summaryrefslogtreecommitdiffstats
path: root/app/operations/gimpoperationflood.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 16:23:22 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 16:23:22 +0000
commite42129241681dde7adae7d20697e7b421682fbb4 (patch)
treeaf1fe815a5e639e68e59fabd8395ec69458b3e5e /app/operations/gimpoperationflood.c
parentInitial commit. (diff)
downloadgimp-e42129241681dde7adae7d20697e7b421682fbb4.tar.xz
gimp-e42129241681dde7adae7d20697e7b421682fbb4.zip
Adding upstream version 2.10.22.upstream/2.10.22upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'app/operations/gimpoperationflood.c')
-rw-r--r--app/operations/gimpoperationflood.c1104
1 files changed, 1104 insertions, 0 deletions
diff --git a/app/operations/gimpoperationflood.c b/app/operations/gimpoperationflood.c
new file mode 100644
index 0000000..b35fe2e
--- /dev/null
+++ b/app/operations/gimpoperationflood.c
@@ -0,0 +1,1104 @@
+/* GIMP - The GNU Image Manipulation Program
+ * Copyright (C) 1995 Spencer Kimball and Peter Mattis
+ *
+ * gimpoperationflood.c
+ * Copyright (C) 2016 Ell
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <https://www.gnu.org/licenses/>.
+ */
+
+
+/* Implementation of the Flood algorithm.
+ * See https://wiki.gimp.org/wiki/Algorithms:Flood for details.
+ */
+
+
+#include "config.h"
+
+#include <string.h> /* For `memcpy()`. */
+
+#include <cairo.h>
+#include <gegl.h>
+#include <gdk-pixbuf/gdk-pixbuf.h>
+
+#include "libgimpbase/gimpbase.h"
+
+#include "operations-types.h"
+
+#include "gimpoperationflood.h"
+
+
+/* Maximal gap, in pixels, between consecutive dirty ranges, below (and
+ * including) which they are coalesced, at the beginning of the distribution
+ * step.
+ */
+#define GIMP_OPERATION_FLOOD_COALESCE_MAX_GAP 32
+
+
+typedef struct _GimpOperationFloodSegment GimpOperationFloodSegment;
+typedef struct _GimpOperationFloodDirtyRange GimpOperationFloodDirtyRange;
+typedef struct _GimpOperationFloodContext GimpOperationFloodContext;
+
+
+/* A segment. */
+struct _GimpOperationFloodSegment
+{
+ /* A boolean flag indicating whether the image- and ROI-virtual coordinate
+ * systems should be transposed when processing this segment. TRUE iff the
+ * segment is vertical.
+ */
+ guint transpose : 1;
+
+ /* The y-coordinate of the segment, in the ROI-virtual coordinate system. */
+ guint y : 8 * sizeof (guint) - 3;
+ /* The difference between the y-coordinates of the source segment and this
+ * segment, in the ROI-virtual coordinate system. Either -1 or +1 for
+ * ordinary segments, and 0 for seed segments, as a special case.
+ *
+ * Note the use of `signed` as the type specifier. The C standard doesn't
+ * specify the signedness of bit-fields whose type specifier is `int`, or a
+ * typedef-name defined as `int`, such as `gint`.
+ */
+ signed source_y_delta : 2;
+
+ /* The x-coordinates of the first and last pixels of the segment, in the ROI-
+ * virtual coordinate system. Note that this is a closed range:
+ * [x[0], x[1]].
+ */
+ gint x[2];
+};
+/* Make sure the maximal image dimension fits in
+ * `GimpOperationFloodSegment::y`.
+ */
+G_STATIC_ASSERT (GIMP_MAX_IMAGE_SIZE <= (1 << (8 * sizeof (guint) - 3)));
+
+/* A dirty range of the current segment. */
+struct _GimpOperationFloodDirtyRange
+{
+ /* A boolean flag indicating whether the range was extended, or its existing
+ * pixels were modified, during the horizontal propagation step.
+ */
+ gboolean modified;
+
+ /* The x-coordinates of the first and last pixels of the range, in the ROI-
+ * virtual coordinate system. Note that this is a closed range:
+ * [x[0], x[1]].
+ */
+ gint x[2];
+};
+
+/* Common parameters for the various parts of the algorithm. */
+struct _GimpOperationFloodContext
+{
+ /* Input image. */
+ GeglBuffer *input;
+ /* Input image format. */
+ const Babl *input_format;
+ /* Output image. */
+ GeglBuffer *output;
+ /* Output image format. */
+ const Babl *output_format;
+
+ /* Region of interset. */
+ GeglRectangle roi;
+
+ /* Current segment. */
+ GimpOperationFloodSegment segment;
+
+ /* The following arrays hold the ground- and water-level of the current- and
+ * source-segments. The vertical- and horizontal-propagation steps don't
+ * generally access the input and output GEGL buffers directly, but rather
+ * read from, and write to, these arrays, for efficiency. These arrays are
+ * read-from, and written-to, the corresponding GEGL buffers before and after
+ * these steps.
+ */
+
+ /* Ground level of the current segment, indexed by x-coordinate in the ROI-
+ * virtual coordinate system. Only valid inside the range
+ * `[segment.x[0], segment.x[1]]`.
+ */
+ gfloat *ground;
+ /* Water level of the current segment, indexed by x-coordinate in the ROI-
+ * virtual coordinate system. Initially only valid inside the range
+ * `[segment.x[0], segment.x[1]]`, but may be written-to outside this range
+ * during horizontal propagation, if the dirty ranges are extended past the
+ * bounds of the segment.
+ */
+ gfloat *water;
+ /* Water level of the source segment, indexed by x-coordinate in the ROI-
+ * virtual coordinate system. Only valid inside the range
+ * `[segment.x[0], segment.x[1]]`.
+ */
+ gfloat *source_water;
+
+ /* A common buffer for the water level of the current- and source-segments.
+ * `water` and `source_water` are pointers into this buffer. This buffer is
+ * used as an optimization, in order to read the water level of both segments
+ * from the output GEGL buffer in a single call, and is otherwise not used
+ * directly (`water` and `source_water` are used to access the water level
+ * instead.)
+ */
+ gfloat *water_buffer;
+};
+
+
+static void gimp_operation_flood_prepare (GeglOperation *operation);
+static GeglRectangle gimp_operation_flood_get_required_for_output (GeglOperation *self,
+ const gchar *input_pad,
+ const GeglRectangle *roi);
+static GeglRectangle gimp_operation_flood_get_cached_region (GeglOperation *self,
+ const GeglRectangle *roi);
+
+static void gimp_operation_flood_process_push (GQueue *queue,
+ gboolean transpose,
+ gint y,
+ gint source_y_delta,
+ gint x0,
+ gint x1);
+static void gimp_operation_flood_process_seed (GQueue *queue,
+ const GeglRectangle *roi);
+static void gimp_operation_flood_process_transform_rect (const GimpOperationFloodContext *ctx,
+ GeglRectangle *dest,
+ const GeglRectangle *src);
+static void gimp_operation_flood_process_fetch (GimpOperationFloodContext *ctx);
+static gint gimp_operation_flood_process_propagate_vertical (GimpOperationFloodContext *ctx,
+ GimpOperationFloodDirtyRange *dirty_ranges);
+static void gimp_operation_flood_process_propagate_horizontal (GimpOperationFloodContext *ctx,
+ gint dir,
+ GimpOperationFloodDirtyRange *dirty_ranges,
+ gint range_count);
+static gint gimp_operation_flood_process_coalesce (const GimpOperationFloodContext *ctx,
+ GimpOperationFloodDirtyRange *dirty_ranges,
+ gint range_count,
+ gint gap);
+static void gimp_operation_flood_process_commit (const GimpOperationFloodContext *ctx,
+ const GimpOperationFloodDirtyRange *dirty_ranges,
+ gint range_count);
+static void gimp_operation_flood_process_distribute (const GimpOperationFloodContext *ctx,
+ GQueue *queue,
+ const GimpOperationFloodDirtyRange *dirty_ranges,
+ gint range_count);
+static gboolean gimp_operation_flood_process (GeglOperation *operation,
+ GeglBuffer *input,
+ GeglBuffer *output,
+ const GeglRectangle *roi,
+ gint level);
+
+
+G_DEFINE_TYPE (GimpOperationFlood, gimp_operation_flood,
+ GEGL_TYPE_OPERATION_FILTER)
+
+#define parent_class gimp_operation_flood_parent_class
+
+
+/* GEGL graph for the test case. */
+static const gchar* reference_xml = "<?xml version='1.0' encoding='UTF-8'?>"
+"<gegl>"
+"<node operation='gimp:flood'> </node>"
+"<node operation='gegl:load'>"
+" <params>"
+" <param name='path'>flood-input.png</param>"
+" </params>"
+"</node>"
+"</gegl>";
+
+
+static void
+gimp_operation_flood_class_init (GimpOperationFloodClass *klass)
+{
+ GeglOperationClass *operation_class = GEGL_OPERATION_CLASS (klass);
+ GeglOperationFilterClass *filter_class = GEGL_OPERATION_FILTER_CLASS (klass);
+
+ /* The input and output buffers must be different, since we generally need to
+ * be able to access the input-image values after having written to the
+ * output buffer.
+ */
+ operation_class->want_in_place = FALSE;
+ /* We don't want `GeglOperationFilter` to split the image across multiple
+ * threads, since this operation depends on, and affects, the image as a
+ * whole.
+ */
+ operation_class->threaded = FALSE;
+ /* Note that both of these options are the default; we set them here for
+ * explicitness.
+ */
+
+ gegl_operation_class_set_keys (operation_class,
+ "name", "gimp:flood",
+ "categories", "gimp",
+ "description", "GIMP Flood operation",
+ "reference", "https://wiki.gimp.org/wiki/Algorithms:Flood",
+ "reference-image", "flood-output.png",
+ "reference-composition", reference_xml,
+ NULL);
+
+ operation_class->prepare = gimp_operation_flood_prepare;
+ operation_class->get_required_for_output = gimp_operation_flood_get_required_for_output;
+ operation_class->get_cached_region = gimp_operation_flood_get_cached_region;
+
+ filter_class->process = gimp_operation_flood_process;
+}
+
+static void
+gimp_operation_flood_init (GimpOperationFlood *self)
+{
+}
+
+static void
+gimp_operation_flood_prepare (GeglOperation *operation)
+{
+ const Babl *space = gegl_operation_get_source_space (operation, "input");
+ gegl_operation_set_format (operation, "input", babl_format_with_space ("Y float", space));
+ gegl_operation_set_format (operation, "output", babl_format_with_space ("Y float", space));
+}
+
+static GeglRectangle
+gimp_operation_flood_get_required_for_output (GeglOperation *self,
+ const gchar *input_pad,
+ const GeglRectangle *roi)
+{
+ return *gegl_operation_source_get_bounding_box (self, "input");
+}
+
+static GeglRectangle
+gimp_operation_flood_get_cached_region (GeglOperation *self,
+ const GeglRectangle *roi)
+{
+ return *gegl_operation_source_get_bounding_box (self, "input");
+}
+
+
+/* Pushes a single segment into the queue. */
+static void
+gimp_operation_flood_process_push (GQueue *queue,
+ gboolean transpose,
+ gint y,
+ gint source_y_delta,
+ gint x0,
+ gint x1)
+{
+ GimpOperationFloodSegment *segment;
+
+ segment = g_slice_new (GimpOperationFloodSegment);
+
+ segment->transpose = transpose;
+ segment->y = y;
+ segment->source_y_delta = source_y_delta;
+ segment->x[0] = x0;
+ segment->x[1] = x1;
+
+ g_queue_push_tail (queue, segment);
+}
+
+/* Pushes the seed segments into the queue. Recall that the seed segments are
+ * indicated by having their `source_y_delta` field equal 0.
+ *
+ * `roi` is given in the image-physical coordinate system.
+ */
+static void
+gimp_operation_flood_process_seed (GQueue *queue,
+ const GeglRectangle *roi)
+{
+ if (roi->width == 0 || roi->height == 0)
+ return;
+
+ /* Top edge. */
+ gimp_operation_flood_process_push (queue,
+ /* transpose = */ FALSE,
+ /* y = */ 0,
+ /* source_y_delta = */ 0,
+ /* x0 = */ 0,
+ /* x1 = */ roi->width - 1);
+
+ if (roi->height == 1)
+ return;
+
+ /* Bottom edge. */
+ gimp_operation_flood_process_push (queue,
+ /* transpose = */ FALSE,
+ /* y = */ roi->height - 1,
+ /* source_y_delta = */ 0,
+ /* x0 = */ 0,
+ /* x1 = */ roi->width - 1);
+
+ if (roi->height == 2)
+ return;
+
+ /* Left edge. */
+ gimp_operation_flood_process_push (queue,
+ /* transpose = */ TRUE,
+ /* y = */ 0,
+ /* source_y_delta = */ 0,
+ /* x0 = */ 1,
+ /* x1 = */ roi->height - 2);
+
+ if (roi->width == 1)
+ return;
+
+ /* Right edge. */
+ gimp_operation_flood_process_push (queue,
+ /* transpose = */ TRUE,
+ /* y = */ roi->width - 1,
+ /* source_y_delta = */ 0,
+ /* x0 = */ 1,
+ /* x1 = */ roi->height - 2);
+}
+
+/* Transforms a `GeglRectangle` between the image-physical and image-virtual
+ * coordinate systems, in either direction, based on the attributes of the
+ * current segment (namely, its `transpose` flag.)
+ *
+ * Takes the input rectangle through `src`, and stores the result in `dest`.
+ * Both parameters may refer to the same object.
+ */
+static void
+gimp_operation_flood_process_transform_rect (const GimpOperationFloodContext *ctx,
+ GeglRectangle *dest,
+ const GeglRectangle *src)
+{
+ if (! ctx->segment.transpose)
+ *dest = *src;
+ else
+ {
+ gint temp;
+
+ temp = src->x;
+ dest->x = src->y;
+ dest->y = temp;
+
+ temp = src->width;
+ dest->width = src->height;
+ dest->height = temp;
+ }
+}
+
+/* Reads the ground- and water-level for the current- and source-segments from
+ * the GEGL buffers into the corresponding arrays. Sets up the `water` and
+ * `source_water` pointers of `ctx` to point to the right location in
+ * `water_buffer`.
+ */
+static void
+gimp_operation_flood_process_fetch (GimpOperationFloodContext *ctx)
+{
+ /* Image-virtual and image-physical rectangles, respectively. */
+ GeglRectangle iv_rect, ip_rect;
+
+ /* Set the horizontal extent of the rectangle to span the entire segment. */
+ iv_rect.x = ctx->roi.x + ctx->segment.x[0];
+ iv_rect.width = ctx->segment.x[1] - ctx->segment.x[0] + 1;
+
+ /* For reading the water level, we treat ordinary (non-seed) and seed
+ * segments differently.
+ */
+ if (ctx->segment.source_y_delta != 0)
+ {
+ /* Ordinary segment. */
+
+ /* We set the vertical extent of the rectangle to span both the current-
+ * and the source-segments, and set the `water` and `source_water`
+ * pointers to point to two consecutive rows of the `water_buffer` array
+ * (the y-coordinate of the rectangle, and which row is above which,
+ * depends on whether the source segment is above, or below, the current
+ * one.)
+ */
+ if (ctx->segment.source_y_delta < 0)
+ {
+ iv_rect.y = ctx->roi.y + ctx->segment.y - 1;
+ ctx->water = ctx->water_buffer + ctx->roi.width;
+ ctx->source_water = ctx->water_buffer;
+ }
+ else
+ {
+ iv_rect.y = ctx->roi.y + ctx->segment.y;
+ ctx->water = ctx->water_buffer;
+ ctx->source_water = ctx->water_buffer + ctx->roi.width;
+ }
+ iv_rect.height = 2;
+
+ /* Transform `iv_rect` to the image-physical coordinate system, and store
+ * the result in `ip_rect`.
+ */
+ gimp_operation_flood_process_transform_rect (ctx, &ip_rect, &iv_rect);
+
+ /* Read the water level from the output GEGL buffer into `water_buffer`.
+ *
+ * Notice the stride: If the current segment is horizontal, then we're
+ * reading a pair of rows directly into the correct locations inside
+ * `water_buffer` (i.e., `water` and `source_water`). On the other hand,
+ * if the current segment is vertical, then we're reading a pair of
+ * *columns*; we set the stride to 2-pixels so that the current- and
+ * source-water levels are interleaved in `water_buffer`, and reorder
+ * them below.
+ */
+ gegl_buffer_get (ctx->output, &ip_rect, 1.0, ctx->output_format,
+ ctx->water_buffer + ctx->segment.x[0],
+ sizeof (gfloat) *
+ (ctx->segment.transpose ? 2 : ctx->roi.width),
+ GEGL_ABYSS_NONE);
+
+ /* As mentioned above, if the current segment is vertical, then the
+ * water levels of the current- and source-segments are interleaved in
+ * `water_buffer`. We deinterleave the water levels into `water` and
+ * `source_water`, using the yet-to-be-written-to `ground` array as a
+ * temporary buffer, as necessary.
+ */
+ if (ctx->segment.transpose)
+ {
+ const gfloat *src;
+ gfloat *dest1, *dest2, *temp;
+ gint size, temp_size;
+ gint i;
+
+ src = ctx->water_buffer + ctx->segment.x[0];
+
+ dest1 = ctx->water_buffer + ctx->segment.x[0];
+ dest2 = ctx->water_buffer + ctx->roi.width + ctx->segment.x[0];
+ temp = ctx->ground;
+
+ size = ctx->segment.x[1] - ctx->segment.x[0] + 1;
+ temp_size = MAX (0, 2 * size - ctx->roi.width);
+
+ for (i = 0; i < temp_size; i++)
+ {
+ dest1[i] = src[2 * i];
+ temp[i] = src[2 * i + 1];
+ }
+ for (; i < size; i++)
+ {
+ dest1[i] = src[2 * i];
+ dest2[i] = src[2 * i + 1];
+ }
+
+ memcpy (dest2, temp, sizeof (gfloat) * temp_size);
+ }
+ }
+ else
+ {
+ /* Seed segment. */
+
+ gint x;
+
+ /* Set the `water` and `source_water` pointers to point to consecutive
+ * rows of the `water_buffer` array.
+ */
+ ctx->water = ctx->water_buffer;
+ ctx->source_water = ctx->water_buffer + ctx->roi.width;
+
+ /* Set the vertical extent of the rectangle to span a the current
+ * segment's row.
+ */
+ iv_rect.y = ctx->roi.y + ctx->segment.y;
+ iv_rect.height = 1;
+
+ /* Transform `iv_rect` to the image-physical coordinate system, and store
+ * the result in `ip_rect`.
+ */
+ gimp_operation_flood_process_transform_rect (ctx, &ip_rect, &iv_rect);
+
+ /* Read the water level of the current segment from the output GEGL
+ * buffer into `water`.
+ */
+ gegl_buffer_get (ctx->output, &ip_rect, 1.0, ctx->output_format,
+ ctx->water + ctx->segment.x[0],
+ GEGL_AUTO_ROWSTRIDE, GEGL_ABYSS_NONE);
+
+ /* Initialize `source_water` to 0, as this is a seed segment. */
+ for (x = ctx->segment.x[0]; x <= ctx->segment.x[1]; x++)
+ ctx->source_water[x] = 0.0;
+ }
+
+ /* Set the vertical extent of the rectangle to span a the current segment's
+ * row.
+ */
+ iv_rect.y = ctx->roi.y + ctx->segment.y;
+ iv_rect.height = 1;
+
+ /* Transform `iv_rect` to the image-physical coordinate system, and store the
+ * result in `ip_rect`.
+ */
+ gimp_operation_flood_process_transform_rect (ctx, &ip_rect, &iv_rect);
+
+ /* Read the ground level of the current segment from the input GEGL buffer
+ * into `ground`.
+ */
+ gegl_buffer_get (ctx->input, &ip_rect, 1.0, ctx->input_format,
+ ctx->ground + ctx->segment.x[0],
+ GEGL_AUTO_ROWSTRIDE, GEGL_ABYSS_NONE);
+}
+
+/* Performs the vertical propagation step of the algorithm. Writes the dirty
+ * ranges to the `dirty_ranges` parameter, and returns the number of dirty
+ * ranges as the function's result.
+ */
+static gint
+gimp_operation_flood_process_propagate_vertical (GimpOperationFloodContext *ctx,
+ GimpOperationFloodDirtyRange *dirty_ranges)
+{
+ GimpOperationFloodDirtyRange *range = dirty_ranges;
+ gint x;
+
+ for (x = ctx->segment.x[0]; x <= ctx->segment.x[1]; x++)
+ {
+ /* Scan the segment until we find a pixel whose water level needs to be
+ * updated.
+ */
+ if (ctx->source_water[x] < ctx->water[x] &&
+ ctx->ground[x] < ctx->water[x])
+ {
+ /* Compute and update the water level. */
+ gfloat level = MAX (ctx->source_water[x], ctx->ground[x]);
+
+ ctx->water[x] = level;
+
+ /* Start a new dirty range at the current pixel. */
+ range->x[0] = x;
+ range->modified = FALSE;
+
+ for (x++; x <= ctx->segment.x[1]; x++)
+ {
+ /* Keep scanning the segment while the water level of consecutive
+ * pixels needs to be updated.
+ */
+ if (ctx->source_water[x] < ctx->water[x] &&
+ ctx->ground[x] < ctx->water[x])
+ {
+ /* Compute and update the water level. */
+ gfloat other_level = MAX (ctx->source_water[x],
+ ctx->ground[x]);
+
+ ctx->water[x] = other_level;
+
+ /* If the water level of the current pixel, `other_level`,
+ * equals the water level of the current dirty range,
+ * `level`, we keep scanning, making the current pixel part
+ * of the current range. On the other hand, if the current
+ * pixel's water level is different than the that of the
+ * current range, we finalize the range, and start a new one
+ * at the current pixel.
+ */
+ if (other_level != level)
+ {
+ range->x[1] = x - 1;
+ range++;
+
+ range->x[0] = x;
+ range->modified = FALSE;
+ level = other_level;
+ }
+ }
+ else
+ break;
+ }
+
+ /* Finalize the current dirty range. */
+ range->x[1] = x - 1;
+ range++;
+
+ /* Make sure we don't over-increment `x` on the continuation of the
+ * loop.
+ */
+ if (x > ctx->segment.x[1])
+ break;
+ }
+ }
+
+ /* Return the number of dirty ranges. */
+ return range - dirty_ranges;
+}
+
+/* Performs a single pass of the horizontal propagation step of the algorithm.
+ * `dir` controls the direction of the pass: either +1 for a left-to-right
+ * pass, or -1 for a right-to-left pass. The dirty ranges are passed through
+ * the `dirty_ranges` array (and their number in `range_count`), and are
+ * modified in-place.
+ */
+static void
+gimp_operation_flood_process_propagate_horizontal (GimpOperationFloodContext *ctx,
+ gint dir,
+ GimpOperationFloodDirtyRange *dirty_ranges,
+ gint range_count)
+{
+ /* The index of the terminal (i.e., "`dir`-most") component of the `x[]`
+ * array of `GimpOperationFloodSegment` and `GimpOperationFloodDirtyRange`,
+ * based on the scan direction. Equals 1 (i.e., the right component) when
+ * `dir` is +1 (i.e., left-to-right), and equals 0 (i.e., the left component)
+ * when `dir` is -1 (i.e., right-to-left).
+ */
+ gint x_component;
+ /* One-past the final x-coordinate of the ROI, in the ROI-virtual coordinate
+ * system, based on the scan direction. That is, the x-coordinate of the
+ * pixel to the right of the rightmost pixel, for a left-to-right scan, and
+ * of the pixel to the left of the leftmost pixel, for a right-to-left scan.
+ */
+ gint roi_lim;
+ /* One-past the final x-coordinate of the segment, in the ROI-virtual
+ * coordinate system, based on the scan direction, in a similar fashion to
+ * `roi_lim`.
+ */
+ gint segment_lim;
+ /* The indices of the first, and one-past-the-last dirty ranges, based on the
+ * direction of the scan. Recall that when scanning right-to-left, we
+ * iterate over the ranges in reverse.
+ */
+ gint first_range, last_range;
+ /* Index of the current dirty range. */
+ gint range_index;
+ /* Image-virtual and image-physical rectangles, respectively. */
+ GeglRectangle iv_rect, ip_rect;
+
+ /* Initialize the above variables based on the scan direction. */
+ if (dir > 0)
+ {
+ /* Left-to-right. */
+ x_component = 1;
+ roi_lim = ctx->roi.width;
+ first_range = 0;
+ last_range = range_count;
+ }
+ else
+ {
+ /* Right-to-left. */
+ x_component = 0;
+ roi_lim = -1;
+ first_range = range_count - 1;
+ last_range = -1;
+ }
+ segment_lim = ctx->segment.x[x_component] + dir;
+
+ /* We loop over the dirty ranges, in the direction of the scan. For each
+ * range, we iterate over the pixels, in the scan direction, starting at the
+ * outer edge of the range, and update the water level, considering only the
+ * water level of the previous and current pixels, until we arrive at a pixel
+ * whose water level remains the same, at which point we move to the next
+ * range, as described in the algorithm overview.
+ */
+ for (range_index = first_range;
+ range_index != last_range;
+ range_index += dir)
+ {
+ /* Current dirty range. */
+ GimpOperationFloodDirtyRange *range;
+ /* Current pixel, in the ROI-virtual coordinate system. */
+ gint x;
+ /* We use `level` to compute the water level of the current pixel. At
+ * the beginning of each iteration, it holds the water level of the
+ * previous pixel.
+ */
+ gfloat level;
+ /* The `inside` flag indicates whether `x` is inside the current segment.
+ * Recall that we may iterate past the bounds of the current segment, in
+ * which case we need to read the ground- and water-levels from the GEGL
+ * buffers directly, instead of the corresponding arrays.
+ */
+ gboolean inside;
+ /* Loop limit. */
+ gint lim;
+
+ range = &dirty_ranges[range_index];
+ /* Last x-coordinate of the range, in the direction of the scan. */
+ x = range->x[x_component];
+ /* We start iterating on the pixel after `x`; initialize `level` to the
+ * water level of the previous pixel.
+ */
+ level = ctx->water[x];
+ /* The ranges produced by the vertical propagation step are all within
+ * the bounds of the segment; the horizontal propagation step may only
+ * extend them in the direction of the scan. Therefore, on both passes
+ * of the horizontal propagation step, the last pixel of each range, in
+ * the direction of the scan, is initially inside the segment.
+ */
+ inside = TRUE;
+ /* If this isn't the last range, break the loop at the beginning of the
+ * next range. Otherwise, break the loop at the edge of the ROI.
+ */
+ if (range_index + dir != last_range)
+ lim = (range + dir)->x[1 - x_component];
+ else
+ lim = roi_lim;
+
+ /* Loop over the pixels between the edge of the current range, and the
+ * beginning of the next range (or the edge of the ROI).
+ */
+ for (x += dir; x != lim; x += dir)
+ {
+ gfloat ground_level, water_level;
+
+ /* Recall that `segment_lim` is one-past the last pixel of the
+ * segment. If we hit it, we've gone outside the segment bounds.
+ */
+ if (x == segment_lim)
+ {
+ inside = FALSE;
+ /* Initialize the rectangle to sample pixels directly from the
+ * GEGL buffers.
+ */
+ iv_rect.y = ctx->roi.y + ctx->segment.y;
+ iv_rect.width = 1;
+ iv_rect.height = 1;
+ }
+
+ /* If we're inside the segment, read the ground- and water-levels
+ * from the corresponding arrays; otherwise, read them from the GEGL
+ * buffers directly. Note that, on each pass, we may only write to
+ * pixels outside the segment *in direction of the scan* (in which
+ * case, the new values are written to the `water` array, but not
+ * directly to the output GEGL buffer), hence, when reading from the
+ * GEGL buffers, there's no danger of reading stale values, that were
+ * changed on the previous pass.
+ */
+ if (inside)
+ {
+ ground_level = ctx->ground[x];
+ water_level = ctx->water[x];
+ }
+ else
+ {
+ iv_rect.x = ctx->roi.x + x;
+
+ /* Transform `iv_rect` to the image-physical coordinate system,
+ * and store the result in `ip_rect`.
+ */
+ gimp_operation_flood_process_transform_rect (ctx,
+ &ip_rect, &iv_rect);
+
+ /* Read the current pixel's ground level. */
+ gegl_buffer_get (ctx->input, &ip_rect, 1.0, ctx->input_format,
+ &ground_level,
+ GEGL_AUTO_ROWSTRIDE, GEGL_ABYSS_NONE);
+ /* Read the current pixel's water level. */
+ gegl_buffer_get (ctx->output, &ip_rect, 1.0, ctx->output_format,
+ &water_level,
+ GEGL_AUTO_ROWSTRIDE, GEGL_ABYSS_NONE);
+ }
+
+ /* The new water level is the maximum of the current ground level,
+ * and the minimum of the current and previous water levels. Recall
+ * that `level` holds the previous water level, and that the current
+ * water level is never less than the ground level.
+ */
+ if (level < ground_level)
+ level = ground_level;
+ if (level < water_level)
+ {
+ /* The water level changed. Update the current pixel, and set
+ * the `modified` flag of the current range, since it will be
+ * extended to include the current pixel.
+ */
+ ctx->water[x] = level;
+ range->modified = TRUE;
+ }
+ else
+ /* The water level stayed the same. Break the loop. */
+ break;
+ }
+
+ /* Extend the current dirty range to include the last modified pixel, if
+ * any.
+ */
+ range->x[x_component] = x - dir;
+
+ /* If we stopped the loop before hitting the edge of the next range, or
+ * if we're at the last range, continue to the next range (or quit).
+ */
+ if (x != lim || range_index + dir == last_range)
+ continue;
+
+ /* If we hit the edge of the next range, we keep propagating the changes
+ * *inside* the next range, until we hit its other edge, or until the
+ * water level stays the same.
+ */
+ range += dir;
+ lim = range->x[x_component] + dir;
+
+ for (; x != lim; x += dir)
+ {
+ /* Note that we're necessarily inside the segment right now, since
+ * the only range that could have been extended past the edge of the
+ * segment by the previous pass, is the first range of the current
+ * pass, while the range we're currently inside is at least the
+ * second.
+ */
+ if (level < ctx->ground[x])
+ level = ctx->ground[x];
+ if (level < ctx->water[x])
+ {
+ ctx->water[x] = level;
+ /* Set the `modified` flag of the range, since the water level of
+ * its existing pixels changed.
+ */
+ range->modified = TRUE;
+ }
+ else
+ break;
+ }
+ }
+}
+
+/* Coalesces consecutive dirty ranges that are separated by a gap less-than or
+ * equal-to `max_gap`, in-place, and returns the new number of ranges.
+ */
+static gint
+gimp_operation_flood_process_coalesce (const GimpOperationFloodContext *ctx,
+ GimpOperationFloodDirtyRange *dirty_ranges,
+ gint range_count,
+ gint max_gap)
+{
+ /* First and last ranges to coalesce, respectively. */
+ const GimpOperationFloodDirtyRange *first_range, *last_range;
+ /* Destination range. */
+ GimpOperationFloodDirtyRange *range = dirty_ranges;
+
+ for (first_range = dirty_ranges;
+ first_range != dirty_ranges + range_count;
+ first_range++)
+ {
+ /* The `modified` flag of the coalesced range -- the logical-OR of the
+ * `modified` flags of the individual ranges.
+ */
+ gboolean modified = first_range->modified;
+
+ /* Find all consecutive ranges with a small-enough gap. */
+ for (last_range = first_range;
+ last_range + 1 != dirty_ranges + range_count;
+ last_range++)
+ {
+ if ((last_range + 1)->x[0] - last_range->x[1] > max_gap)
+ break;
+
+ modified |= (last_range + 1)->modified;
+ }
+
+ /* Write the coalesced range, or copy the current range, to the
+ * destination range.
+ */
+ if (first_range != last_range || first_range != range)
+ {
+ range->x[0] = first_range->x[0];
+ range->x[1] = last_range->x[1];
+ range->modified = modified;
+ }
+
+ first_range = last_range;
+ range++;
+ }
+
+ /* Return the new range count. */
+ return range - dirty_ranges;
+}
+
+/* Writes the updated water level of the dirty ranges back to the output GEGL
+ * buffer.
+ */
+static void
+gimp_operation_flood_process_commit (const GimpOperationFloodContext *ctx,
+ const GimpOperationFloodDirtyRange *dirty_ranges,
+ gint range_count)
+{
+ const GimpOperationFloodDirtyRange *range;
+ /* Image-virtual and image-physical rectangles, respectively. */
+ GeglRectangle iv_rect, ip_rect;
+
+ /* Set the vertical extent of the rectangle to span a the current segment's
+ * row.
+ */
+ iv_rect.y = ctx->roi.y + ctx->segment.y;
+ iv_rect.height = 1;
+
+ for (range = dirty_ranges; range != dirty_ranges + range_count; range++)
+ {
+ /* Set the horizontal extent of the rectangle to span the dirty range. */
+ iv_rect.x = ctx->roi.x + range->x[0];
+ iv_rect.width = range->x[1] - range->x[0] + 1;
+
+ /* Transform `iv_rect` to the image-physical coordinate system, and store
+ * the result in `ip_rect`.
+ */
+ gimp_operation_flood_process_transform_rect (ctx, &ip_rect, &iv_rect);
+
+ /* Write the updated water level to the output GEGL buffer. */
+ gegl_buffer_set (ctx->output, &ip_rect, 0, ctx->output_format,
+ ctx->water + range->x[0],
+ GEGL_AUTO_ROWSTRIDE);
+ }
+}
+
+/* Pushes the new segments, corresponding to the dirty ranges of the current
+ * segment, into the queue.
+ */
+static void
+gimp_operation_flood_process_distribute (const GimpOperationFloodContext *ctx,
+ GQueue *queue,
+ const GimpOperationFloodDirtyRange *dirty_ranges,
+ gint range_count)
+{
+ const GimpOperationFloodDirtyRange *range;
+ static const gint y_deltas[] = {-1, +1};
+ gint i;
+
+ /* For each neighboring row... */
+ for (i = 0; i < G_N_ELEMENTS (y_deltas); i++)
+ {
+ /* The difference between the negihboring row's y-coordinate and the
+ * current row's y-corindate, in the ROI-virtual coordinate system.
+ */
+ gint y_delta = y_deltas[i];
+ /* The negihboring row's y-coordinate in the ROI-virtual coordinate
+ * system.
+ */
+ gint y = ctx->segment.y + y_delta;
+
+ /* If the neighboring row is outside the ROI, skip it. */
+ if (y < 0 || y >= ctx->roi.height)
+ continue;
+
+ /* For each dirty range... */
+ for (range = dirty_ranges; range != dirty_ranges + range_count; range++)
+ {
+ /* If the range was modified during horizontal propagation, or if the
+ * neighboring row is not the source segment's row... (note that the
+ * latter is always true for seed segments.)
+ */
+ if (range->modified || y_delta != ctx->segment.source_y_delta)
+ {
+ /* Push a new segment into the queue, spanning the same pixels as
+ * the dirty range on the neighboring row, using the current row
+ * as its source segment.
+ */
+ gimp_operation_flood_process_push (queue,
+ ctx->segment.transpose,
+ y,
+ -y_delta,
+ range->x[0],
+ range->x[1]);
+ }
+ }
+ }
+}
+
+/* Main algorithm. */
+static gboolean
+gimp_operation_flood_process (GeglOperation *operation,
+ GeglBuffer *input,
+ GeglBuffer *output,
+ const GeglRectangle *roi,
+ gint level)
+{
+ const Babl *input_format = gegl_operation_get_format (operation, "input");
+ const Babl *output_format = gegl_operation_get_format (operation, "output");
+ GeglColor *color;
+ gint max_size;
+ GimpOperationFloodContext ctx;
+ GimpOperationFloodDirtyRange *dirty_ranges;
+ GQueue *queue;
+
+ /* Make sure the input- and output-buffers are different. */
+ g_return_val_if_fail (input != output, FALSE);
+
+ /* Make sure the ROI is small enough for the `GimpOperationFloodSegment::y`
+ * field.
+ */
+ g_return_val_if_fail (roi->width <= GIMP_MAX_IMAGE_SIZE &&
+ roi->height <= GIMP_MAX_IMAGE_SIZE, FALSE);
+
+ ctx.input = input;
+ ctx.input_format = input_format;
+ ctx.output = output;
+ ctx.output_format = output_format;
+
+ /* All buffers need to have enough capacity to process a full row, or a full
+ * column, since, when processing vertical segments, we treat the image as
+ * transposed.
+ */
+ max_size = MAX (roi->width, roi->height);
+ ctx.ground = g_new (gfloat, max_size);
+ /* The `water_buffer` array needs to be able to hold two rows (or columns). */
+ ctx.water_buffer = g_new (gfloat, 2 * max_size);
+ dirty_ranges = g_new (GimpOperationFloodDirtyRange, max_size);
+
+ /* Initialize the water level to 1 everywhere. */
+ color = gegl_color_new ("#fff");
+ gegl_buffer_set_color (output, roi, color);
+ g_object_unref (color);
+
+ /* Create the queue and push the seed segments. */
+ queue = g_queue_new ();
+ gimp_operation_flood_process_seed (queue, roi);
+
+ /* While there are segments to process in the queue... */
+ while (! g_queue_is_empty (queue))
+ {
+ GimpOperationFloodSegment *segment;
+ gint range_count;
+
+ /* Pop a segment off the top of the queue, copy it to `ctx.segment`, and
+ * free its memory.
+ */
+ segment = (GimpOperationFloodSegment *) g_queue_pop_head (queue);
+ ctx.segment = *segment;
+ g_slice_free (GimpOperationFloodSegment, segment);
+
+ /* Transform the ROI from the image-physical coordinate system to the
+ * image-virtual coordinate system, and store the result in `ctx.roi`.
+ */
+ gimp_operation_flood_process_transform_rect (&ctx, &ctx.roi, roi);
+
+ /* Read the ground- and water-levels of the current- and source-segments
+ * from the corresponding GEGL buffers to the corresponding arrays.
+ */
+ gimp_operation_flood_process_fetch (&ctx);
+
+ /* Perform the vertical propagation step. */
+ range_count = gimp_operation_flood_process_propagate_vertical (&ctx,
+ dirty_ranges);
+ /* If no dirty ranges were produced during vertical propagation, then the
+ * water level of the current segment didn't change, and we can short-
+ * circuit early.
+ */
+ if (range_count == 0)
+ continue;
+
+ /* Perform both passes of the horizontal propagation step. */
+ gimp_operation_flood_process_propagate_horizontal (&ctx,
+ /* Left-to-right */ +1,
+ dirty_ranges,
+ range_count);
+ gimp_operation_flood_process_propagate_horizontal (&ctx,
+ /* Right-to-left */ -1,
+ dirty_ranges,
+ range_count);
+
+ /* Coalesce consecutive dirty ranges separated by a gap less-than or
+ * equal-to `GIMP_OPERATION_FLOOD_COALESCE_MAX_GAP`.
+ */
+ range_count = gimp_operation_flood_process_coalesce (&ctx,
+ dirty_ranges,
+ range_count,
+ GIMP_OPERATION_FLOOD_COALESCE_MAX_GAP);
+
+ /* Write the updated water level back to the output GEGL buffer. */
+ gimp_operation_flood_process_commit (&ctx, dirty_ranges, range_count);
+
+ /* Push the new segments into the queue. */
+ gimp_operation_flood_process_distribute (&ctx, queue,
+ dirty_ranges, range_count);
+ }
+
+ g_queue_free (queue);
+
+ g_free (dirty_ranges);
+ g_free (ctx.water_buffer);
+ g_free (ctx.ground);
+
+ return TRUE;
+}