
let mut vec = thin_vec![2, 4, 6,
7, 9, 11, 13, 15, 17,
18, 20, 22, 24, 26,
27, 29, 31, 33,
34,
35,
36,
37, 39];
let removed = vec.drain_filter(|x| *x % 2 == 0).collect::<ThinVec<_>>();
assert_eq!(removed.len(), 10);
assert_eq!(removed, thin_vec![2, 4, 6, 18, 20, 22, 24, 26, 34, 36]);
assert_eq!(vec.len(), 13);
assert_eq!(vec, thin_vec![7, 9, 11, 13, 15, 17, 27, 29, 31, 33, 35, 37, 39]);
}
{ // [xxx++++++xxxxx++++x+x]
let mut vec = thin_vec![2, 4, 6,
7, 9, 11, 13, 15, 17,
18, 20, 22, 24, 26,
27, 29, 31, 33,
34,
35,
36];
let removed = vec.drain_filter(|x| *x % 2 == 0).collect::<ThinVec<_>>();
assert_eq!(removed.len(), 10);
assert_eq!(removed, thin_vec![2, 4, 6, 18, 20, 22, 24, 26, 34, 36]);
assert_eq!(vec.len(), 11);
assert_eq!(vec, thin_vec![7, 9, 11, 13, 15, 17, 27, 29, 31, 33, 35]);
}
{ // [xxxxxxxxxx+++++++++++]
let mut vec = thin_vec![2, 4, 6, 8, 10, 12, 14, 16, 18, 20,
1, 3, 5, 7, 9, 11, 13, 15, 17, 19];
let removed = vec.drain_filter(|x| *x % 2 == 0).collect::<ThinVec<_>>();
assert_eq!(removed.len(), 10);
assert_eq!(removed, thin_vec![2, 4, 6, 8, 10, 12, 14, 16, 18, 20]);
assert_eq!(vec.len(), 10);
assert_eq!(vec, thin_vec![1, 3, 5, 7, 9, 11, 13, 15, 17, 19]);
}
{ // [+++++++++++xxxxxxxxxx]
let mut vec = thin_vec![1, 3, 5, 7, 9, 11, 13, 15, 17, 19,
2, 4, 6, 8, 10, 12, 14, 16, 18, 20];
let removed = vec.drain_filter(|x| *x % 2 == 0).collect::<ThinVec<_>>();
assert_eq!(removed.len(), 10);
assert_eq!(removed, thin_vec![2, 4, 6, 8, 10, 12, 14, 16, 18, 20]);
assert_eq!(vec.len(), 10);
assert_eq!(vec, thin_vec![1, 3, 5, 7, 9, 11, 13, 15, 17, 19]);
}
}
*/
#[test]
fn test_reserve_exact() {
// This is all the same as test_reserve
let mut v = ThinVec::new();
assert_eq!(v.capacity(), 0);
v.reserve_exact(2);
assert!(v.capacity() >= 2);
for i in 0..16 {
v.push(i);
}
assert!(v.capacity() >= 16);
v.reserve_exact(16);
assert!(v.capacity() >= 32);
v.push(16);
v.reserve_exact(16);
assert!(v.capacity() >= 33)
}
/* TODO: implement try_reserve
#[test]
fn test_try_reserve() {
// These are the interesting cases:
// * exactly isize::MAX should never trigger a CapacityOverflow (can be OOM)
// * > isize::MAX should always fail
// * On 16/32-bit should CapacityOverflow
// * On 64-bit should OOM
// * overflow may trigger when adding `len` to `cap` (in number of elements)
// * overflow may trigger when multiplying `new_cap` by size_of::<T> (to get bytes)
const MAX_CAP: usize = isize::MAX as usize;
const MAX_USIZE: usize = usize::MAX;
// On 16/32-bit, we check that allocations don't exceed isize::MAX,
// on 64-bit, we assume the OS will give an OOM for such a ridiculous size.
// Any platform that succeeds for these requests is technically broken with
// ptr::offset because LLVM is the worst.
let guards_against_isize = size_of::<usize>() < 8;
{
// Note: basic stuff is checked by test_reserve
let mut empty_bytes: ThinVec<u8> = ThinVec::new();
// Check isize::MAX doesn't count as an overflow
if let Err(CapacityOverflow) = empty_bytes.try_reserve(MAX_CAP) {
panic!("isize::MAX shouldn't trigger an overflow!");
}
// Play it again, frank! (just to be sure)
if let Err(CapacityOverflow) = empty_bytes.try_reserve(MAX_CAP) {
panic!("isize::MAX shouldn't trigger an overflow!");
}
if guards_against_isize {
// Check isize::MAX + 1 does count as overflow
if let Err(CapacityOverflow) = empty_bytes.try_reserve(MAX_CAP + 1) {
} else { panic!("isize::MAX + 1 should trigger an overflow!") }
// Check usize::MAX does count as overflow
if let Err(CapacityOverflow) = empty_bytes.try_reserve(MAX_USIZE) {
} else { panic!("usize::MAX should trigger an overflow!") }
} else {
// Check isize::MAX + 1 is an OOM
if let Err(AllocErr) = empty_bytes.try_reserve(MAX_CAP + 1) {
} else { panic!("isize::MAX + 1 should trigger an OOM!") }
// Check usize::MAX is an OOM
if let Err(AllocErr) = empty_bytes.try_reserve(MAX_USIZE) {
} else { panic!("usize::MAX should trigger an OOM!") }
}
}
{
// Same basic idea, but with non-zero len
let mut ten_bytes: ThinVec<u8> = thin_vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
if let Err(CapacityOverflow) = ten_bytes.try_reserve(MAX_CAP - 10) {
panic!("isize::MAX shouldn't trigger an overflow!");
}
if let Err(CapacityOverflow) = ten_bytes.try_reserve(MAX_CAP - 10) {
panic!("isize::MAX shouldn't trigger an overflow!");
}
if guards_against_isize {
if let Err(CapacityOverflow) = ten_bytes.try_reserve(MAX_CAP - 9) {
} else { panic!("isize::MAX + 1 should trigger an overflow!"); }
} else {
if let Err(AllocErr) = ten_bytes.try_reserve(MAX_CAP - 9) {
} else { panic!("isize::MAX + 1 should trigger an OOM!") }
}
// Should always overflow in the add-to-len
if let Err(CapacityOverflow) = ten_bytes.try_reserve(MAX_USIZE) {
} else { panic!("usize::MAX should trigger an overflow!") }
}
{
// Same basic idea, but with interesting type size
let mut ten_u32s: ThinVec<u32> = thin_vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
if let Err(CapacityOverflow) = ten_u32s.try_reserve(MAX_CAP/4 - 10) {
panic!("isize::MAX shouldn't trigger an overflow!");
}
if let Err(CapacityOverflow) = ten_u32s.try_reserve(MAX_CAP/4 - 10) {
panic!("isize::MAX shouldn't trigger an overflow!");
}
if guards_against_isize {
if let Err(CapacityOverflow) = ten_u32s.try_reserve(MAX_CAP/4 - 9) {
} else { panic!("isize::MAX + 1 should trigger an overflow!"); }
} else {
if let Err(AllocErr) = ten_u32s.try_reserve(MAX_CAP/4 - 9) {
} else { panic!("isize::MAX + 1 should trigger an OOM!") }
}
// Should fail in the mul-by-size
if let Err(CapacityOverflow) = ten_u32s.try_reserve(MAX_USIZE - 20) {
} else {
panic!("usize::MAX should trigger an overflow!");
}
}
}
#[test]
fn test_try_reserve_exact() {
// This is exactly the same as test_try_reserve with the method changed.
// See that test for comments.
const MAX_CAP: usize = isize::MAX as usize;
const MAX_USIZE: usize = usize::MAX;
let guards_against_isize = size_of::<usize>() < 8;
{
let mut empty_bytes: ThinVec<u8> = ThinVec::new();
if let Err(CapacityOverflow) = empty_bytes.try_reserve_exact(MAX_CAP) {
panic!("isize::MAX shouldn't trigger an overflow!");
}
if let Err(CapacityOverflow) = empty_bytes.try_reserve_exact(MAX_CAP) {
panic!("isize::MAX shouldn't trigger an overflow!");
}
if guards_against_isize {
if let Err(CapacityOverflow) = empty_bytes.try_reserve_exact(MAX_CAP + 1) {
} else { panic!("isize::MAX + 1 should trigger an overflow!") }
if let Err(CapacityOverflow) = empty_bytes.try_reserve_exact(MAX_USIZE) {
} else { panic!("usize::MAX should trigger an overflow!") }
} else {
if let Err(AllocErr) = empty_bytes.try_reserve_exact(MAX_CAP + 1) {
} else { panic!("isize::MAX + 1 should trigger an OOM!") }
if let Err(AllocErr) = empty_bytes.try_reserve_exact(MAX_USIZE) {
} else { panic!("usize::MAX should trigger an OOM!") }
}
}
{
let mut ten_bytes: ThinVec<u8> = thin_vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
if let Err(CapacityOverflow) = ten_bytes.try_reserve_exact(MAX_CAP - 10) {
panic!("isize::MAX shouldn't trigger an overflow!");
}
if let Err(CapacityOverflow) = ten_bytes.try_reserve_exact(MAX_CAP - 10) {
panic!("isize::MAX shouldn't trigger an overflow!");
}
if guards_against_isize {
if let Err(CapacityOverflow) = ten_bytes.try_reserve_exact(MAX_CAP - 9) {
} else { panic!("isize::MAX + 1 should trigger an overflow!"); }
} else {
if let Err(AllocErr) = ten_bytes.try_reserve_exact(MAX_CAP - 9) {
} else { panic!("isize::MAX + 1 should trigger an OOM!") }
}
if let Err(CapacityOverflow) = ten_bytes.try_reserve_exact(MAX_USIZE) {
} else { panic!("usize::MAX should trigger an overflow!") }
}
{
let mut ten_u32s: ThinVec<u32> = thin_vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
if let Err(CapacityOverflow) = ten_u32s.try_reserve_exact(MAX_CAP/4 - 10) {
panic!("isize::MAX shouldn't trigger an overflow!");
}
if let Err(CapacityOverflow) = ten_u32s.try_reserve_exact(MAX_CAP/4 - 10) {
panic!("isize::MAX shouldn't trigger an overflow!");
}
if guards_against_isize {
if let Err(CapacityOverflow) = ten_u32s.try_reserve_exact(MAX_CAP/4 - 9) {
} else { panic!("isize::MAX + 1 should trigger an overflow!"); }
} else {
if let Err(AllocErr) = ten_u32s.try_reserve_exact(MAX_CAP/4 - 9) {
} else { panic!("isize::MAX + 1 should trigger an OOM!") }
}
if let Err(CapacityOverflow) = ten_u32s.try_reserve_exact(MAX_USIZE - 20) {
} else { panic!("usize::MAX should trigger an overflow!") }
}
}
*/
}
|