summaryrefslogtreecommitdiffstats
path: root/app/core/gimpimage-convert-indexed.c
blob: 4d1b1144d868334a1fb4cc131f59e5e4aa5bbe58 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
/* GIMP - The GNU Image Manipulation Program
 * Copyright (C) 1995 Spencer Kimball and Peter Mattis
 *
 * gimpimage-convert-indexed.c
 * Copyright (C) 1997-2004 Adam D. Moss <adam@gimp.org>
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <https://www.gnu.org/licenses/>.
 */

/*
 * 2005-09-04 - Switch 'positional' dither matrix to a 32x32 Bayer,
 *  which generates results that compress somewhat better (and may look
 *  worse or better depending on what you enjoy...).  [adam@gimp.org]
 *
 * 2004-12-12 - Use a slower but much nicer technique for finding the
 *  two best colors to dither between when using fixed/positional
 *  dither methods.  Makes positional dither much less lame.  [adam@gimp.org]
 *
 * 2002-02-10 - Quantizer version 3.0 (the rest of the commit started
 *  a year ago -- whoops).  Divide colors within CIE L*a*b* space using
 *  CPercep module (cpercep.[ch]), color-match and dither likewise,
 *  change the underlying box selection criteria and division point
 *  logic, bump luminance precision upwards, etc.etc.  Generally
 *  chooses a much richer color set, especially for low numbers of
 *  colors.  n.b.: Less luminance-sloppy in straight remapping which is
 *  good for color but a bit worse for high-frequency detail (that's
 *  partly what fs-dithering is for -- use it).  [adam@gimp.org]
 *
 * 2001-03-25 - Define accessor function/macro for histogram reads and
 *  writes.  This slows us down a little because we avoid some of the
 *  dirty tricks we used when we knew that the histogram was a straight
 *  3d array, so I've recovered some of the speed loss by implementing
 *  a 5d accessor function with good locality of reference.  This change
 *  is the first step towards quantizing in a more interesting colorspace
 *  than frumpy old RGB.  [Adam]
 *
 * 2000/01/30 - Use palette_selector instead of option_menu for custom
 *  palette. Use libgimp callback functions.  [Sven]
 *
 * 99/09/01 - Created a low-bleed FS-dither option.  [Adam]
 *
 * 99/08/29 - Deterministic color dithering to arbitrary palettes.
 *  Ideal for animations that are going to be delta-optimized or simply
 *  don't want to look 'busy' in static areas.  Also a bunch of bugfixes
 *  and tweaks.  [Adam]
 *
 * 99/08/28 - Deterministic alpha dithering over layers, reduced bleeding
 *  of transparent values into opaque values, added optional stage to
 *  remove duplicate or unused color entries from final colormap. [Adam]
 *
 * 99/02/24 - Many revisions to the box-cut quantizer used in RGB->INDEXED
 *  conversion.  Box to be cut is chosen on the basis of possessing an axis
 *  with the largest sum of weighted perceptible error, rather than based on
 *  volume or population.  The box is split along this axis rather than its
 *  longest axis, at the point of error mean rather than simply at its centre.
 *  Error-limiting in the F-S dither has been disabled - it may become optional
 *  again later.  If you're convinced that you have an image where the old
 *  dither looks better, let me know.  [Adam]
 *
 * 99/01/10 - Hourglass... [Adam]
 *
 * 98/07/25 - Convert-to-indexed now remembers the last invocation's
 *  settings.  Also, GRAY->INDEXED is more flexible.  [Adam]
 *
 * 98/07/05 - Sucked the warning about quantizing to too many colors into
 *  a text widget embedded in the dialog, improved intelligence of dialog
 *  to default 'custom palette' selection to 'Web' if available, and
 *  in this case not bother to present the native WWW-palette radio
 *  button.  [Adam]
 *
 * 98/04/13 - avoid a division by zero when converting an empty gray-scale
 *  image (who would like to do such a thing anyway??)  [Sven ]
 *
 * 98/03/23 - fixed a longstanding fencepost - hopefully the *right*
 *  way, *again*.  [Adam]
 *
 * 97/11/14 - added a proper pdb interface and support for dithering
 *  to custom palettes (based on a patch by Eric Hernes) [Yosh]
 *
 * 97/11/04 - fixed the accidental use of the color-counting case
 *  when palette_type is WEB or MONO. [Adam]
 *
 * 97/10/25 - color-counting implemented (could use some hashing, but
 *  performance actually seems okay) - now RGB->INDEXED conversion isn't
 *  destructive if it doesn't have to be. [Adam]
 *
 * 97/10/14 - fixed divide-by-zero when converting a completely transparent
 *  RGB image to indexed. [Adam]
 *
 * 97/07/01 - started todo/revision log.  Put code back in to
 *  eliminate full-alpha pixels from RGB histogram.
 *  [Adam D. Moss - adam@gimp.org]
 */

  /* TODO for Convert:
   *
   * . Tweak, tweak, tweak.  Old RGB code was tuned muchly.
   *
   * . Re-enable Heckbert locality for matching, benchmark it
   *
   * . Try faster fixed-point sRGB<->L*a*b* pixel conversion (see cpercep.c)
   *
   * . Use palette of another open INDEXED image?
   *
   * . Do error-splitting trick for GREY->INDEXED (hardly worth it)
   */

  /* CODE READABILITY BUGS:
   *
   * . Most uses of variants of the R,G,B variable naming convention
   *   are referring to L*a*b* co-ordinates, not RGB co-ordinates!
   *
   * . Each said variable is usually one of the following, but it is
   *   rarely clear which one:
   *     - (assumed sRGB) raw non-linear 8-bit RGB co-ordinates
   *     - 'full'-precision (unshifted) 8-bit L*a*b* co-ordinates
   *     - box-space (reduced-precision shifted L*a*b*) co-ordinates
   */

#include "config.h"

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#include <cairo.h>
#include <gdk-pixbuf/gdk-pixbuf.h>
#include <gegl.h>

#include "libgimpcolor/gimpcolor.h"
#include "libgimpmath/gimpmath.h"

#include "core-types.h"

#include "gegl/gimp-babl.h"
#include "gegl/gimp-gegl-utils.h"

#include "gimp.h"
#include "gimpcontainer.h"
#include "gimpdrawable.h"
#include "gimperror.h"
#include "gimpimage.h"
#include "gimpimage-color-profile.h"
#include "gimpimage-colormap.h"
#include "gimpimage-undo.h"
#include "gimpimage-undo-push.h"
#include "gimplayer.h"
#include "gimpobjectqueue.h"
#include "gimppalette.h"
#include "gimpprogress.h"

#include "text/gimptextlayer.h"

#include "gimpimage-convert-fsdither.h"
#include "gimpimage-convert-data.h"
#include "gimpimage-convert-indexed.h"

#include "gimp-intl.h"


/* basic memory/quality tradeoff */
#define PRECISION_R 8
#define PRECISION_G 6
#define PRECISION_B 6

#define HIST_R_ELEMS (1<<PRECISION_R)
#define HIST_G_ELEMS (1<<PRECISION_G)
#define HIST_B_ELEMS (1<<PRECISION_B)

#define BITS_IN_SAMPLE 8

#define R_SHIFT  (BITS_IN_SAMPLE-PRECISION_R)
#define G_SHIFT  (BITS_IN_SAMPLE-PRECISION_G)
#define B_SHIFT  (BITS_IN_SAMPLE-PRECISION_B)

/* we've stretched our non-cubic L*a*b* volume to touch the
 * faces of the logical cube we've allocated for it, so re-scale
 * again in inverse proportion to get back to linear proportions.
 */
#define R_SCALE 13              /*  scale R (L*) distances by this much  */
#define G_SCALE 24              /*  scale G (a*) distances by this much  */
#define B_SCALE 26              /*  and B (b*) by this much              */


typedef struct _Color Color;
typedef struct _QuantizeObj QuantizeObj;

typedef void (* Pass1Func)     (QuantizeObj *quantize_obj);
typedef void (* Pass2InitFunc) (QuantizeObj *quantize_obj);
typedef void (* Pass2Func)     (QuantizeObj *quantize_obj,
                                GimpLayer   *layer,
                                GeglBuffer  *new_buffer);
typedef void (* CleanupFunc)   (QuantizeObj *quantize_obj);

typedef gulong ColorFreq;
typedef ColorFreq * CFHistogram;

typedef enum { AXIS_UNDEF, AXIS_RED, AXIS_BLUE, AXIS_GREEN } AxisType;

typedef double etype;


/*
  We provide two different histogram access interfaces.  HIST_LIN()
  accesses the histogram in histogram-native space, taking absolute
  histogram co-ordinates.  HIST_RGB() accesses the histogram in RGB
  space.  This latter takes unsigned 8-bit co-ordinates, internally
  converts those co-ordinates to histogram-native space and returns
  the access pointer to the corresponding histogram cell.

  Using these two interfaces we can import RGB data into a more
  interesting space and efficiently work in the latter space until
  it is time to output the quantized values in RGB again.  For
  this final conversion we implement the function lin_to_rgb().

  We effectively pull our three-dimensional space into five dimensions
  such that the most-entropic bits lay in the lowest bits of the resulting
  array index.  This gives significantly better locality of reference
  and hence a small speedup despite the extra work involved in calculating
  the index.

  Why not six dimensions?  The expansion of dimensionality is good for random
  access such as histogram population and the query pattern typical of
  dithering but we have some code which iterates in a scanning manner, for
  which the expansion is suboptimal.  The compromise is to leave the B
  dimension unmolested in the lower-order bits of the index, since this is
  the dimension most commonly iterated through in the inner loop of the
  scans.

  --adam

  RhGhRlGlB
*/
#define VOL_GBITS  (PRECISION_G)
#define VOL_BBITS  (PRECISION_B)
#define VOL_RBITS  (PRECISION_R)
#define VOL_GBITSh (VOL_GBITS - 3)
#define VOL_GBITSl (VOL_GBITS - VOL_GBITSh)
#define VOL_BBITSh (VOL_BBITS - 4)
#define VOL_BBITSl (VOL_BBITS - VOL_BBITSh)
#define VOL_RBITSh (VOL_RBITS - 3)
#define VOL_RBITSl (VOL_RBITS - VOL_RBITSh)
#define VOL_GMASKh (((1<<VOL_GBITSh)-1) << VOL_GBITSl)
#define VOL_GMASKl ((1<<VOL_GBITSl)-1)
#define VOL_BMASKh (((1<<VOL_BBITSh)-1) << VOL_BBITSl)
#define VOL_BMASKl ((1<<VOL_BBITSl)-1)
#define VOL_RMASKh (((1<<VOL_RBITSh)-1) << VOL_RBITSl)
#define VOL_RMASKl ((1<<VOL_RBITSl)-1)
/* The 5d compromise thing. */
#define REF_FUNC(r,g,b) \
( \
 (((r) & VOL_RMASKh) << (VOL_BBITS + VOL_GBITS)) | \
 (((r) & VOL_RMASKl) << (VOL_GBITSl + VOL_BBITS)) | \
 (((g) & VOL_GMASKh) << (VOL_RBITSl + VOL_BBITS)) | \
 (((g) & VOL_GMASKl) << (VOL_BBITS)) | \
 (b) \
)
/* The full-on 6d thing. */
/*
#define REF_FUNC(r,g,b) \
( \
 (((r) & VOL_RMASKh) << (VOL_BBITS + VOL_GBITS)) | \
 (((r) & VOL_RMASKl) << (VOL_GBITSl + VOL_BBITSl)) | \
 (((g) & VOL_GMASKh) << (VOL_RBITSl + VOL_BBITS)) | \
 (((g) & VOL_GMASKl) << (VOL_BBITSl)) | \
 (((b) & VOL_BMASKh) << (VOL_RBITSl + VOL_GBITSl)) | \
 ((b) & VOL_BMASKl) \
)
*/
/* The boring old 3d thing. */
/*
#define REF_FUNC(r,g,b) (((r)<<(PRECISION_G+PRECISION_B)) | ((g)<<(PRECISION_B)) | (b))
*/

/* You even get to choose whether you want the accessor function
   implemented as a macro or an inline function.  Don't say I never
   give you anything. */
/*
#define HIST_LIN(hist_ptr,r,g,b) (&(hist_ptr)[REF_FUNC((r),(g),(b))])
*/
static inline ColorFreq *
HIST_LIN (ColorFreq  *hist_ptr,
          const gint  r,
          const gint  g,
          const gint  b)
{
  return (&(hist_ptr) [REF_FUNC (r, g, b)]);
}


#define LOWA   (-86.181F)
#define LOWB  (-107.858F)
#define HIGHA   (98.237F)
#define HIGHB   (94.480F)

#if 1
#define LRAT (2.55F)
#define ARAT (255.0F / (HIGHA - LOWA))
#define BRAT (255.0F / (HIGHB - LOWB))
#else
#define LRAT (1.0F)
#define ARAT (1.0F)
#define BRAT (1.0F)
#endif

static const Babl *rgb_to_lab_fish = NULL;
static const Babl *lab_to_rgb_fish = NULL;

static inline void
rgb_to_unshifted_lin (const guchar  r,
                      const guchar  g,
                      const guchar  b,
                      gint         *hr,
                      gint         *hg,
                      gint         *hb)
{
  gint   or, og, ob;
  gfloat rgb[3] = { r / 255.0, g / 255.0, b / 255.0 };
  gfloat lab[3];

  babl_process (rgb_to_lab_fish, rgb, lab, 1);

  /* fprintf(stderr, " %d-%d-%d -> %0.3f,%0.3f,%0.3f ", r, g, b, sL, sa, sb);*/

  or = RINT(lab[0] * LRAT);
  og = RINT((lab[1] - LOWA) * ARAT);
  ob = RINT((lab[2] - LOWB) * BRAT);

  *hr = CLAMP(or, 0, 255);
  *hg = CLAMP(og, 0, 255);
  *hb = CLAMP(ob, 0, 255);

  /*  fprintf(stderr, " %d:%d:%d ", *hr, *hg, *hb); */
}


static inline void
rgb_to_lin (const guchar  r,
            const guchar  g,
            const guchar  b,
            gint         *hr,
            gint         *hg,
            gint         *hb)
{
  gint or, og, ob;

  /*
  double sL, sa, sb;
  {
    double low_l = 999.0, low_a = 999.9, low_b = 999.0;
    double high_l = -999.0, high_a = -999.0, high_b = -999.0;

    int r,g,b;

    for (r=0; r<256; r++)
      for (g=0; g<256; g++)
        for (b=0; b<256; b++)
          {
            cpercep_rgb_to_space(r,g,b, &sL, &sa, &sb);

            if (sL > high_l)
              high_l = sL;
            if (sL < low_l)
              low_l = sL;
            if (sa > high_a)
              high_a = sa;
            if (sa < low_a)
              low_a = sa;
            if (sb > high_b)
              high_b = sb;
            if (sb < low_b)
              low_b = sb;
          }

    fprintf(stderr, " [L: %0.3f -> %0.3f / a: %0.3f -> %0.3f / b: %0.3f -> %0.3f]\t", low_l, high_l, low_a, high_a, low_b, high_b);

    exit(-1);
  }
  */

  rgb_to_unshifted_lin (r, g, b, &or, &og, &ob);

#if 0
#define RSDF(r) ((r) >= ((HIST_R_ELEMS-1) << R_SHIFT) ? HIST_R_ELEMS-1 : \
                 ((r) + ((1<<R_SHIFT)>>1) ) >> R_SHIFT)
#define GSDF(g) ((g) >= ((HIST_G_ELEMS-1) << G_SHIFT) ? HIST_G_ELEMS-1 : \
                 ((g) + ((1<<G_SHIFT)>>1) ) >> G_SHIFT)
#define BSDF(b) ((b) >= ((HIST_B_ELEMS-1) << B_SHIFT) ? HIST_B_ELEMS-1 : \
                 ((b) + ((1<<B_SHIFT)>>1) ) >> B_SHIFT)
#else
#define RSDF(r) ((r) >> R_SHIFT)
#define GSDF(g) ((g) >> G_SHIFT)
#define BSDF(b) ((b) >> B_SHIFT)
#endif

  or = RSDF (or);
  og = GSDF (og);
  ob = BSDF (ob);

  *hr = or;
  *hg = og;
  *hb = ob;
}


static inline ColorFreq *
HIST_RGB (ColorFreq  *hist_ptr,
          const gint  r,
          const gint  g,
          const gint  b)
{
  gint hr, hg, hb;

  rgb_to_lin (r, g, b, &hr, &hg, &hb);

  return HIST_LIN (hist_ptr, hr, hg, hb);
}


static inline void
lin_to_rgb (const gdouble  hr,
            const gdouble  hg,
            const gdouble  hb,
            guchar        *r,
            guchar        *g,
            guchar        *b)
{
  gfloat  rgb[3];
  gfloat  lab[3];
  gdouble ir, ig, ib;

  ir = ((gdouble) (hr)) * 255.0F / (gdouble) (HIST_R_ELEMS - 1);
  ig = ((gdouble)( hg)) * 255.0F / (gdouble) (HIST_G_ELEMS - 1);
  ib = ((gdouble)( hb)) * 255.0F / (gdouble) (HIST_B_ELEMS - 1);

  ir = ir / LRAT;
  ig = (ig / ARAT) + LOWA;
  ib = (ib / BRAT) + LOWB;

  lab[0] = ir;
  lab[1] = ig;
  lab[2] = ib;

  babl_process (lab_to_rgb_fish, lab, rgb, 1);

  *r = RINT (CLAMP (rgb[0] * 255, 0.0F, 255.0F));
  *g = RINT (CLAMP (rgb[1] * 255, 0.0F, 255.0F));
  *b = RINT (CLAMP (rgb[2] * 255, 0.0F, 255.0F));
}



struct _Color
{
  gint red;
  gint green;
  gint blue;
};

struct _QuantizeObj
{
  Pass1Func     first_pass;       /* first pass over image data creates colormap  */
  Pass2InitFunc second_pass_init; /* Initialize data which persists over invocations */
  Pass2Func     second_pass;      /* second pass maps from image data to colormap */
  CleanupFunc   delete_func;      /* function to clean up data associated with private */

  GimpPalette  *custom_palette;           /* The custom palette, if any        */

  gint          desired_number_of_colors; /* Number of colors we will allow    */
  gint          actual_number_of_colors;  /* Number of colors actually needed  */
  Color         cmap[256];                /* colormap created by quantization  */
  Color         clin[256];                /* .. converted back to linear space */
  gulong        index_used_count[256];    /* how many times an index was used  */
  CFHistogram   histogram;                /* holds the histogram               */

  gboolean      want_dither_alpha;
  gint          error_freedom;            /* 0=much bleed, 1=controlled bleed */

  GimpProgress *progress;
};

typedef struct
{
  /*  The bounds of the box (inclusive); expressed as histogram indexes  */
  gint    Rmin, Rmax;
  gint    Rhalferror;
  gint    Gmin, Gmax;
  gint    Ghalferror;
  gint    Bmin, Bmax;
  gint    Bhalferror;

  /*  The volume (actually 2-norm) of the box  */
  gint    volume;

  /*  The number of nonzero histogram cells within this box  */
  glong   colorcount;

  /* The sum of the weighted error within this box */
  guint64 error;
  /* The sum of the unweighted error within this box */
  guint64 rerror;
  guint64 gerror;
  guint64 berror;

} box, *boxptr;


static void          zero_histogram_gray     (CFHistogram   histogram);
static void          zero_histogram_rgb      (CFHistogram   histogram);
static void          generate_histogram_gray (CFHistogram   hostogram,
                                              GimpLayer    *layer,
                                              gboolean      dither_alpha);
static void          generate_histogram_rgb  (CFHistogram   histogram,
                                              GimpLayer    *layer,
                                              gint          col_limit,
                                              gboolean      dither_alpha,
                                              GimpProgress *progress);

static QuantizeObj * initialize_median_cut   (GimpImageBaseType      old_type,
                                              gint                   max_colors,
                                              GimpConvertDitherType  dither_type,
                                              GimpConvertPaletteType palette_type,
                                              GimpPalette           *custom_palette,
                                              gboolean               dither_alpha,
                                              GimpProgress          *progress);

static void          compute_color_lin8      (QuantizeObj           *quantobj,
                                              CFHistogram            histogram,
                                              boxptr                 boxp,
                                              const int              icolor);


static guchar    found_cols[MAXNUMCOLORS][3];
static gint      num_found_cols;
static gboolean  needs_quantize;
static gboolean  had_white;
static gboolean  had_black;


/**********************************************************/
typedef struct
{
  glong  used_count;
  guchar initial_index;
} PalEntry;

static int
mapping_compare (const void *a,
                 const void *b)
{
  PalEntry *m1 = (PalEntry *) a;
  PalEntry *m2 = (PalEntry *) b;

  return (m2->used_count - m1->used_count);
}

/* FWIW, the make_remap_table() and mapping_compare() function source
 * and PalEntry may be re-used under the XFree86-style license.
 * <adam@gimp.org>
 */
static void
make_remap_table (const guchar  old_palette[],
                  guchar        new_palette[],
                  const gulong  index_used_count[],
                  guchar        remap_table[],
                  gint         *num_entries)
{
  gint      i, j, k;
  guchar    temppal[256 * 3];
  gulong    tempuse[256];
  gulong    transmap[256];
  PalEntry *palentries;
  gint      used = 0;

  memset (temppal, 0, 256 * 3);
  memset (tempuse, 0, 256 * sizeof (gulong));
  memset (transmap, 255, 256 * sizeof (gulong));

  /* First pass - only collect entries which are marked as being used
   * at all in index_used_count.
   */
  for (i = 0; i < *num_entries; i++)
    {
      if (index_used_count[i])
        {
          temppal[used*3 + 0] = old_palette[i*3 + 0];
          temppal[used*3 + 1] = old_palette[i*3 + 1];
          temppal[used*3 + 2] = old_palette[i*3 + 2];

          tempuse[used] = index_used_count[i];
          transmap[i] = used;

          used++;
        }
    }

  /* Second pass - remove duplicates. (O(n^3), could do better!) */
  for (i = 0; i < used; i++)
    {
      for (j = 0; j < i; j++)
        {
          if ((temppal[i*3 + 1] == temppal[j*3 + 1]) &&
              (temppal[i*3 + 0] == temppal[j*3 + 0]) &&
              (temppal[i*3 + 2] == temppal[j*3 + 2]) &&
              tempuse[j] &&
              tempuse[i])
            {
              /* Move the 'used' tally from one to the other. */
              tempuse[i] += tempuse[j];
              /* zero one of them, deactivating its entry. */
              tempuse[j] = 0;

              /* change all mappings from this dead index to the live
               * one.
               */
              for (k = 0; k < *num_entries; k++)
                {
                  if (index_used_count[k] && (transmap[k] == j))
                    transmap[k] = i;
                }
            }
        }
    }

  /* Third pass - rank all used indices to the beginning of the
   * palette.
   */
  palentries = g_new (PalEntry, used);

  for (i = 0; i < used; i++)
    {
      palentries[i].initial_index = i;
      palentries[i].used_count    = tempuse[i];
    }

  qsort (palentries, used, sizeof (PalEntry), &mapping_compare);

  for (i = 0; i < *num_entries; i++)
    {
      if (index_used_count[i])
        {
          for (j = 0; j < used; j++)
            {
              if ((transmap[i] == palentries[j].initial_index)
                  && (palentries[j].used_count))
                {
                  remap_table[i] = j;
                  break;
                }
            }
        }
    }
  for (i = 0; i < *num_entries; i++)
    {
      if (index_used_count[i])
        {
          new_palette[remap_table[i] * 3 + 0] = old_palette[i * 3 + 0];
          new_palette[remap_table[i] * 3 + 1] = old_palette[i * 3 + 1];
          new_palette[remap_table[i] * 3 + 2] = old_palette[i * 3 + 2];
        }
    }

  *num_entries = 0;

  for (j = 0; j < used; j++)
    {
      if (palentries[j].used_count)
        {
          (*num_entries)++;
        }
    }

  g_free (palentries);
}

static void
remap_indexed_layer (GimpLayer    *layer,
                     const guchar *remap_table,
                     gint          num_entries)
{
  GeglBufferIterator *iter;
  const Babl         *format;
  gint                bpp;
  gboolean            has_alpha;

  format  = gimp_drawable_get_format (GIMP_DRAWABLE (layer));

  bpp       = babl_format_get_bytes_per_pixel (format);
  has_alpha = babl_format_has_alpha (format);

  iter = gegl_buffer_iterator_new (gimp_drawable_get_buffer (GIMP_DRAWABLE (layer)),
                                   NULL, 0, NULL,
                                   GEGL_ACCESS_READWRITE, GEGL_ABYSS_NONE, 1);

  while (gegl_buffer_iterator_next (iter))
    {
      guchar *data   = iter->items[0].data;
      gint    length = iter->length;

      if (has_alpha)
        {
          while (length--)
            {
              if (data[ALPHA_I])
                data[INDEXED] = remap_table[data[INDEXED]];
              else
                data[INDEXED] = 0;

              data += bpp;
            }
        }
      else
        {
          while (length--)
            {
              data[INDEXED] = remap_table[data[INDEXED]];

              data += bpp;
            }
        }
    }
}

static gint
color_quicksort (const void *c1,
                 const void *c2)
{
  Color *color1 = (Color *) c1;
  Color *color2 = (Color *) c2;

  gdouble v1 = GIMP_RGB_LUMINANCE (color1->red, color1->green, color1->blue);
  gdouble v2 = GIMP_RGB_LUMINANCE (color2->red, color2->green, color2->blue);

  if (v1 < v2)
    return -1;
  else if (v1 > v2)
    return 1;
  else
    return 0;
}

gboolean
gimp_image_convert_indexed (GimpImage               *image,
                            GimpConvertPaletteType   palette_type,
                            gint                     max_colors,
                            gboolean                 remove_duplicates,
                            GimpConvertDitherType    dither_type,
                            gboolean                 dither_alpha,
                            gboolean                 dither_text_layers,
                            GimpPalette             *custom_palette,
                            GimpProgress            *progress,
                            GError                 **error)
{
  QuantizeObj       *quantobj     = NULL;
  GimpObjectQueue   *queue        = NULL;
  GimpProgress      *sub_progress = NULL;
  GimpImageBaseType  old_type;
  GList             *all_layers;
  GList             *list;
  GimpColorProfile  *dest_profile = NULL;

  g_return_val_if_fail (GIMP_IS_IMAGE (image), FALSE);
  g_return_val_if_fail (gimp_image_get_base_type (image) != GIMP_INDEXED, FALSE);
  g_return_val_if_fail (gimp_babl_is_valid (GIMP_INDEXED,
                                            gimp_image_get_precision (image)),
                        FALSE);
  g_return_val_if_fail (custom_palette == NULL ||
                        GIMP_IS_PALETTE (custom_palette), FALSE);
  g_return_val_if_fail (custom_palette == NULL ||
                        gimp_palette_get_n_colors (custom_palette) <= 256,
                        FALSE);
  g_return_val_if_fail (progress == NULL || GIMP_IS_PROGRESS (progress), FALSE);
  g_return_val_if_fail (error == NULL || *error == NULL, FALSE);

  if (palette_type == GIMP_CONVERT_PALETTE_CUSTOM)
    {
      if (! custom_palette)
        palette_type = GIMP_CONVERT_PALETTE_MONO;

      if (gimp_palette_get_n_colors (custom_palette) == 0)
        {
          g_set_error_literal (error, GIMP_ERROR, GIMP_FAILED,
                               _("Cannot convert image: palette is empty."));
          return FALSE;
        }
    }

  gimp_set_busy (image->gimp);

  all_layers = gimp_image_get_layer_list (image);

  g_object_freeze_notify (G_OBJECT (image));

  gimp_image_undo_group_start (image, GIMP_UNDO_GROUP_IMAGE_CONVERT,
                               C_("undo-type", "Convert Image to Indexed"));

  /*  Push the image type to the stack  */
  gimp_image_undo_push_image_type (image, NULL);

  /*  Set the new base type  */
  old_type = gimp_image_get_base_type (image);

  g_object_set (image, "base-type", GIMP_INDEXED, NULL);

  /* when converting from GRAY, convert to the new type's builtin
   * profile.
   */
  if (old_type == GIMP_GRAY)
    {
      if (gimp_image_get_color_profile (image))
        dest_profile = gimp_image_get_builtin_color_profile (image);
    }

  /*  Build histogram if necessary.  */
  rgb_to_lab_fish = babl_fish (babl_format ("R'G'B' float"),
                               babl_format ("CIE Lab float"));
  lab_to_rgb_fish = babl_fish (babl_format ("CIE Lab float"),
                               babl_format ("R'G'B' float"));

  /* don't dither if the input is grayscale and we are simply mapping
   * every color
   */
  if (old_type     == GIMP_GRAY &&
      max_colors   == 256       &&
      palette_type == GIMP_CONVERT_PALETTE_GENERATE)
    {
      dither_type = GIMP_CONVERT_DITHER_NONE;
    }

  if (progress)
    {
      queue        = gimp_object_queue_new (progress);
      sub_progress = GIMP_PROGRESS (queue);

      gimp_object_queue_push_list (queue, all_layers);
    }

  quantobj = initialize_median_cut (old_type, max_colors, dither_type,
                                    palette_type, custom_palette,
                                    dither_alpha,
                                    sub_progress);

  if (palette_type == GIMP_CONVERT_PALETTE_GENERATE)
    {
      if (old_type == GIMP_GRAY)
        zero_histogram_gray (quantobj->histogram);
      else
        zero_histogram_rgb (quantobj->histogram);

      /* To begin, assume that there are fewer colors in the image
       *  than the user actually asked for.  In that case, we don't
       *  need to quantize or color-dither.
       */
      needs_quantize = FALSE;
      had_black = FALSE;
      had_white = FALSE;
      num_found_cols = 0;

      /*  Build the histogram  */
      for (list = all_layers;
           list;
           list = g_list_next (list))
        {
          GimpLayer *layer = list->data;

          if (queue)
            gimp_object_queue_pop (queue);

          if (old_type == GIMP_GRAY)
            {
              generate_histogram_gray (quantobj->histogram,
                                       layer, dither_alpha);
            }
          else
            {
              /* Note: generate_histogram_rgb may set needs_quantize
               * if the image contains more colors than the limit
               * specified by the user.
               */
              generate_histogram_rgb (quantobj->histogram,
                                      layer, max_colors, dither_alpha,
                                      sub_progress);
            }
        }
    }

  if (progress)
    gimp_progress_set_text_literal (progress,
                                    _("Converting to indexed colors (stage 2)"));

  if (old_type == GIMP_RGB &&
      ! needs_quantize     &&
      palette_type == GIMP_CONVERT_PALETTE_GENERATE)
    {
      gint i;

      /*  If this is an RGB image, and the user wanted a custom-built
       *  generated palette, and this image has no more colors than
       *  the user asked for, we don't need the first pass
       *  (quantization).
       *
       *  There's also no point in dithering, since there's no error
       *  to spread.  So we destroy the old quantobj and make a new
       *  one with the remapping function set to a special LUT-based
       *  no-dither remapper.
       */

      quantobj->delete_func (quantobj);
      quantobj = initialize_median_cut (old_type, max_colors,
                                        GIMP_CONVERT_DITHER_NODESTRUCT,
                                        palette_type,
                                        custom_palette,
                                        dither_alpha,
                                        sub_progress);
      /* We can skip the first pass (palette creation) */

      quantobj->actual_number_of_colors = num_found_cols;
      for (i = 0; i < num_found_cols; i++)
        {
          quantobj->cmap[i].red   = found_cols[i][0];
          quantobj->cmap[i].green = found_cols[i][1];
          quantobj->cmap[i].blue  = found_cols[i][2];
        }
    }
  else
    {
      quantobj->first_pass (quantobj);
    }

  if (palette_type == GIMP_CONVERT_PALETTE_GENERATE)
    qsort (quantobj->cmap,
           quantobj->actual_number_of_colors, sizeof (Color),
           color_quicksort);

  if (progress)
    {
      gimp_progress_set_text_literal (progress,
                                      _("Converting to indexed colors (stage 3)"));

      gimp_object_queue_clear (queue);
      gimp_object_queue_push_list (queue, all_layers);
    }

  /* Initialise data which must persist across indexed layer iterations */
  if (quantobj->second_pass_init)
    quantobj->second_pass_init (quantobj);

  /*  Set the generated palette on the image, we need it to
   *  convert the layers. We optionally remove duplicate entries
   *  after the layer conversion.
   */
  {
    guchar colormap[GIMP_IMAGE_COLORMAP_SIZE];
    gint   i, j;

    for (i = 0, j = 0; i < quantobj->actual_number_of_colors; i++)
      {
        colormap[j++] = quantobj->cmap[i].red;
        colormap[j++] = quantobj->cmap[i].green;
        colormap[j++] = quantobj->cmap[i].blue;
      }

    gimp_image_set_colormap (image, colormap,
                             quantobj->actual_number_of_colors, TRUE);
  }

  /*  Convert all layers  */
  for (list = all_layers;
       list;
       list = g_list_next (list))
    {
      GimpLayer *layer = list->data;
      gboolean   quantize;

      if (queue)
        gimp_object_queue_pop (queue);

      if (gimp_item_is_text_layer (GIMP_ITEM (layer)))
        quantize = dither_text_layers;
      else
        quantize = TRUE;

      if (quantize)
        {
          GeglBuffer *new_buffer;
          gboolean    has_alpha;

          has_alpha = gimp_drawable_has_alpha (GIMP_DRAWABLE (layer));

          new_buffer =
            gegl_buffer_new (GEGL_RECTANGLE (0, 0,
                                             gimp_item_get_width  (GIMP_ITEM (layer)),
                                             gimp_item_get_height (GIMP_ITEM (layer))),
                             gimp_image_get_layer_format (image,
                                                          has_alpha));

          quantobj->second_pass (quantobj, layer, new_buffer);

          gimp_drawable_set_buffer (GIMP_DRAWABLE (layer), TRUE, NULL,
                                    new_buffer);
          g_object_unref (new_buffer);
        }
      else
        {
          gimp_drawable_convert_type (GIMP_DRAWABLE (layer), image,
                                      GIMP_INDEXED,
                                      gimp_drawable_get_precision (GIMP_DRAWABLE (layer)),
                                      gimp_drawable_has_alpha (GIMP_DRAWABLE (layer)),
                                      dest_profile,
                                      GEGL_DITHER_NONE, GEGL_DITHER_NONE,
                                      TRUE, sub_progress);
        }
    }

  /*  Set the final palette on the image  */
  if (remove_duplicates &&
      (palette_type != GIMP_CONVERT_PALETTE_GENERATE) &&
      (palette_type != GIMP_CONVERT_PALETTE_MONO))
    {
      guchar colormap[GIMP_IMAGE_COLORMAP_SIZE];
      gint   i, j;
      guchar old_palette[256 * 3];
      guchar new_palette[256 * 3];
      guchar remap_table[256];
      gint   num_entries;

      for (i = 0, j = 0; i < quantobj->actual_number_of_colors; i++)
        {
          old_palette[j++] = quantobj->cmap[i].red;
          old_palette[j++] = quantobj->cmap[i].green;
          old_palette[j++] = quantobj->cmap[i].blue;
        }

      num_entries = quantobj->actual_number_of_colors;

      /* Generate a remapping table */
      make_remap_table (old_palette, new_palette,
                        quantobj->index_used_count,
                        remap_table, &num_entries);

      /*  Convert all layers  */
      for (list = all_layers; list; list = g_list_next (list))
        {
          remap_indexed_layer (list->data, remap_table, num_entries);
        }

      for (i = 0, j = 0; i < num_entries; i++)
        {
          colormap[j] = new_palette[j]; j++;
          colormap[j] = new_palette[j]; j++;
          colormap[j] = new_palette[j]; j++;
        }

      gimp_image_set_colormap (image, colormap, num_entries, TRUE);
    }

  /*  When converting from GRAY, set the new profile.
   */
  if (old_type == GIMP_GRAY)
    {
      if (gimp_image_get_color_profile (image))
        gimp_image_set_color_profile (image, dest_profile, NULL);
      else
        gimp_color_managed_profile_changed (GIMP_COLOR_MANAGED (image));
    }

  /*  Delete the quantizer object, if there is one */
  if (quantobj)
    quantobj->delete_func (quantobj);

  gimp_image_undo_group_end (image);

  gimp_image_mode_changed (image);
  g_object_thaw_notify (G_OBJECT (image));

  g_clear_object (&queue);

  g_list_free (all_layers);

  gimp_unset_busy (image->gimp);

  return TRUE;
}

/*
 *  Indexed color conversion machinery
 */

static void
zero_histogram_gray (CFHistogram histogram)
{
  gint i;

  for (i = 0; i < 256; i++)
    histogram[i] = 0;
}


static void
zero_histogram_rgb (CFHistogram histogram)
{
  memset (histogram, 0,
          HIST_R_ELEMS * HIST_G_ELEMS * HIST_B_ELEMS * sizeof (ColorFreq));
}


static void
generate_histogram_gray (CFHistogram  histogram,
                         GimpLayer   *layer,
                         gboolean     dither_alpha)
{
  GeglBufferIterator *iter;
  const Babl         *format;
  gint                bpp;
  gboolean            has_alpha;

  format = gimp_drawable_get_format (GIMP_DRAWABLE (layer));

  g_return_if_fail (format == babl_format ("Y' u8") ||
                    format == babl_format ("Y'A u8"));

  bpp       = babl_format_get_bytes_per_pixel (format);
  has_alpha = babl_format_has_alpha (format);

  iter = gegl_buffer_iterator_new (gimp_drawable_get_buffer (GIMP_DRAWABLE (layer)),
                                   NULL, 0, format,
                                   GEGL_ACCESS_READ, GEGL_ABYSS_NONE, 1);

  while (gegl_buffer_iterator_next (iter))
    {
      const guchar *data   = iter->items[0].data;
      gint          length = iter->length;

      if (has_alpha)
        {
          while (length--)
            {
              if (data[ALPHA_G] > 127)
                histogram[*data]++;

              data += bpp;
            }
        }
      else
        {
          while (length--)
            {
              histogram[*data]++;

              data += bpp;
            }
        }
    }
}

static void
check_white_or_black (const guchar *data)
{
  if (data[RED]   == 255 &&
      data[GREEN] == 255 &&
      data[BLUE]  == 255)
    had_white = TRUE;
  if (data[RED]  ==0 &&
      data[GREEN]==0 &&
      data[BLUE] ==0)
    had_black = TRUE;
}

static void
generate_histogram_rgb (CFHistogram   histogram,
                        GimpLayer    *layer,
                        gint          col_limit,
                        gboolean      dither_alpha,
                        GimpProgress *progress)
{
  GeglBufferIterator *iter;
  const Babl         *format;
  GeglRectangle      *roi;
  ColorFreq          *colfreq;
  gint                nfc_iter;
  gint                row, col, coledge;
  gint                offsetx, offsety;
  glong               layer_size;
  glong               total_size = 0;
  gint                count      = 0;
  gint                bpp;
  gboolean            has_alpha;

  format = gimp_drawable_get_format (GIMP_DRAWABLE (layer));

  g_return_if_fail (format == babl_format ("R'G'B' u8") ||
                    format == babl_format ("R'G'B'A u8"));

  bpp       = babl_format_get_bytes_per_pixel (format);
  has_alpha = babl_format_has_alpha (format);

  gimp_item_get_offset (GIMP_ITEM (layer), &offsetx, &offsety);

  layer_size = (gimp_item_get_width  (GIMP_ITEM (layer)) *
                gimp_item_get_height (GIMP_ITEM (layer)));

  /*  g_printerr ("col_limit = %d, nfc = %d\n", col_limit, num_found_cols); */

  iter = gegl_buffer_iterator_new (gimp_drawable_get_buffer (GIMP_DRAWABLE (layer)),
                                   NULL, 0, format,
                                   GEGL_ACCESS_READ, GEGL_ABYSS_NONE, 1);
  roi = &iter->items[0].roi;

  if (progress)
    gimp_progress_set_value (progress, 0.0);

  while (gegl_buffer_iterator_next (iter))
    {
      const guchar *data   = iter->items[0].data;
      gint          length = iter->length;

      total_size += length;

      /* g_printerr (" [%d,%d - %d,%d]", srcPR.x, src_roi->y, offsetx, offsety); */

      if (needs_quantize)
        {
          if (dither_alpha)
            {
              /* if alpha-dithering,
                 we need to be deterministic w.r.t. offsets */

              col = roi->x + offsetx;
              coledge = col + roi->width;
              row = roi->y + offsety;

              while (length--)
                {
                  gboolean transparent = FALSE;

                  if (has_alpha &&
                      data[ALPHA] <
                      DM[col & DM_WIDTHMASK][row & DM_HEIGHTMASK])
                    transparent = TRUE;

                  if (! transparent)
                    {
                      colfreq = HIST_RGB (histogram,
                                          data[RED],
                                          data[GREEN],
                                          data[BLUE]);
                      check_white_or_black (data);
                      (*colfreq)++;
                    }

                  col++;
                  if (col == coledge)
                    {
                      col = roi->x + offsetx;
                      row++;
                    }

                  data += bpp;
                }
            }
          else
            {
              while (length--)
                {
                  if ((has_alpha && ((data[ALPHA] > 127)))
                      || (!has_alpha))
                    {
                      colfreq = HIST_RGB (histogram,
                                          data[RED],
                                          data[GREEN],
                                          data[BLUE]);
                      check_white_or_black (data);
                      (*colfreq)++;
                    }

                  data += bpp;
                }
            }
        }
      else
        {
          /* if alpha-dithering, we need to be deterministic w.r.t. offsets */
          col = roi->x + offsetx;
          coledge = col + roi->width;
          row = roi->y + offsety;

          while (length--)
            {
              gboolean transparent = FALSE;

              if (has_alpha)
                {
                  if (dither_alpha)
                    {
                      if (data[ALPHA] <
                          DM[col & DM_WIDTHMASK][row & DM_HEIGHTMASK])
                        transparent = TRUE;
                    }
                  else
                    {
                      if (data[ALPHA] <= 127)
                        transparent = TRUE;
                    }
                }

              if (! transparent)
                {
                  colfreq = HIST_RGB (histogram,
                                      data[RED],
                                      data[GREEN],
                                      data[BLUE]);
                  (*colfreq)++;

                  if (!needs_quantize)
                    {
                      for (nfc_iter = 0;
                           nfc_iter < num_found_cols;
                           nfc_iter++)
                        {
                          if ((data[RED]   == found_cols[nfc_iter][0]) &&
                              (data[GREEN] == found_cols[nfc_iter][1]) &&
                              (data[BLUE]  == found_cols[nfc_iter][2]))
                            goto already_found;
                        }

                      /* Color was not in the table of
                       * existing colors
                       */

                      num_found_cols++;

                      if (num_found_cols > col_limit)
                        {
                          /* There are more colors in the image than
                           *  were allowed.  We switch to plain
                           *  histogram calculation with a view to
                           *  quantizing at a later stage.
                           */
                          needs_quantize = TRUE;
                          /* g_print ("\nmax colors exceeded - needs quantize.\n");*/
                          goto already_found;
                        }
                      else
                        {
                          /* Remember the new color we just found.
                           */
                          found_cols[num_found_cols-1][0] = data[RED];
                          found_cols[num_found_cols-1][1] = data[GREEN];
                          found_cols[num_found_cols-1][2] = data[BLUE];

                          check_white_or_black (data);
                        }
                    }
                }
            already_found:

              col++;
              if (col == coledge)
                {
                  col = roi->x + offsetx;
                  row++;
                }

              data += bpp;
            }
        }

      if (progress && (count % 16 == 0))
        gimp_progress_set_value (progress,
                                 (gdouble) total_size / (gdouble) layer_size);
    }

/*  g_print ("O: col_limit = %d, nfc = %d\n", col_limit, num_found_cols);*/
}



static boxptr
find_split_candidate (const boxptr  boxlist,
                      const gint    numboxes,
                      AxisType     *which_axis,
                      const gint    desired_colors)
{
  boxptr  boxp;
  gint    i;
  etype   maxc = 0;
  boxptr  which = NULL;
  gdouble Lbias;

  *which_axis = AXIS_UNDEF;

  /* we only perform the initial L-split bias /at all/ if the final
     number of desired colors is quite low, otherwise it all comes
     out in the wash anyway and this initial bias generally only hurts
     us in the long run. */
  if (desired_colors <= 16)
    {
#define BIAS_FACTOR 2.66F
#define BIAS_NUMBER 2 /* 0 */

      /* we bias towards splitting across L* for first few colors */
      Lbias = (numboxes > BIAS_NUMBER) ? 1.0F : ((gdouble) (BIAS_NUMBER + 1) -
                                                 ((gdouble) numboxes)) /
        ((gdouble) BIAS_NUMBER / BIAS_FACTOR);
      /*Lbias = 1.0;
        fprintf(stderr, " [[%d]] ", numboxes);
        fprintf(stderr, "Using ramped L-split bias.\n");
        fprintf(stderr, "R\n");
      */
    }
  else
    Lbias = 1.0F;

  for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++)
    {
      if (boxp->volume > 0)
        {
#ifndef _MSC_VER
          etype rpe = (double)((boxp->rerror) * R_SCALE * R_SCALE);
          etype gpe = (double)((boxp->gerror) * G_SCALE * G_SCALE);
          etype bpe = (double)((boxp->berror) * B_SCALE * B_SCALE);
#else
          /*
           * Sorry about the mess, otherwise would get :
           * error C2520: conversion from unsigned __int64 to double
           *              not implemented, use signed __int64
           */
          etype rpe = (double)(((__int64)boxp->rerror) * R_SCALE * R_SCALE);
          etype gpe = (double)(((__int64)boxp->gerror) * G_SCALE * G_SCALE);
          etype bpe = (double)(((__int64)boxp->berror) * B_SCALE * B_SCALE);
#endif

          if (Lbias * rpe > maxc &&
              boxp->Rmin < boxp->Rmax)
            {
              which = boxp;
              maxc  = Lbias * rpe;
              *which_axis = AXIS_RED;
            }

          if (gpe > maxc &&
              boxp->Gmin < boxp->Gmax)
            {
              which = boxp;
              maxc  = gpe;
              *which_axis = AXIS_GREEN;
            }

          if (bpe > maxc &&
              boxp->Bmin < boxp->Bmax)
            {
              which = boxp;
              maxc  = bpe;
              *which_axis = AXIS_BLUE;
            }
        }
    }

  /*  fprintf(stderr, " %f,%p ", maxc, which); */
  /*  fprintf(stderr, " %llu ", maxc); */

  return which;
}


/* Find the splittable box with the largest (scaled) volume Returns
 * NULL if no splittable boxes remain
 */
static boxptr
find_biggest_volume (const boxptr boxlist,
                     const gint   numboxes)
{
  boxptr boxp;
  gint   i;
  gint   maxv = 0;
  boxptr which = NULL;

  for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++)
    {
      if (boxp->volume > maxv)
        {
          which = boxp;
          maxv = boxp->volume;
        }
    }

  return which;
}


/* Shrink the min/max bounds of a box to enclose only nonzero
 * elements, and recompute its volume and population
 */
static void
update_box_gray (const CFHistogram histogram,
                 boxptr            boxp)
{
  gint      i, min, max, dist;
  ColorFreq ccount;

  min = boxp->Rmin;
  max = boxp->Rmax;

  if (max > min)
    for (i = min; i <= max; i++)
      {
        if (histogram[i] != 0)
          {
            boxp->Rmin = min = i;
            break;
          }
      }

  if (max > min)
    for (i = max; i >= min; i--)
      {
        if (histogram[i] != 0)
          {
            boxp->Rmax = max = i;
            break;
          }
      }

  /* Update box volume.
   * We use 2-norm rather than real volume here; this biases the method
   * against making long narrow boxes, and it has the side benefit that
   * a box is splittable iff norm > 0.
   * Since the differences are expressed in histogram-cell units,
   * we have to shift back to JSAMPLE units to get consistent distances;
   * after which, we scale according to the selected distance scale factors.
   */
  dist = max - min;
  boxp->volume = dist * dist;

  /* Now scan remaining volume of box and compute population */
  ccount = 0;
  for (i = min; i <= max; i++)
    if (histogram[i] != 0)
      ccount++;

  boxp->colorcount = ccount;
}


/* Shrink the min/max bounds of a box to enclose only nonzero
 * elements, and recompute its volume, population and error
 */
static void
update_box_rgb (const CFHistogram histogram,
                boxptr            boxp,
                const gint        cells_remaining)
{
  gint      R, G, B;
  gint      Rmin, Rmax, Gmin, Gmax, Bmin, Bmax;
  gint      dist0, dist1, dist2;
  ColorFreq ccount;
  /*
  guint64 tempRerror;
  guint64 tempGerror;
  guint64 tempBerror;
  */
  QuantizeObj dummyqo;
  box         dummybox;

  /* fprintf(stderr, "U"); */

  Rmin = boxp->Rmin;  Rmax = boxp->Rmax;
  Gmin = boxp->Gmin;  Gmax = boxp->Gmax;
  Bmin = boxp->Bmin;  Bmax = boxp->Bmax;

  if (Rmax > Rmin)
    for (R = Rmin; R <= Rmax; R++)
      for (G = Gmin; G <= Gmax; G++)
        {
          for (B = Bmin; B <= Bmax; B++)
            {
              if (*HIST_LIN (histogram, R, G, B) != 0)
                {
                  boxp->Rmin = Rmin = R;
                  goto have_Rmin;
                }
            }
        }
 have_Rmin:
  if (Rmax > Rmin)
    for (R = Rmax; R >= Rmin; R--)
      for (G = Gmin; G <= Gmax; G++)
        {
          for (B = Bmin; B <= Bmax; B++)
            {
              if (*HIST_LIN (histogram, R, G, B) != 0)
                {
                  boxp->Rmax = Rmax = R;
                  goto have_Rmax;
                }
            }
        }
 have_Rmax:
  if (Gmax > Gmin)
    for (G = Gmin; G <= Gmax; G++)
      for (R = Rmin; R <= Rmax; R++)
        {
          for (B = Bmin; B <= Bmax; B++)
            {
              if (*HIST_LIN (histogram, R, G, B) != 0)
                {
                  boxp->Gmin = Gmin = G;
                  goto have_Gmin;
                }
            }
        }
 have_Gmin:
  if (Gmax > Gmin)
    for (G = Gmax; G >= Gmin; G--)
      for (R = Rmin; R <= Rmax; R++)
        {
          for (B = Bmin; B <= Bmax; B++)
            {
              if (*HIST_LIN (histogram, R, G, B) != 0)
                {
                  boxp->Gmax = Gmax = G;
                  goto have_Gmax;
                }
            }
        }
 have_Gmax:
  if (Bmax > Bmin)
    for (B = Bmin; B <= Bmax; B++)
      for (R = Rmin; R <= Rmax; R++)
        {
          for (G = Gmin; G <= Gmax; G++)
            {
              if (*HIST_LIN (histogram, R, G, B) != 0)
                {
                  boxp->Bmin = Bmin = B;
                  goto have_Bmin;
                }
            }
        }
 have_Bmin:
  if (Bmax > Bmin)
    for (B = Bmax; B >= Bmin; B--)
      for (R = Rmin; R <= Rmax; R++)
        {
          for (G = Gmin; G <= Gmax; G++)
            {
              if (*HIST_LIN (histogram, R, G, B) != 0)
                {
                  boxp->Bmax = Bmax = B;
                  goto have_Bmax;
                }
            }
        }
 have_Bmax:

  /* Update box volume.
   * We use 2-norm rather than real volume here; this biases the method
   * against making long narrow boxes, and it has the side benefit that
   * a box is splittable iff norm > 0. (ADM: note: this isn't true.)
   * Since the differences are expressed in histogram-cell units,
   * we have to shift back to JSAMPLE units to get consistent distances;
   * after which, we scale according to the selected distance scale factors.
   */
  dist0 = ((1 + Rmax - Rmin) << R_SHIFT) * R_SCALE;
  dist1 = ((1 + Gmax - Gmin) << G_SHIFT) * G_SCALE;
  dist2 = ((1 + Bmax - Bmin) << B_SHIFT) * B_SCALE;
  boxp->volume = dist0*dist0 + dist1*dist1 + dist2*dist2;
  /*  boxp->volume = dist0 * dist1 * dist2; */

  compute_color_lin8(&dummyqo, histogram, boxp, 0);

  /*printf("(%d %d %d)\n", dummyqo.cmap[0].red,dummyqo.cmap[0].green,dummyqo.cmap[0].blue);
    fflush(stdout);*/

  /* Now scan remaining volume of box and compute population */
  ccount = 0;
  boxp->error = 0;
  boxp->rerror = 0;
  boxp->gerror = 0;
  boxp->berror = 0;
  for (R = Rmin; R <= Rmax; R++)
    {
      for (G = Gmin; G <= Gmax; G++)
        {
          for (B = Bmin; B <= Bmax; B++)
            {
              ColorFreq freq_here;

              freq_here = *HIST_LIN (histogram, R, G, B);

              if (freq_here != 0)
                {
                  int ge, be, re;

                  dummybox.Rmin = dummybox.Rmax = R;
                  dummybox.Gmin = dummybox.Gmax = G;
                  dummybox.Bmin = dummybox.Bmax = B;
                  compute_color_lin8(&dummyqo, histogram, &dummybox, 1);

                  re = dummyqo.cmap[0].red   - dummyqo.cmap[1].red;
                  ge = dummyqo.cmap[0].green - dummyqo.cmap[1].green;
                  be = dummyqo.cmap[0].blue  - dummyqo.cmap[1].blue;

                  boxp->rerror += freq_here * (re) * (re);
                  boxp->gerror += freq_here * (ge) * (ge);
                  boxp->berror += freq_here * (be) * (be);

                  ccount += freq_here;
                }
            }
        }
    }

#if 0
  fg d;flg fd;kg fld;gflkfld
  /* Scan again, taking note of halfway error point for red axis */
  tempRerror = 0;
  boxp->Rhalferror = Rmin;
#warning r<=?
  for (R = Rmin; R <= Rmax; R++)
    {
      for (G = Gmin; G <= Gmax; G++)
        {
          for (B = Bmin; B <= Bmax; B++)
            {
              ColorFreq freq_here;
              freq_here = *HIST_LIN(histogram, R, G, B);
              if (freq_here != 0)
                {
                  int re;
                  int idist;
                  double dist;

                  dummybox.Rmin = dummybox.Rmax = R;
                  dummybox.Gmin = dummybox.Gmax = G;
                  dummybox.Bmin = dummybox.Bmax = B;
                  compute_color_lin8(&dummyqo, histogram, &dummybox, 1);

                  re = dummyqo.cmap[0].red   - dummyqo.cmap[1].red;

                  tempRerror += freq_here * (re) * (re);

                  if (tempRerror*2 >= boxp->rerror)
                    goto green_axisscan;
                  else
                    boxp->Rhalferror = R;
                }
            }
        }
    }
  fprintf(stderr, " D:");
 green_axisscan:

  fprintf(stderr, "<%d: %llu/%llu> ", R, tempRerror, boxp->rerror);
  /* Scan again, taking note of halfway error point for green axis */
  tempGerror = 0;
  boxp->Ghalferror = Gmin;
#warning G<=?
  for (G = Gmin; G <= Gmax; G++)
    {
      for (R = Rmin; R <= Rmax; R++)
        {
          for (B = Bmin; B <= Bmax; B++)
            {
              ColorFreq freq_here;
              freq_here = *HIST_LIN(histogram, R, G, B);
              if (freq_here != 0)
                {
                  int ge;
                  dummybox.Rmin = dummybox.Rmax = R;
                  dummybox.Gmin = dummybox.Gmax = G;
                  dummybox.Bmin = dummybox.Bmax = B;
                  compute_color_lin8(&dummyqo, histogram, &dummybox, 1);

                  ge = dummyqo.cmap[0].green - dummyqo.cmap[1].green;

                  tempGerror += freq_here * (ge) * (ge);

                  if (tempGerror*2 >= boxp->gerror)
                    goto blue_axisscan;
                  else
                    boxp->Ghalferror = G;
                }
            }
        }
    }

 blue_axisscan:
  /* Scan again, taking note of halfway error point for blue axis */
  tempBerror = 0;
  boxp->Bhalferror = Bmin;
#warning B<=?
  for (B = Bmin; B <= Bmax; B++)
    {
      for (R = Rmin; R <= Rmax; R++)
        {
          for (G = Gmin; G <= Gmax; G++)
            {
              ColorFreq freq_here;
              freq_here = *HIST_LIN(histogram, R, G, B);
              if (freq_here != 0)
                {
                  int be;
                  dummybox.Rmin = dummybox.Rmax = R;
                  dummybox.Gmin = dummybox.Gmax = G;
                  dummybox.Bmin = dummybox.Bmax = B;
                  compute_color_lin8(&dummyqo, histogram, &dummybox, 1);

                  be = dummyqo.cmap[0].blue  - dummyqo.cmap[1].blue;

                  tempBerror += freq_here * (be) * (be);

                  if (tempBerror*2 >= boxp->berror)
                    goto finished_axesscan;
                  else
                    boxp->Bhalferror = B;
                }
            }
        }
    }
 finished_axesscan:
#else

  boxp->Rhalferror = Rmin + (Rmax - Rmin + 1) / 2;
  boxp->Ghalferror = Gmin + (Gmax - Gmin + 1) / 2;
  boxp->Bhalferror = Bmin + (Bmax - Bmin + 1) / 2;

  if (dist0 && dist1 && dist2)
    {
      AxisType longest_ax      = AXIS_UNDEF;
      gint     longest_length  = 0;
      gint     longest_length2 = 0;
      gint     ratio;

      /*
        fprintf(stderr, "[%d,%d,%d=%d,%d,%d] ",
        (Rmax - Rmin), (Gmax - Gmin), (Bmax - Bmin),
        dist0, dist1, dist2);
      */

      if (dist0 >= longest_length)
        {
          longest_length2 = longest_length;
          longest_length = dist0;
          longest_ax = AXIS_RED;
        }
      else if (dist0 >= longest_length2)
        {
          longest_length2 = dist0;
        }

      if (dist1 >= longest_length)
        {
          longest_length2 = longest_length;
          longest_length = dist1;
          longest_ax = AXIS_GREEN;
        }
      else if (dist1 >= longest_length2)
        {
          longest_length2 = dist1;
        }

      if (dist2 >= longest_length)
        {
          longest_length2 = longest_length;
          longest_length = dist2;
          longest_ax = AXIS_BLUE;
        }
      else if (dist2 >= longest_length2)
        {
          longest_length2 = dist2;
        }

      if (longest_length2 == 0)
        longest_length2 = 1;

      ratio = (longest_length + longest_length2/2) / longest_length2;
      /* fprintf(stderr, " ratio:(%d/%d)=%d ", longest_length, longest_length2, ratio);
         fprintf(stderr, "C%d ", cells_remaining); */

      if (ratio > cells_remaining + 1)
        ratio = cells_remaining + 1;

      if (ratio > 2)
        {
          switch (longest_ax)
            {
            case AXIS_RED:
              if (Rmin + (Rmax - Rmin + ratio / 2) / ratio < Rmax)
                {
                  /* fprintf(stderr, "FR%d \007\n",ratio);*/
                  boxp->Rhalferror = Rmin +  (Rmax - Rmin + ratio / 2) / ratio;
                }
              break;
            case AXIS_GREEN:
              if (Gmin + (Gmax - Gmin + ratio / 2) / ratio < Gmax)
                {
                  /* fprintf(stderr, "FG%d \007\n",ratio);*/
                  boxp->Ghalferror = Gmin + (Gmax - Gmin + ratio / 2) / ratio;
                }
              break;
            case AXIS_BLUE:
              if (Bmin + (Bmax - Bmin + ratio / 2) / ratio < Bmax)
                {
                  /* fprintf(stderr, "FB%d \007\n",ratio);*/
                  boxp->Bhalferror = Bmin + (Bmax - Bmin + ratio / 2) / ratio;
                }
              break;
            default:
              g_warning ("GRR, UNDEF LONGEST AXIS\007\n");
            }
        }
    }

  if (boxp->Rhalferror == Rmax)
    boxp->Rhalferror = Rmin;
  if (boxp->Ghalferror == Gmax)
    boxp->Ghalferror = Gmin;
  if (boxp->Bhalferror == Bmax)
    boxp->Bhalferror = Bmin;

  /*
  boxp->Rhalferror = RSDF(dummyqo.cmap[0].red);
  boxp->Ghalferror = GSDF(dummyqo.cmap[0].green);
  boxp->Bhalferror = BSDF(dummyqo.cmap[0].blue);
  */

  /*
  boxp->Rhalferror = (RSDF(dummyqo.cmap[0].red) + (Rmin+Rmax)/2)/2;
  boxp->Ghalferror = (GSDF(dummyqo.cmap[0].green) + (Gmin+Gmax)/2)/2;
  boxp->Bhalferror = (BSDF(dummyqo.cmap[0].blue) + (Bmin+Bmax)/2)/2;
  */


#endif
  /*
  fprintf(stderr, " %d,%d", dummyqo.cmap[0].blue, boxp->Bmax);

  gimp_assert (boxp->Rhalferror >= boxp->Rmin);
  gimp_assert (boxp->Rhalferror < boxp->Rmax);
  gimp_assert (boxp->Ghalferror >= boxp->Gmin);
  gimp_assert (boxp->Ghalferror < boxp->Gmax);
  gimp_assert (boxp->Bhalferror >= boxp->Bmin);
  gimp_assert (boxp->Bhalferror < boxp->Bmax);*/

  /*boxp->error = (sqrt((double)(boxp->error/ccount)));*/
  /*  boxp->rerror = (sqrt((double)((boxp->rerror)/ccount)));
  boxp->gerror = (sqrt((double)((boxp->gerror)/ccount)));
  boxp->berror = (sqrt((double)((boxp->berror)/ccount)));*/
  /*printf(":%lld / %ld: ", boxp->error, ccount);
  printf("(%d-%d-%d)(%d-%d-%d)(%d-%d-%d)\n",
         Rmin, boxp->Rhalferror, Rmax,
         Gmin, boxp->Ghalferror, Gmax,
         Bmin, boxp->Bhalferror, Bmax
         );
         fflush(stdout);*/

  boxp->colorcount = ccount;
}


/* Repeatedly select and split the largest box until we have enough
 * boxes
 */
static gint
median_cut_gray (CFHistogram histogram,
                 boxptr      boxlist,
                 gint        numboxes,
                 gint        desired_colors)
{
  gint   lb;
  boxptr b1, b2;

  while (numboxes < desired_colors)
    {
      /* Select box to split.
       * Current algorithm: by population for first half, then by volume.
       */

      b1 = find_biggest_volume (boxlist, numboxes);

      if (b1 == NULL)           /* no splittable boxes left! */
        break;

      b2 = boxlist + numboxes;  /* where new box will go */
      /* Copy the color bounds to the new box. */
      b2->Rmax = b1->Rmax;
      b2->Rmin = b1->Rmin;

      /* Current algorithm: split at halfway point.
       * (Since the box has been shrunk to minimum volume,
       * any split will produce two nonempty subboxes.)
       * Note that lb value is max for lower box, so must be < old max.
       */
      lb = (b1->Rmax + b1->Rmin) / 2;
      b1->Rmax = lb;
      b2->Rmin = lb + 1;

      /* Update stats for boxes */
      update_box_gray (histogram, b1);
      update_box_gray (histogram, b2);
      numboxes++;
    }

  return numboxes;
}

/* Repeatedly select and split the largest box until we have enough
 * boxes
 */
static gint
median_cut_rgb (CFHistogram   histogram,
                boxptr        boxlist,
                gint          numboxes,
                gint          desired_colors,
                GimpProgress *progress)
{
  gint     lb;
  boxptr   b1, b2;
  AxisType which_axis;

  while (numboxes < desired_colors)
    {
      b1 = find_split_candidate (boxlist, numboxes, &which_axis, desired_colors);

      if (b1 == NULL)           /* no splittable boxes left! */
        break;

      b2 = boxlist + numboxes;  /* where new box will go */
      /* Copy the color bounds to the new box. */
      b2->Rmax = b1->Rmax; b2->Gmax = b1->Gmax; b2->Bmax = b1->Bmax;
      b2->Rmin = b1->Rmin; b2->Gmin = b1->Gmin; b2->Bmin = b1->Bmin;


      /* Choose split point along selected axis, and update box bounds.
       * Note that lb value is max for lower box, so must be < old max.
       */
      switch (which_axis)
        {
        case AXIS_RED:
          lb = b1->Rhalferror;/* *0 + (b1->Rmax + b1->Rmin) / 2; */
          b1->Rmax = lb;
          b2->Rmin = lb+1;
          g_return_val_if_fail (b1->Rmax >= b1->Rmin, numboxes);
          g_return_val_if_fail (b2->Rmax >= b2->Rmin, numboxes);
          break;
        case AXIS_GREEN:
          lb = b1->Ghalferror;/* *0 + (b1->Gmax + b1->Gmin) / 2; */
          b1->Gmax = lb;
          b2->Gmin = lb+1;
          g_return_val_if_fail (b1->Gmax >= b1->Gmin, numboxes);
          g_return_val_if_fail (b2->Gmax >= b2->Gmin, numboxes);
          break;
        case AXIS_BLUE:
          lb = b1->Bhalferror;/* *0 + (b1->Bmax + b1->Bmin) / 2; */
          b1->Bmax = lb;
          b2->Bmin = lb+1;
          g_return_val_if_fail (b1->Bmax >= b1->Bmin, numboxes);
          g_return_val_if_fail (b2->Bmax >= b2->Bmin, numboxes);
          break;
        default:
          g_error ("Uh-oh.");
        }
      /* Update stats for boxes */
      numboxes++;

      if (progress && (numboxes % 16 == 0))
        gimp_progress_set_value (progress, (gdouble) numboxes / desired_colors);

      update_box_rgb (histogram, b1, desired_colors - numboxes);
      update_box_rgb (histogram, b2, desired_colors - numboxes);
    }

  return numboxes;
}


/* Compute representative color for a box, put it in colormap[icolor]
 */
static void
compute_color_gray (QuantizeObj *quantobj,
                    CFHistogram  histogram,
                    boxptr       boxp,
                    int          icolor)
{
  gint    i, min, max;
  guint64 count;
  guint64 total;
  guint64 gtotal;

  min = boxp->Rmin;
  max = boxp->Rmax;

  total = 0;
  gtotal = 0;

  for (i = min; i <= max; i++)
    {
      count = histogram[i];
      if (count != 0)
        {
          total += count;
          gtotal += i * count;
        }
    }

  if (total != 0)
    {
      quantobj->cmap[icolor].red   =
      quantobj->cmap[icolor].green =
      quantobj->cmap[icolor].blue  = (gtotal + (total >> 1)) / total;
    }
  else
    {
      /* The only situation where total==0 is if the image was null or
       *  all-transparent.  In that case we just put a dummy value in
       *  the colormap.
       */
      quantobj->cmap[icolor].red   =
      quantobj->cmap[icolor].green =
      quantobj->cmap[icolor].blue  = 0;
    }
}


/* Compute representative color for a box, put it in colormap[icolor]
 */
static void
compute_color_rgb (QuantizeObj *quantobj,
                   CFHistogram  histogram,
                   boxptr       boxp,
                   int          icolor)
{
  /* Current algorithm: mean weighted by pixels (not colors) */
  /* Note it is important to get the rounding correct! */
  gint      R, G, B;
  gint      Rmin, Rmax;
  gint      Gmin, Gmax;
  gint      Bmin, Bmax;
  ColorFreq total  = 0;
  ColorFreq Rtotal = 0;
  ColorFreq Gtotal = 0;
  ColorFreq Btotal = 0;

  Rmin = boxp->Rmin;  Rmax = boxp->Rmax;
  Gmin = boxp->Gmin;  Gmax = boxp->Gmax;
  Bmin = boxp->Bmin;  Bmax = boxp->Bmax;

  for (R = Rmin; R <= Rmax; R++)
    for (G = Gmin; G <= Gmax; G++)
      {
        for (B = Bmin; B <= Bmax; B++)
          {
            ColorFreq this_freq = *HIST_LIN (histogram, R, G, B);

            if (this_freq != 0)
              {
                total += this_freq;
                Rtotal += R * this_freq;
                Gtotal += G * this_freq;
                Btotal += B * this_freq;
              }
          }
      }

  if (total > 0)
    {
      guchar red, green, blue;

      lin_to_rgb (/*(Rtotal + (total>>1)) / total,
                    (Gtotal + (total>>1)) / total,
                    (Btotal + (total>>1)) / total,*/
                  (double)Rtotal / (double)total,
                  (double)Gtotal / (double)total,
                  (double)Btotal / (double)total,
                  &red, &green, &blue);

      quantobj->cmap[icolor].red   = red;
      quantobj->cmap[icolor].green = green;
      quantobj->cmap[icolor].blue  = blue;
    }
  else
    {
      /* The only situation where total==0 is if the image was null or
       *  all-transparent.  In that case we just put a dummy value in
       *  the colormap.
       */
      quantobj->cmap[icolor].red   = 0;
      quantobj->cmap[icolor].green = 0;
      quantobj->cmap[icolor].blue  = 0;
    }
}


/* Compute representative color for a box, put it in colormap[icolor]
 */
static void
compute_color_lin8 (QuantizeObj *quantobj,
                    CFHistogram  histogram,
                    boxptr       boxp,
                    const gint   icolor)
{
  /* Current algorithm: mean weighted by pixels (not colors) */
  /* Note it is important to get the rounding correct! */
  gint      R, G, B;
  gint      Rmin, Rmax;
  gint      Gmin, Gmax;
  gint      Bmin, Bmax;
  ColorFreq total  = 0;
  ColorFreq Rtotal = 0;
  ColorFreq Gtotal = 0;
  ColorFreq Btotal = 0;

  Rmin = boxp->Rmin;  Rmax = boxp->Rmax;
  Gmin = boxp->Gmin;  Gmax = boxp->Gmax;
  Bmin = boxp->Bmin;  Bmax = boxp->Bmax;

  for (R = Rmin; R <= Rmax; R++)
    for (G = Gmin; G <= Gmax; G++)
      {
        for (B = Bmin; B <= Bmax; B++)
          {
            ColorFreq this_freq = *HIST_LIN (histogram, R, G, B);

            if (this_freq != 0)
              {
                Rtotal += R * this_freq;
                Gtotal += G * this_freq;
                Btotal += B * this_freq;
                total += this_freq;
              }
          }
      }

  if (total != 0)
    {
      quantobj->cmap[icolor].red   = ((Rtotal << R_SHIFT) + (total>>1)) / total;
      quantobj->cmap[icolor].green = ((Gtotal << G_SHIFT) + (total>>1)) / total;
      quantobj->cmap[icolor].blue  = ((Btotal << B_SHIFT) + (total>>1)) / total;
    }
  else
    {
      /* The only situation where total==0 is if the image was null or
       *  all-transparent.  In that case we just put a dummy value in
       *  the colormap.
       */
      g_warning ("eep.");
      quantobj->cmap[icolor].red   = 0;
      quantobj->cmap[icolor].green = 128;
      quantobj->cmap[icolor].blue  = 128;
    }
}


/* Master routine for color selection
 */
static void
select_colors_gray (QuantizeObj *quantobj,
                    CFHistogram  histogram)
{
  boxptr boxlist;
  gint   numboxes;
  gint   desired = quantobj->desired_number_of_colors;
  gint   i;

  /* Allocate workspace for box list */
  boxlist = g_new (box, desired);

  /* Initialize one box containing whole space */
  numboxes = 1;
  boxlist[0].Rmin = 0;
  boxlist[0].Rmax = 255;
  /* Shrink it to actually-used volume and set its statistics */
  update_box_gray (histogram, boxlist);
  /* Perform median-cut to produce final box list */
  numboxes = median_cut_gray (histogram, boxlist, numboxes, desired);

  quantobj->actual_number_of_colors = numboxes;
  /* Compute the representative color for each box, fill colormap */
  for (i = 0; i < numboxes; i++)
    compute_color_gray (quantobj, histogram, boxlist + i, i);
}


/* Master routine for color selection
 */
static void
select_colors_rgb (QuantizeObj *quantobj,
                   CFHistogram  histogram)
{
  boxptr boxlist;
  gint   numboxes;
  gint   desired = quantobj->desired_number_of_colors;
  gint  i;

  /* Allocate workspace for box list */
  boxlist = g_new (box, desired);

  /* Initialize one box containing whole space */
  numboxes = 1;
  boxlist[0].Rmin = 0;
  boxlist[0].Rmax = HIST_R_ELEMS - 1;
  boxlist[0].Gmin = 0;
  boxlist[0].Gmax = HIST_G_ELEMS - 1;
  boxlist[0].Bmin = 0;
  boxlist[0].Bmax = HIST_B_ELEMS - 1;
  /* Shrink it to actually-used volume and set its statistics */
  update_box_rgb (histogram, &boxlist[0], quantobj->desired_number_of_colors);
  /* Perform median-cut to produce final box list */
  numboxes = median_cut_rgb (histogram, boxlist, numboxes, desired,
                             quantobj->progress);

  quantobj->actual_number_of_colors = numboxes;
  /* Compute the representative color for each box, fill colormap */
  for (i = 0; i < numboxes; i++)
    {
      compute_color_rgb (quantobj, histogram, &boxlist[i], i);
    }

  g_free (boxlist);
}


/*
 * These routines are concerned with the time-critical task of mapping input
 * colors to the nearest color in the selected colormap.
 *
 * We re-use the histogram space as an "inverse color map", essentially a
 * cache for the results of nearest-color searches.  All colors within a
 * histogram cell will be mapped to the same colormap entry, namely the one
 * closest to the cell's center.  This may not be quite the closest entry to
 * the actual input color, but it's almost as good.  A zero in the cache
 * indicates we haven't found the nearest color for that cell yet; the array
 * is cleared to zeroes before starting the mapping pass.  When we find the
 * nearest color for a cell, its colormap index plus one is recorded in the
 * cache for future use.  The pass2 scanning routines call fill_inverse_cmap
 * when they need to use an unfilled entry in the cache.
 *
 * Our method of efficiently finding nearest colors is based on the "locally
 * sorted search" idea described by Heckbert and on the incremental distance
 * calculation described by Spencer W. Thomas in chapter III.1 of Graphics
 * Gems II (James Arvo, ed.  Academic Press, 1991).  Thomas points out that
 * the distances from a given colormap entry to each cell of the histogram can
 * be computed quickly using an incremental method: the differences between
 * distances to adjacent cells themselves differ by a constant.  This allows a
 * fairly fast implementation of the "brute force" approach of computing the
 * distance from every colormap entry to every histogram cell.  Unfortunately,
 * it needs a work array to hold the best-distance-so-far for each histogram
 * cell (because the inner loop has to be over cells, not colormap entries).
 * The work array elements have to be ints, so the work array would need
 * 256Kb at our recommended precision.  This is not feasible in DOS machines.
 *
 * To get around these problems, we apply Thomas' method to compute the
 * nearest colors for only the cells within a small subbox of the histogram.
 * The work array need be only as big as the subbox, so the memory usage
 * problem is solved.  Furthermore, we need not fill subboxes that are never
 * referenced in pass2; many images use only part of the color gamut, so a
 * fair amount of work is saved.  An additional advantage of this
 * approach is that we can apply Heckbert's locality criterion to quickly
 * eliminate colormap entries that are far away from the subbox; typically
 * three-fourths of the colormap entries are rejected by Heckbert's criterion,
 * and we need not compute their distances to individual cells in the subbox.
 * The speed of this approach is heavily influenced by the subbox size: too
 * small means too much overhead, too big loses because Heckbert's criterion
 * can't eliminate as many colormap entries.  Empirically the best subbox
 * size seems to be about 1/512th of the histogram (1/8th in each direction).
 *
 * Thomas' article also describes a refined method which is asymptotically
 * faster than the brute-force method, but it is also far more complex and
 * cannot efficiently be applied to small subboxes.  It is therefore not
 * useful for programs intended to be portable to DOS machines.  On machines
 * with plenty of memory, filling the whole histogram in one shot with Thomas'
 * refined method might be faster than the present code --- but then again,
 * it might not be any faster, and it's certainly more complicated.
 */


/* log2(histogram cells in update box) for each axis; this can be adjusted */
/*#define BOX_R_LOG  (PRECISION_R-3)
  #define BOX_G_LOG  (PRECISION_G-3)
  #define BOX_B_LOG  (PRECISION_B-3)*/

/*adam*/
#define BOX_R_LOG 0
#define BOX_G_LOG 0
#define BOX_B_LOG 0

#define BOX_R_ELEMS  (1<<BOX_R_LOG) /* # of hist cells in update box */
#define BOX_G_ELEMS  (1<<BOX_G_LOG)
#define BOX_B_ELEMS  (1<<BOX_B_LOG)

#define BOX_R_SHIFT  (R_SHIFT + BOX_R_LOG)
#define BOX_G_SHIFT  (G_SHIFT + BOX_G_LOG)
#define BOX_B_SHIFT  (B_SHIFT + BOX_B_LOG)


/*
 * The next three routines implement inverse colormap filling.  They
 * could all be folded into one big routine, but splitting them up
 * this way saves some stack space (the mindist[] and bestdist[]
 * arrays need not coexist) and may allow some compilers to produce
 * better code by registerizing more inner-loop variables.
 */

/* Locate the colormap entries close enough to an update box to be
 * candidates for the nearest entry to some cell(s) in the update box.
 * The update box is specified by the center coordinates of its first
 * cell.  The number of candidate colormap entries is returned, and
 * their colormap indexes are placed in colorlist[].
 *
 * This routine uses Heckbert's "locally sorted search" criterion to
 * select the colors that need further consideration.
 */
static gint
find_nearby_colors (QuantizeObj *quantobj,
                    int          minR,
                    int          minG,
                    int          minB,
                    int          colorlist[])
{
  int numcolors = quantobj->actual_number_of_colors;
  int maxR, maxG, maxB;
  int centerR, centerG, centerB;
  int i, x, ncolors;
  int minmaxdist, min_dist, max_dist, tdist;
  int mindist[MAXNUMCOLORS];    /* min distance to colormap entry i */

  /* Compute true coordinates of update box's upper corner and center.
   * Actually we compute the coordinates of the center of the upper-corner
   * histogram cell, which are the upper bounds of the volume we care about.
   * Note that since ">>" rounds down, the "center" values may be closer to
   * min than to max; hence comparisons to them must be "<=", not "<".
   */
  maxR = minR + ((1 << BOX_R_SHIFT) - (1 << R_SHIFT));
  centerR = (minR + maxR + 1) >> 1;
  maxG = minG + ((1 << BOX_G_SHIFT) - (1 << G_SHIFT));
  centerG = (minG + maxG + 1) >> 1;
  maxB = minB + ((1 << BOX_B_SHIFT) - (1 << B_SHIFT));
  centerB = (minB + maxB + 1) >> 1;

  /* For each color in colormap, find:
   *  1. its minimum squared-distance to any point in the update box
   *     (zero if color is within update box);
   *  2. its maximum squared-distance to any point in the update box.
   * Both of these can be found by considering only the corners of the box.
   * We save the minimum distance for each color in mindist[];
   * only the smallest maximum distance is of interest.
   */
  minmaxdist = 0x7FFFFFFFL;

  for (i = 0; i < numcolors; i++)
    {
      /* We compute the squared-R-distance term, then add in the other two. */
      x = quantobj->clin[i].red;
      if (x < minR)
        {
          tdist = (x - minR) * R_SCALE;
          min_dist = tdist*tdist;
          tdist = (x - maxR) * R_SCALE;
          max_dist = tdist*tdist;
        }
      else if (x > maxR)
        {
          tdist = (x - maxR) * R_SCALE;
          min_dist = tdist*tdist;
          tdist = (x - minR) * R_SCALE;
          max_dist = tdist*tdist;
        }
      else
        {
          /* within cell range so no contribution to min_dist */
          min_dist = 0;
          if (x <= centerR)
            {
              tdist = (x - maxR) * R_SCALE;
              max_dist = tdist*tdist;
            }
          else
            {
              tdist = (x - minR) * R_SCALE;
              max_dist = tdist*tdist;
            }
        }

      x = quantobj->clin[i].green;
      if (x < minG)
        {
          tdist = (x - minG) * G_SCALE;
          min_dist += tdist*tdist;
          tdist = (x - maxG) * G_SCALE;
          max_dist += tdist*tdist;
        }
      else if (x > maxG)
        {
          tdist = (x - maxG) * G_SCALE;
          min_dist += tdist*tdist;
          tdist = (x - minG) * G_SCALE;
          max_dist += tdist*tdist;
        }
      else
        {
          /* within cell range so no contribution to min_dist */
          if (x <= centerG)
            {
              tdist = (x - maxG) * G_SCALE;
              max_dist += tdist*tdist;
            }
          else
            {
              tdist = (x - minG) * G_SCALE;
              max_dist += tdist*tdist;
            }
        }

      x = quantobj->clin[i].blue;
      if (x < minB)
        {
          tdist = (x - minB) * B_SCALE;
          min_dist += tdist*tdist;
          tdist = (x - maxB) * B_SCALE;
          max_dist += tdist*tdist;
        }
      else if (x > maxB)
        {
          tdist = (x - maxB) * B_SCALE;
          min_dist += tdist*tdist;
          tdist = (x - minB) * B_SCALE;
          max_dist += tdist*tdist;
        }
      else
        {
          /* within cell range so no contribution to min_dist */
          if (x <= centerB)
            {
              tdist = (x - maxB) * B_SCALE;
              max_dist += tdist*tdist;
            }
          else
            {
              tdist = (x - minB) * B_SCALE;
              max_dist += tdist*tdist;
            }
        }

      mindist[i] = min_dist;      /* save away the results */
      if (max_dist < minmaxdist)
        minmaxdist = max_dist;
    }

  /* Now we know that no cell in the update box is more than minmaxdist
   * away from some colormap entry.  Therefore, only colors that are
   * within minmaxdist of some part of the box need be considered.
   */
  ncolors = 0;
  for (i = 0; i < numcolors; i++)
    {
      if (mindist[i] <= minmaxdist)
        colorlist[ncolors++] = i;
    }

  return ncolors;
}


/* Find the closest colormap entry for each cell in the update box,
 * given the list of candidate colors prepared by find_nearby_colors.
 * Return the indexes of the closest entries in the bestcolor[] array.
 * This routine uses Thomas' incremental distance calculation method
 * to find the distance from a colormap entry to successive cells in
 * the box.
 */
static void
find_best_colors (QuantizeObj *quantobj,
                  gint         minR,
                  gint         minG,
                  gint         minB,
                  gint         numcolors,
                  gint         colorlist[],
                  gint         bestcolor[])
{
  gint  iR, iG, iB;
  gint  i, icolor;
  gint *bptr;           /* pointer into bestdist[] array */
  gint *cptr;           /* pointer into bestcolor[] array */
  gint  dist0, dist1;     /* initial distance values */
  gint  dist2;            /* current distance in inner loop */
  gint  xx0, xx1;         /* distance increments */
  gint  xx2;
  gint  inR, inG, inB;    /* initial values for increments */

  /* This array holds the distance to the nearest-so-far color for each cell */
  gint  bestdist[BOX_R_ELEMS * BOX_G_ELEMS * BOX_B_ELEMS] = { 0, };

  /* Initialize best-distance for each cell of the update box */
  bptr = bestdist;
  for (i = BOX_R_ELEMS*BOX_G_ELEMS*BOX_B_ELEMS-1; i >= 0; i--)
    *bptr++ = 0x7FFFFFFFL;

  /* For each color selected by find_nearby_colors,
   * compute its distance to the center of each cell in the box.
   * If that's less than best-so-far, update best distance and color number.
   */

  /* Nominal steps between cell centers ("x" in Thomas article) */
#define STEP_R  ((1 << R_SHIFT) * R_SCALE)
#define STEP_G  ((1 << G_SHIFT) * G_SCALE)
#define STEP_B  ((1 << B_SHIFT) * B_SCALE)

  for (i = 0; i < numcolors; i++)
    {
      icolor = colorlist[i];
      /* Compute (square of) distance from minR/G/B to this color */
      inR = (minR - quantobj->clin[icolor].red) * R_SCALE;
      dist0 = inR*inR;
      /* special-case for L*==0: chroma diffs irrelevant */
      /*    if (minR > 0 || quantobj->clin[icolor].red > 0) */
      {
        inG = (minG - quantobj->clin[icolor].green) * G_SCALE;
        dist0 += inG*inG;
        inB = (minB - quantobj->clin[icolor].blue) * B_SCALE;
        dist0 += inB*inB;
      }
      /*    else
            {
            inG = 0;
            inB = 0;
            } */
      /* Form the initial difference increments */
      inR = inR * (2 * STEP_R) + STEP_R * STEP_R;
      inG = inG * (2 * STEP_G) + STEP_G * STEP_G;
      inB = inB * (2 * STEP_B) + STEP_B * STEP_B;
      /* Now loop over all cells in box, updating distance per Thomas method */
      bptr = bestdist;
      cptr = bestcolor;
      xx0 = inR;
      for (iR = BOX_R_ELEMS-1; iR >= 0; iR--)
        {
          dist1 = dist0;
          xx1 = inG;
          for (iG = BOX_G_ELEMS-1; iG >= 0; iG--)
            {
              dist2 = dist1;
              xx2 = inB;
              for (iB = BOX_B_ELEMS-1; iB >= 0; iB--)
                {
                  if (dist2 < *bptr)
                    {
                      *bptr = dist2;
                      *cptr = icolor;
                    }
                  dist2 += xx2;
                  xx2 += 2 * STEP_B * STEP_B;
                  bptr++;
                  cptr++;
                }
              dist1 += xx1;
              xx1 += 2 * STEP_G * STEP_G;
            }
          dist0 += xx0;
          xx0 += 2 * STEP_R * STEP_R;
        }
    }
}


/* Fill the inverse-colormap entries in the update box that contains
 * histogram cell R/G/B.  (Only that one cell MUST be filled, but we
 * can fill as many others as we wish.)
 */
static void
fill_inverse_cmap_gray (QuantizeObj *quantobj,
                        CFHistogram  histogram,
                        gint         pixel)
{
  Color *cmap = quantobj->cmap;
  glong  mindist;
  gint   mindisti;
  gint   i;

  mindist  = 65536;
  mindisti = -1;

  for (i = 0; i < quantobj->actual_number_of_colors; i++)
    {
      glong dist = ABS (pixel - cmap[i].red);

      if (dist < mindist)
        {
          mindist  = dist;
          mindisti = i;
        }
    }

  if (i >= 0)
    histogram[pixel] = mindisti + 1;
}


/* Fill the inverse-colormap entries in the update box that contains
 * histogram cell R/G/B.  (Only that one cell MUST be filled, but we
 * can fill as many others as we wish.)
 */
static void
fill_inverse_cmap_rgb (QuantizeObj *quantobj,
                       CFHistogram  histogram,
                       gint         R,
                       gint         G,
                       gint         B)
{
  gint  minR, minG, minB; /* lower left corner of update box */
  gint  iR, iG, iB;
  gint *cptr;           /* pointer into bestcolor[] array */
  /* This array lists the candidate colormap indexes. */
  gint  colorlist[MAXNUMCOLORS];
  gint  numcolors;                /* number of candidate colors */
  /* This array holds the actually closest colormap index for each cell. */
  gint  bestcolor[BOX_R_ELEMS * BOX_G_ELEMS * BOX_B_ELEMS] = { 0, };

  /* Convert cell coordinates to update box id */
  R >>= BOX_R_LOG;
  G >>= BOX_G_LOG;
  B >>= BOX_B_LOG;

  /* Compute true coordinates of update box's origin corner.
   * Actually we compute the coordinates of the center of the corner
   * histogram cell, which are the lower bounds of the volume we care about.
   */
  minR = (R << BOX_R_SHIFT) + ((1 << R_SHIFT) >> 1);
  minG = (G << BOX_G_SHIFT) + ((1 << G_SHIFT) >> 1);
  minB = (B << BOX_B_SHIFT) + ((1 << B_SHIFT) >> 1);

  /* Determine which colormap entries are close enough to be candidates
   * for the nearest entry to some cell in the update box.
   */
  numcolors = find_nearby_colors (quantobj, minR, minG, minB, colorlist);

  /* Determine the actually nearest colors. */
  find_best_colors (quantobj, minR, minG, minB, numcolors, colorlist,
                    bestcolor);

  /* Save the best color numbers (plus 1) in the main cache array */
  R <<= BOX_R_LOG;              /* convert id back to base cell indexes */
  G <<= BOX_G_LOG;
  B <<= BOX_B_LOG;
  cptr = bestcolor;
  for (iR = 0; iR < BOX_R_ELEMS; iR++)
    {
      for (iG = 0; iG < BOX_G_ELEMS; iG++)
        {
          for (iB = 0; iB < BOX_B_ELEMS; iB++)
            {
              *HIST_LIN (histogram, R + iR, G + iG, B + iB) = (*cptr++) + 1;
            }
        }
    }
}


/*  This is pass 1  */

static void
median_cut_pass1_gray (QuantizeObj *quantobj)
{
  select_colors_gray (quantobj, quantobj->histogram);
}

static void
snap_to_black_and_white (QuantizeObj *quantobj)
{
  /* find whitest and blackest colors in palette, if they are closer
   * than 24 units of euclidian distance in sRGB snap them to pure
   * black / white.
   */
#define POW2(a) ((a)*(a))
  gint   desired  = quantobj->desired_number_of_colors;
  gint   whitest  = 0;
  gint   blackest = 0;

  glong  white_dist = POW2(255) * 3;
  glong  black_dist = POW2(255) * 3;
  gint   i;

  for (i = 0; i < desired; i ++)
    {
       int dist;

       dist = POW2 (quantobj->cmap[i].red   - 255) +
              POW2 (quantobj->cmap[i].green - 255) +
              POW2( quantobj->cmap[i].blue  - 255);
       if (dist < white_dist)
         {
           white_dist = dist;
           whitest = i;
         }

       dist = POW2(quantobj->cmap[i].red   - 0) +
              POW2(quantobj->cmap[i].green - 0) +
              POW2(quantobj->cmap[i].blue  - 0);
       if (dist < black_dist)
         {
           black_dist = dist;
           blackest = i;
         }
    }

  if (desired > 2 &&
      had_white   &&
      white_dist < POW2(128))
  {
     quantobj->cmap[whitest].red   =
     quantobj->cmap[whitest].green =
     quantobj->cmap[whitest].blue  = 255;
  }
  if (desired > 2 &&
      had_black   &&
      black_dist < POW2(128))
  {
     quantobj->cmap[blackest].red   =
     quantobj->cmap[blackest].green =
     quantobj->cmap[blackest].blue  = 0;
  }
#undef POW2
}

static void
median_cut_pass1_rgb (QuantizeObj *quantobj)
{
  select_colors_rgb (quantobj, quantobj->histogram);
  snap_to_black_and_white (quantobj);
}


static void
monopal_pass1 (QuantizeObj *quantobj)
{
  quantobj->actual_number_of_colors = 2;

  quantobj->cmap[0].red   = 0;
  quantobj->cmap[0].green = 0;
  quantobj->cmap[0].blue  = 0;
  quantobj->cmap[1].red   = 255;
  quantobj->cmap[1].green = 255;
  quantobj->cmap[1].blue  = 255;
}

static void
webpal_pass1 (QuantizeObj *quantobj)
{
  int i;

  quantobj->actual_number_of_colors = 216;

  for (i=0; i < 216; i++)
    {
      quantobj->cmap[i].red   = webpal[i * 3];
      quantobj->cmap[i].green = webpal[i * 3 +1];
      quantobj->cmap[i].blue  = webpal[i * 3 +2];
    }
}

static void
custompal_pass1 (QuantizeObj *quantobj)
{
  gint   i;
  GList *list;

  /* fprintf(stderr,
             "custompal_pass1: using (theCustomPalette %s) from (file %s)\n",
             theCustomPalette->name, theCustomPalette->filename); */

  for (i = 0, list = gimp_palette_get_colors (quantobj->custom_palette);
       list;
       i++, list = g_list_next (list))
    {
      GimpPaletteEntry *entry = list->data;
      guchar            r, g, b;

      gimp_rgb_get_uchar (&entry->color, &r, &g, &b);

      quantobj->cmap[i].red   = (gint) r;
      quantobj->cmap[i].green = (gint) g;
      quantobj->cmap[i].blue  = (gint) b;
    }

  quantobj -> actual_number_of_colors = i;
}

/*
 * Map some rows of pixels to the output colormapped representation.
 */

static void
median_cut_pass2_no_dither_gray (QuantizeObj *quantobj,
                                 GimpLayer   *layer,
                                 GeglBuffer  *new_buffer)
{
  GeglBufferIterator *iter;
  CFHistogram         histogram = quantobj->histogram;
  ColorFreq          *cachep;
  const Babl         *src_format;
  const Babl         *dest_format;
  GeglRectangle      *src_roi;
  gint                src_bpp;
  gint                dest_bpp;
  gint                has_alpha;
  gulong             *index_used_count = quantobj->index_used_count;
  gboolean            dither_alpha     = quantobj->want_dither_alpha;
  gint                offsetx, offsety;

  gimp_item_get_offset (GIMP_ITEM (layer), &offsetx, &offsety);

  src_format  = gimp_drawable_get_format (GIMP_DRAWABLE (layer));
  dest_format = gegl_buffer_get_format (new_buffer);

  src_bpp  = babl_format_get_bytes_per_pixel (src_format);
  dest_bpp = babl_format_get_bytes_per_pixel (dest_format);

  has_alpha = babl_format_has_alpha (src_format);

  iter = gegl_buffer_iterator_new (gimp_drawable_get_buffer (GIMP_DRAWABLE (layer)),
                                   NULL, 0, NULL,
                                   GEGL_ACCESS_READ, GEGL_ABYSS_NONE, 2);
  src_roi = &iter->items[0].roi;

  gegl_buffer_iterator_add (iter, new_buffer,
                            NULL, 0, NULL,
                            GEGL_ACCESS_WRITE, GEGL_ABYSS_NONE);

  while (gegl_buffer_iterator_next (iter))
    {
      const guchar *src  = iter->items[0].data;
      guchar       *dest = iter->items[1].data;
      gint          row;

      for (row = 0; row < src_roi->height; row++)
        {
          gint col;

          for (col = 0; col < src_roi->width; col++)
            {
              /* get pixel value and index into the cache */
              gint pixel = src[GRAY];

              cachep = &histogram[pixel];
              /* If we have not seen this color before, find nearest
               * colormap entry and update the cache
               */
              if (*cachep == 0)
                fill_inverse_cmap_gray (quantobj, histogram, pixel);

              if (has_alpha)
                {
                  gboolean transparent = FALSE;

                  if (dither_alpha)
                    {
                      gint dither_x = (col + offsetx + src_roi->x) & DM_WIDTHMASK;
                      gint dither_y = (row + offsety + src_roi->y) & DM_HEIGHTMASK;

                      if ((src[ALPHA_G]) < DM[dither_x][dither_y])
                        transparent = TRUE;
                    }
                  else
                    {
                      if (src[ALPHA_G] <= 127)
                        transparent = TRUE;
                    }

                  if (transparent)
                    {
                      dest[ALPHA_I] = 0;
                    }
                  else
                    {
                      dest[ALPHA_I] = 255;
                      index_used_count[dest[INDEXED] = *cachep - 1]++;
                    }
                }
              else
                {
                  /* Now emit the colormap index for this cell */
                  index_used_count[dest[INDEXED] = *cachep - 1]++;
                }

              src  += src_bpp;
              dest += dest_bpp;
            }
        }
    }
}

static void
median_cut_pass2_fixed_dither_gray (QuantizeObj *quantobj,
                                    GimpLayer   *layer,
                                    GeglBuffer  *new_buffer)
{
  GeglBufferIterator *iter;
  CFHistogram         histogram = quantobj->histogram;
  ColorFreq          *cachep;
  const Babl         *src_format;
  const Babl         *dest_format;
  GeglRectangle      *src_roi;
  gint                src_bpp;
  gint                dest_bpp;
  gboolean            has_alpha;
  gint                pixval1 = 0;
  gint                pixval2 = 0;
  gint                err1;
  gint                err2;
  Color              *color1;
  Color              *color2;
  gulong             *index_used_count = quantobj->index_used_count;
  gboolean            dither_alpha     = quantobj->want_dither_alpha;
  gint                offsetx, offsety;

  gimp_item_get_offset (GIMP_ITEM (layer), &offsetx, &offsety);

  src_format  = gimp_drawable_get_format (GIMP_DRAWABLE (layer));
  dest_format = gegl_buffer_get_format (new_buffer);

  src_bpp  = babl_format_get_bytes_per_pixel (src_format);
  dest_bpp = babl_format_get_bytes_per_pixel (dest_format);

  has_alpha = babl_format_has_alpha (src_format);

  iter = gegl_buffer_iterator_new (gimp_drawable_get_buffer (GIMP_DRAWABLE (layer)),
                                   NULL, 0, NULL,
                                   GEGL_ACCESS_READ, GEGL_ABYSS_NONE, 2);
  src_roi = &iter->items[0].roi;

  gegl_buffer_iterator_add (iter, new_buffer,
                            NULL, 0, NULL,
                            GEGL_ACCESS_WRITE, GEGL_ABYSS_NONE);

  while (gegl_buffer_iterator_next (iter))
    {
      const guchar *src  = iter->items[0].data;
      guchar       *dest = iter->items[1].data;
      gint          row;

      for (row = 0; row < src_roi->height; row++)
        {
          gint col;

          for (col = 0; col < src_roi->width; col++)
            {
              gint       pixel;
              const gint dmval =
                DM[(col + offsetx + src_roi->x) & DM_WIDTHMASK]
                [(row + offsety + src_roi->y) & DM_HEIGHTMASK];

              /* get pixel value and index into the cache */
              pixel = src[GRAY];

              cachep = &histogram[pixel];
              /* If we have not seen this color before, find nearest
               * colormap entry and update the cache
               */
              if (*cachep == 0)
                fill_inverse_cmap_gray (quantobj, histogram, pixel);

              pixval1 = *cachep - 1;
              color1 = &quantobj->cmap[pixval1];

              if (quantobj->actual_number_of_colors > 2)
                {
                  const int re = src[GRAY] - (int)color1->red;
                  int RV = src[GRAY] + re;

                  do
                    {
                      const gint R = CLAMP0255 (RV);

                      cachep = &histogram[R];
                      /* If we have not seen this color before, find
                       * nearest colormap entry and update the cache
                       */
                      if (*cachep == 0)
                        fill_inverse_cmap_gray (quantobj, histogram, R);

                      pixval2 = *cachep - 1;
                      RV += re;
                    }
                  while ((pixval1 == pixval2) &&
                         (! (RV>255 || RV<0) ) &&
                         re);
                }
              else
                {
                  /* not enough colors to bother looking for an 'alternative'
                     color (we may fail to do so anyway), so decide that
                     the alternative color is simply the other cmap entry. */
                  pixval2 = (pixval1 + 1) %
                    (quantobj->actual_number_of_colors);
                }

              /* always deterministically sort pixval1 and pixval2, to
                 avoid artifacts in the dither range due to inverting our
                 relative color viewpoint -- most obvious in 1-bit dither. */
              if (pixval1 > pixval2)
                {
                  gint tmpval = pixval1;
                  pixval1 = pixval2;
                  pixval2 = tmpval;
                  color1 = &quantobj->cmap[pixval1];
                }

              color2 = &quantobj->cmap[pixval2];

              err1 = ABS(color1->red - src[GRAY]);
              err2 = ABS(color2->red - src[GRAY]);
              if (err1 || err2)
                {
                  const int proportion2 = (256 * 255 * err2) / (err1 + err2);

                  if ((dmval * 256) > proportion2)
                    {
                      pixval1 = pixval2; /* use color2 instead of color1*/
                    }
                }

              if (has_alpha)
                {
                  gboolean transparent = FALSE;

                  if (dither_alpha)
                    {
                      if (src[ALPHA_G] < dmval)
                        transparent = TRUE;
                    }
                  else
                    {
                      if (src[ALPHA_G] <= 127)
                        transparent = TRUE;
                    }

                  if (transparent)
                    {
                      dest[ALPHA_I] = 0;
                    }
                  else
                    {
                      dest[ALPHA_I] = 255;
                      index_used_count[dest[INDEXED] = pixval1]++;
                    }
                }
              else
                {
                  /* Now emit the colormap index for this cell, barfbarf */
                  index_used_count[dest[INDEXED] = pixval1]++;
                }

              src  += src_bpp;
              dest += dest_bpp;
            }
        }
    }
}

static void
median_cut_pass2_no_dither_rgb (QuantizeObj *quantobj,
                                GimpLayer   *layer,
                                GeglBuffer  *new_buffer)
{
  GeglBufferIterator *iter;
  CFHistogram         histogram = quantobj->histogram;
  ColorFreq          *cachep;
  const Babl         *src_format;
  const Babl         *dest_format;
  GeglRectangle      *src_roi;
  gint                src_bpp;
  gint                dest_bpp;
  gint                has_alpha;
  gint                R, G, B;
  gint                red_pix          = RED;
  gint                green_pix        = GREEN;
  gint                blue_pix         = BLUE;
  gint                alpha_pix        = ALPHA;
  gboolean            dither_alpha     = quantobj->want_dither_alpha;
  gint                offsetx, offsety;
  gulong             *index_used_count = quantobj->index_used_count;
  glong               total_size       = 0;
  glong               layer_size;
  gint                count            = 0;

  gimp_item_get_offset (GIMP_ITEM (layer), &offsetx, &offsety);

  src_format  = gimp_drawable_get_format (GIMP_DRAWABLE (layer));
  dest_format = gegl_buffer_get_format (new_buffer);

  src_bpp  = babl_format_get_bytes_per_pixel (src_format);
  dest_bpp = babl_format_get_bytes_per_pixel (dest_format);

  has_alpha = babl_format_has_alpha (src_format);

  /*  In the case of web/mono palettes, we actually force
   *   grayscale drawables through the rgb pass2 functions
   */
  if (gimp_drawable_is_gray (GIMP_DRAWABLE (layer)))
    {
      red_pix = green_pix = blue_pix = GRAY;
      alpha_pix = ALPHA_G;
    }

  iter = gegl_buffer_iterator_new (gimp_drawable_get_buffer (GIMP_DRAWABLE (layer)),
                                   NULL, 0, NULL,
                                   GEGL_ACCESS_READ, GEGL_ABYSS_NONE, 2);
  src_roi = &iter->items[0].roi;

  gegl_buffer_iterator_add (iter, new_buffer,
                            NULL, 0, NULL,
                            GEGL_ACCESS_WRITE, GEGL_ABYSS_NONE);

  layer_size = (gimp_item_get_width  (GIMP_ITEM (layer)) *
                gimp_item_get_height (GIMP_ITEM (layer)));

  while (gegl_buffer_iterator_next (iter))
    {
      const guchar *src  = iter->items[0].data;
      guchar       *dest = iter->items[1].data;
      gint          row;

      total_size += src_roi->height * src_roi->width;

      for (row = 0; row < src_roi->height; row++)
        {
          gint col;

          for (col = 0; col < src_roi->width; col++)
            {
              if (has_alpha)
                {
                  gboolean transparent = FALSE;

                  if (dither_alpha)
                    {
                      gint dither_x = (col + offsetx + src_roi->x) & DM_WIDTHMASK;
                      gint dither_y = (row + offsety + src_roi->y) & DM_HEIGHTMASK;

                      if ((src[alpha_pix]) < DM[dither_x][dither_y])
                        transparent = TRUE;
                    }
                  else
                    {
                      if (src[alpha_pix] <= 127)
                        transparent = TRUE;
                    }

                  if (transparent)
                    {
                      dest[ALPHA_I] = 0;
                      goto next_pixel;
                    }
                  else
                    {
                      dest[ALPHA_I] = 255;
                    }
                }

              /* get pixel value and index into the cache */
              rgb_to_lin (src[red_pix], src[green_pix], src[blue_pix],
                          &R, &G, &B);

              cachep = HIST_LIN (histogram, R, G, B);
              /* If we have not seen this color before, find nearest
               * colormap entry and update the cache
               */
              if (*cachep == 0)
                fill_inverse_cmap_rgb (quantobj, histogram, R, G, B);

              /* Now emit the colormap index for this cell, barfbarf */
              index_used_count[dest[INDEXED] = *cachep - 1]++;

            next_pixel:

              src  += src_bpp;
              dest += dest_bpp;
            }
        }

      if (quantobj->progress && (count % 16 == 0))
         gimp_progress_set_value (quantobj->progress,
                                  (gdouble) total_size / (gdouble) layer_size);
    }
}

static void
median_cut_pass2_fixed_dither_rgb (QuantizeObj *quantobj,
                                   GimpLayer   *layer,
                                   GeglBuffer  *new_buffer)
{
  GeglBufferIterator *iter;
  CFHistogram         histogram = quantobj->histogram;
  ColorFreq          *cachep;
  const Babl         *src_format;
  const Babl         *dest_format;
  GeglRectangle      *src_roi;
  gint                src_bpp;
  gint                dest_bpp;
  gint                has_alpha;
  gint                pixval1 = 0;
  gint                pixval2 = 0;
  Color              *color1;
  Color              *color2;
  gint                R, G, B;
  gint                err1;
  gint                err2;
  gint                red_pix          = RED;
  gint                green_pix        = GREEN;
  gint                blue_pix         = BLUE;
  gint                alpha_pix        = ALPHA;
  gboolean            dither_alpha     = quantobj->want_dither_alpha;
  gint                offsetx, offsety;
  gulong             *index_used_count = quantobj->index_used_count;
  glong               total_size       = 0;
  glong               layer_size;
  gint                count            = 0;

  gimp_item_get_offset (GIMP_ITEM (layer), &offsetx, &offsety);

  src_format  = gimp_drawable_get_format (GIMP_DRAWABLE (layer));
  dest_format = gegl_buffer_get_format (new_buffer);

  src_bpp  = babl_format_get_bytes_per_pixel (src_format);
  dest_bpp = babl_format_get_bytes_per_pixel (dest_format);

  has_alpha = babl_format_has_alpha (src_format);

  /*  In the case of web/mono palettes, we actually force
   *   grayscale drawables through the rgb pass2 functions
   */
  if (gimp_drawable_is_gray (GIMP_DRAWABLE (layer)))
    {
      red_pix = green_pix = blue_pix = GRAY;
      alpha_pix = ALPHA_G;
    }

  iter = gegl_buffer_iterator_new (gimp_drawable_get_buffer (GIMP_DRAWABLE (layer)),
                                   NULL, 0, NULL,
                                   GEGL_ACCESS_READ, GEGL_ABYSS_NONE, 2);
  src_roi = &iter->items[0].roi;

  gegl_buffer_iterator_add (iter, new_buffer,
                            NULL, 0, NULL,
                            GEGL_ACCESS_WRITE, GEGL_ABYSS_NONE);

  layer_size = (gimp_item_get_width  (GIMP_ITEM (layer)) *
                gimp_item_get_height (GIMP_ITEM (layer)));

  while (gegl_buffer_iterator_next (iter))
    {
      const guchar *src  = iter->items[0].data;
      guchar       *dest = iter->items[1].data;
      gint          row;

      total_size += src_roi->height * src_roi->width;

      for (row = 0; row < src_roi->height; row++)
        {
          gint col;

          for (col = 0; col < src_roi->width; col++)
            {
              const int dmval =
                DM[(col + offsetx + src_roi->x) & DM_WIDTHMASK]
                [(row + offsety + src_roi->y) & DM_HEIGHTMASK];

              if (has_alpha)
                {
                  gboolean transparent = FALSE;

                  if (dither_alpha)
                    {
                      if (src[alpha_pix] < dmval)
                        transparent = TRUE;
                    }
                  else
                    {
                      if (src[alpha_pix] <= 127)
                        transparent = TRUE;
                    }

                  if (transparent)
                    {
                      dest[ALPHA_I] = 0;
                      goto next_pixel;
                    }
                  else
                    {
                      dest[ALPHA_I] = 255;
                    }
                }

              /* get pixel value and index into the cache */
              rgb_to_lin (src[red_pix], src[green_pix], src[blue_pix],
                          &R, &G, &B);

              cachep = HIST_LIN (histogram, R, G, B);
              /* If we have not seen this color before, find nearest
               * colormap entry and update the cache
               */
              if (*cachep == 0)
                fill_inverse_cmap_rgb (quantobj, histogram, R, G, B);

              /* We now try to find a color which, when mixed in some
               * fashion with the closest match, yields something
               * closer to the desired color.  We do this by
               * repeatedly extrapolating the color vector from one to
               * the other until we find another color cell.  Then we
               * assess the distance of both mixer colors from the
               * intended color to determine their relative
               * probabilities of being chosen.
               */
              pixval1 = *cachep - 1;
              color1 = &quantobj->cmap[pixval1];

              if (quantobj->actual_number_of_colors > 2)
                {
                  const gint re = src[red_pix]   - (gint) color1->red;
                  const gint ge = src[green_pix] - (gint) color1->green;
                  const gint be = src[blue_pix]  - (gint) color1->blue;
                  gint       RV = src[red_pix]   + re;
                  gint       GV = src[green_pix] + ge;
                  gint       BV = src[blue_pix]  + be;

                  do
                    {
                      rgb_to_lin ((CLAMP0255(RV)),
                                  (CLAMP0255(GV)),
                                  (CLAMP0255(BV)),
                                  &R, &G, &B);

                      cachep = HIST_LIN (histogram, R, G, B);
                      /* If we have not seen this color before, find
                       * nearest colormap entry and update the cache
                       */
                      if (*cachep == 0)
                        fill_inverse_cmap_rgb (quantobj, histogram, R, G, B);

                      pixval2 = *cachep - 1;
                      RV += re;  GV += ge;  BV += be;
                    }
                  while ((pixval1 == pixval2) &&
                         (!( (RV>255 || RV<0) || (GV>255 || GV<0) || (BV>255 || BV<0) )) &&
                         (re || ge || be));
                }

              if (quantobj->actual_number_of_colors <= 2
                  /* || pixval1 == pixval2 */) {
                /* not enough colors to bother looking for an 'alternative'
                   color (we may fail to do so anyway), so decide that
                   the alternative color is simply the other cmap entry. */
                pixval2 = (pixval1 + 1) %
                  (quantobj->actual_number_of_colors);
              }

              /* always deterministically sort pixval1 and pixval2, to
                 avoid artifacts in the dither range due to inverting our
                 relative color viewpoint -- most obvious in 1-bit dither. */
              if (pixval1 > pixval2)
                {
                  gint tmpval = pixval1;
                  pixval1 = pixval2;
                  pixval2 = tmpval;
                  color1 = &quantobj->cmap[pixval1];
                }

              color2 = &quantobj->cmap[pixval2];

              /* now figure out the relative probabilites of choosing
                 either of our candidates. */
#define DISTP(R1,G1,B1,R2,G2,B2,D) do {D = sqrt( 30*SQR((R1)-(R2)) + \
                                                 59*SQR((G1)-(G2)) + \
                                                 11*SQR((B1)-(B2)) ); }while(0)
#define LIN_DISTP(R1,G1,B1,R2,G2,B2,D) do { \
                int spacer1, spaceg1, spaceb1; \
                int spacer2, spaceg2, spaceb2; \
                rgb_to_unshifted_lin (R1,G1,B1, &spacer1, &spaceg1, &spaceb1); \
                rgb_to_unshifted_lin (R2,G2,B2, &spacer2, &spaceg2, &spaceb2); \
                D = sqrt(R_SCALE * SQR((spacer1)-(spacer2)) +           \
                         G_SCALE * SQR((spaceg1)-(spaceg2)) + \
                         B_SCALE * SQR((spaceb1)-(spaceb2))); \
              } while(0)

              /* although LIN_DISTP is more correct, DISTP is much faster and
                 barely distinguishable. */
              DISTP (color1->red, color1->green, color1->blue,
                     src[red_pix], src[green_pix], src[blue_pix],
                     err1);
              DISTP (color2->red, color2->green, color2->blue,
                     src[red_pix], src[green_pix], src[blue_pix],
                     err2);

              if (err1 || err2)
                {
                  const int proportion2 = (255 * err2) / (err1 + err2);
                  if (dmval > proportion2)
                    {
                      pixval1 = pixval2; /* use color2 instead of color1*/
                    }
                }

              /* Now emit the colormap index for this cell, barfbarf */
              index_used_count[dest[INDEXED] = pixval1]++;

            next_pixel:

              src  += src_bpp;
              dest += dest_bpp;
            }
        }

      if (quantobj->progress && (count % 16 == 0))
        gimp_progress_set_value (quantobj->progress,
                                 (gdouble) total_size / (gdouble) layer_size);
    }
}

static void
median_cut_pass2_nodestruct_dither_rgb (QuantizeObj *quantobj,
                                        GimpLayer   *layer,
                                        GeglBuffer  *new_buffer)
{
  GeglBufferIterator *iter;
  const Babl         *src_format;
  const Babl         *dest_format;
  GeglRectangle      *src_roi;
  gint                src_bpp;
  gint                dest_bpp;
  gint                has_alpha;
  gboolean            dither_alpha = quantobj->want_dither_alpha;
  gint                red_pix      = RED;
  gint                green_pix    = GREEN;
  gint                blue_pix     = BLUE;
  gint                alpha_pix    = ALPHA;
  gint                lastindex    = 0;
  gint                lastred      = -1;
  gint                lastgreen    = -1;
  gint                lastblue     = -1;
  gint                offsetx, offsety;

  gimp_item_get_offset (GIMP_ITEM (layer), &offsetx, &offsety);

  src_format  = gimp_drawable_get_format (GIMP_DRAWABLE (layer));
  dest_format = gegl_buffer_get_format (new_buffer);

  src_bpp  = babl_format_get_bytes_per_pixel (src_format);
  dest_bpp = babl_format_get_bytes_per_pixel (dest_format);

  has_alpha = babl_format_has_alpha (src_format);

  iter = gegl_buffer_iterator_new (gimp_drawable_get_buffer (GIMP_DRAWABLE (layer)),
                                   NULL, 0, NULL,
                                   GEGL_ACCESS_READ, GEGL_ABYSS_NONE, 2);
  src_roi = &iter->items[0].roi;

  gegl_buffer_iterator_add (iter, new_buffer,
                            NULL, 0, NULL,
                            GEGL_ACCESS_WRITE, GEGL_ABYSS_NONE);

  while (gegl_buffer_iterator_next (iter))
    {
      const guchar *src  = iter->items[0].data;
      guchar       *dest = iter->items[1].data;
      gint          row;

      for (row = 0; row < src_roi->height; row++)
        {
          gint col;

          for (col = 0; col < src_roi->width; col++)
            {
              gboolean transparent = FALSE;

              if (has_alpha)
                {
                  if (dither_alpha)
                    {
                      gint dither_x = (col + src_roi->x + offsetx) & DM_WIDTHMASK;
                      gint dither_y = (row + src_roi->y + offsety) & DM_HEIGHTMASK;

                      if ((src[alpha_pix]) < DM[dither_x][dither_y])
                        transparent = TRUE;
                    }
                  else
                    {
                      if (src[alpha_pix] < 128)
                        transparent = TRUE;
                    }
                }

              if (! transparent)
                {
                  if ((lastred   == src[red_pix]) &&
                      (lastgreen == src[green_pix]) &&
                      (lastblue  == src[blue_pix]))
                    {
                      /*  same pixel color as last time  */
                      dest[INDEXED] = lastindex;
                      if (has_alpha)
                        dest[ALPHA_I] = 255;
                    }
                  else
                    {
                      gint i;

                      for (i = 0 ;
                           i < quantobj->actual_number_of_colors;
                           i++)
                        {
                          if ((quantobj->cmap[i].green == src[green_pix]) &&
                              (quantobj->cmap[i].red   == src[red_pix]) &&
                              (quantobj->cmap[i].blue  == src[blue_pix]))
                          {
                            lastred   = src[red_pix];
                            lastgreen = src[green_pix];
                            lastblue  = src[blue_pix];
                            lastindex = i;

                            goto got_color;
                          }
                        }
                      g_error ("Non-existant color was expected to "
                               "be in non-destructive colormap.");
                    got_color:
                      dest[INDEXED] = lastindex;
                      if (has_alpha)
                        dest[ALPHA_I] = 255;
                    }
                }
              else
                { /*  have alpha, and transparent  */
                  dest[ALPHA_I] = 0;
                }

              src  += src_bpp;
              dest += dest_bpp;
            }
        }
    }
}


/*
 * Initialize the error-limiting transfer function (lookup table).
 * The raw F-S error computation can potentially compute error values of up to
 * +- MAXJSAMPLE.  But we want the maximum correction applied to a pixel to be
 * much less, otherwise obviously wrong pixels will be created.  (Typical
 * effects include weird fringes at color-area boundaries, isolated bright
 * pixels in a dark area, etc.)  The standard advice for avoiding this problem
 * is to ensure that the "corners" of the color cube are allocated as output
 * colors; then repeated errors in the same direction cannot cause cascading
 * error buildup.  However, that only prevents the error from getting
 * completely out of hand; Aaron Giles reports that error limiting improves
 * the results even with corner colors allocated.
 * A simple clamping of the error values to about +- MAXJSAMPLE/8 works pretty
 * well, but the smoother transfer function used below is even better.  Thanks
 * to Aaron Giles for this idea.
 */

static gint *
init_error_limit (const int error_freedom)
/* Allocate and fill in the error_limiter table */
{
  gint *table;
  gint  inp, out;

  /* #define STEPSIZE 16 */
  /* #define STEPSIZE 200 */

  table = g_new (gint, 255 * 2 + 1);
  table += 255;                 /* so we can index -255 ... +255 */

  if (error_freedom == 0)
    {
      /* Coarse function, much bleeding. */

      const gint STEPSIZE = 190;

      for (inp = 0; inp < STEPSIZE; inp++)
        {
          table[inp] = inp;
          table[-inp] = -inp;
        }

      for (; inp <= 255; inp++)
        {
          table[inp] = STEPSIZE;
          table[-inp] = -STEPSIZE;
        }

      return (table);
    }
  else
    {
      /* Smooth function, bleeding more constrained */

      const gint STEPSIZE = 24;

      /* Map errors 1:1 up to +- STEPSIZE */
      out = 0;
      for (inp = 0; inp < STEPSIZE; inp++, out++)
        {
          table[inp] = out;
          table[-inp] = -out;
        }

      /* Map errors 1:2 up to +- 3*STEPSIZE */
      for (; inp < STEPSIZE*3; inp++, out += (inp&1) ? 0 : 1)
        {
          table[inp] = out;
          table[-inp] = -out;
        }

      /* Clamp the rest to final out value (which is STEPSIZE*2) */
      for (; inp <= 255; inp++)
        {
          table[inp] = out;
          table[-inp] = -out;
        }

      return table;
    }
}


/*
 * Map some rows of pixels to the output colormapped representation.
 * Perform floyd-steinberg dithering.
 */

static void
median_cut_pass2_fs_dither_gray (QuantizeObj *quantobj,
                                 GimpLayer   *layer,
                                 GeglBuffer  *new_buffer)
{
  GeglBuffer   *src_buffer;
  CFHistogram   histogram = quantobj->histogram;
  ColorFreq    *cachep;
  Color        *color;
  gint         *error_limiter;
  const gshort *fs_err1, *fs_err2;
  const gshort *fs_err3, *fs_err4;
  const guchar *range_limiter;
  const Babl   *src_format;
  const Babl   *dest_format;
  gint          src_bpp;
  gint          dest_bpp;
  guchar       *src_buf, *dest_buf;
  gint         *next_row, *prev_row;
  gint         *nr, *pr;
  gint         *tmp;
  gint          pixel;
  gint          pixele;
  gint          row, col;
  gint          index;
  gint          step_dest, step_src;
  gint          odd_row;
  gboolean      has_alpha;
  gint          offsetx, offsety;
  gboolean      dither_alpha = quantobj->want_dither_alpha;
  gint          width, height;
  gulong       *index_used_count = quantobj->index_used_count;

  src_buffer = gimp_drawable_get_buffer (GIMP_DRAWABLE (layer));

  gimp_item_get_offset (GIMP_ITEM (layer), &offsetx, &offsety);

  src_format  = gimp_drawable_get_format (GIMP_DRAWABLE (layer));
  dest_format = gegl_buffer_get_format (new_buffer);

  src_bpp  = babl_format_get_bytes_per_pixel (src_format);
  dest_bpp = babl_format_get_bytes_per_pixel (dest_format);

  has_alpha = babl_format_has_alpha (src_format);

  width  = gimp_item_get_width  (GIMP_ITEM (layer));
  height = gimp_item_get_height (GIMP_ITEM (layer));

  error_limiter = init_error_limit (quantobj->error_freedom);
  range_limiter = range_array + 256;

  src_buf  = g_malloc (width * src_bpp);
  dest_buf = g_malloc (width * dest_bpp);

  next_row = g_new (gint, width + 2);
  prev_row = g_new0 (gint, width + 2);

  fs_err1 = floyd_steinberg_error1 + 511;
  fs_err2 = floyd_steinberg_error2 + 511;
  fs_err3 = floyd_steinberg_error3 + 511;
  fs_err4 = floyd_steinberg_error4 + 511;

  odd_row = 0;

  for (row = 0; row < height; row++)
    {
      const guchar *src;
      guchar       *dest;

      gegl_buffer_get (src_buffer, GEGL_RECTANGLE (0, row, width, 1),
                       1.0, NULL, src_buf,
                       GEGL_AUTO_ROWSTRIDE, GEGL_ABYSS_NONE);

      src  = src_buf;
      dest = dest_buf;

      nr = next_row;
      pr = prev_row + 1;

      if (odd_row)
        {
          step_dest = -dest_bpp;
          step_src  = -src_bpp;

          src  += (width * src_bpp) - src_bpp;
          dest += (width * dest_bpp) - dest_bpp;

          nr += width + 1;
          pr += width;

          *(nr - 1) = 0;
        }
      else
        {
          step_dest = dest_bpp;
          step_src  = src_bpp;

          *(nr + 1) = 0;
        }

      *nr = 0;

      for (col = 0; col < width; col++)
        {
          pixel = range_limiter[src[GRAY] + error_limiter[*pr]];

          cachep = &histogram[pixel];
          /* If we have not seen this color before, find nearest
           * colormap entry and update the cache
           */
          if (*cachep == 0)
            fill_inverse_cmap_gray (quantobj, histogram, pixel);

          if (has_alpha)
            {
              gboolean transparent = FALSE;

              if (odd_row)
                {
                  if (dither_alpha)
                    {
                      gint dither_x = ((width-col)+offsetx-1) & DM_WIDTHMASK;
                      gint dither_y = (row+offsety) & DM_HEIGHTMASK;

                      if ((src[ALPHA_G]) < DM[dither_x][dither_y])
                        transparent = TRUE;
                    }
                  else
                    {
                      if (src[ALPHA_G] <= 127)
                        transparent = TRUE;
                    }

                  if (transparent)
                    {
                      dest[ALPHA_I] = 0;
                      pr--;
                      nr--;
                      *(nr - 1) = 0;
                      goto next_pixel;
                    }
                  else
                    {
                      dest[ALPHA_I] = 255;
                    }
                }
              else
                {
                  if (dither_alpha)
                    {
                      gint dither_x = (col + offsetx) & DM_WIDTHMASK;
                      gint dither_y = (row + offsety) & DM_HEIGHTMASK;

                      if ((src[ALPHA_G]) < DM[dither_x][dither_y])
                        transparent = TRUE;
                    }
                  else
                    {
                      if (src[ALPHA_G] <= 127)
                        transparent = TRUE;
                    }

                  if (transparent)
                    {
                      dest[ALPHA_I] = 0;
                      pr++;
                      nr++;
                      *(nr + 1) = 0;
                      goto next_pixel;
                    }
                  else
                    {
                      dest[ALPHA_I] = 255;
                    }
                }
            }

          index = *cachep - 1;
          index_used_count[dest[INDEXED] = index]++;

          color = &quantobj->cmap[index];
          pixele = pixel - color->red;

          if (odd_row)
            {
              *(--pr) += fs_err1[pixele];
              *nr-- += fs_err2[pixele];
              *nr += fs_err3[pixele];
              *(nr-1) = fs_err4[pixele];
            }
          else
            {
              *(++pr) += fs_err1[pixele];
              *nr++ += fs_err2[pixele];
              *nr += fs_err3[pixele];
              *(nr+1) = fs_err4[pixele];
            }

        next_pixel:

          dest += step_dest;
          src += step_src;
        }

      tmp = next_row;
      next_row = prev_row;
      prev_row = tmp;

      odd_row = !odd_row;

      gegl_buffer_set (new_buffer, GEGL_RECTANGLE (0, row, width, 1),
                       0, NULL, dest_buf,
                       GEGL_AUTO_ROWSTRIDE);
    }

  g_free (error_limiter - 255); /* good lord. */
  g_free (next_row);
  g_free (prev_row);
  g_free (src_buf);
  g_free (dest_buf);
}

static void
median_cut_pass2_rgb_init (QuantizeObj *quantobj)
{
  int i;

  zero_histogram_rgb (quantobj->histogram);

  /* Mark all indices as currently unused */
  memset (quantobj->index_used_count, 0, 256 * sizeof (gulong));

  /* Make a version of our discovered colormap in linear space */
  for (i = 0; i < quantobj->actual_number_of_colors; i++)
    {
      rgb_to_unshifted_lin (quantobj->cmap[i].red,
                            quantobj->cmap[i].green,
                            quantobj->cmap[i].blue,
                            &quantobj->clin[i].red,
                            &quantobj->clin[i].green,
                            &quantobj->clin[i].blue);
    }
}

static void
median_cut_pass2_gray_init (QuantizeObj *quantobj)
{
  zero_histogram_gray (quantobj->histogram);

  /* Mark all indices as currently unused */
  memset (quantobj->index_used_count, 0, 256 * sizeof (gulong));
}

static void
median_cut_pass2_fs_dither_rgb (QuantizeObj *quantobj,
                                GimpLayer   *layer,
                                GeglBuffer  *new_buffer)
{
  GeglBuffer   *src_buffer;
  CFHistogram   histogram = quantobj->histogram;
  ColorFreq    *cachep;
  Color        *color;
  gint         *error_limiter;
  const gshort *fs_err1, *fs_err2;
  const gshort *fs_err3, *fs_err4;
  const guchar *range_limiter;
  const Babl   *src_format;
  const Babl   *dest_format;
  gint          src_bpp;
  gint          dest_bpp;
  guchar       *src_buf, *dest_buf;
  gint         *red_n_row, *red_p_row;
  gint         *grn_n_row, *grn_p_row;
  gint         *blu_n_row, *blu_p_row;
  gint         *rnr, *rpr;
  gint         *gnr, *gpr;
  gint         *bnr, *bpr;
  gint         *tmp;
  gint          re, ge, be;
  gint          row, col;
  gint          index;
  gint          step_dest, step_src;
  gint          odd_row;
  gboolean      has_alpha;
  gint          width, height;
  gint          red_pix   = RED;
  gint          green_pix = GREEN;
  gint          blue_pix  = BLUE;
  gint          alpha_pix = ALPHA;
  gint          offsetx, offsety;
  gboolean      dither_alpha     = quantobj->want_dither_alpha;
  gulong       *index_used_count = quantobj->index_used_count;
  gint          global_rmax = 0, global_rmin = G_MAXINT;
  gint          global_gmax = 0, global_gmin = G_MAXINT;
  gint          global_bmax = 0, global_bmin = G_MAXINT;

  src_buffer = gimp_drawable_get_buffer (GIMP_DRAWABLE (layer));

  gimp_item_get_offset (GIMP_ITEM (layer), &offsetx, &offsety);

  /*  In the case of web/mono palettes, we actually force
   *   grayscale drawables through the rgb pass2 functions
   */
  if (gimp_drawable_is_gray (GIMP_DRAWABLE (layer)))
    red_pix = green_pix = blue_pix = GRAY;

  src_format  = gimp_drawable_get_format (GIMP_DRAWABLE (layer));
  dest_format = gegl_buffer_get_format (new_buffer);

  src_bpp  = babl_format_get_bytes_per_pixel (src_format);
  dest_bpp = babl_format_get_bytes_per_pixel (dest_format);

  has_alpha = babl_format_has_alpha (src_format);

  width  = gimp_item_get_width  (GIMP_ITEM (layer));
  height = gimp_item_get_height (GIMP_ITEM (layer));

  error_limiter = init_error_limit (quantobj->error_freedom);
  range_limiter = range_array + 256;

  /* find the bounding box of the palette colors --
     we use this for hard-clamping our error-corrected
     values so that we can't continuously accelerate outside
     of our attainable gamut, which looks icky. */
  for (index = 0; index < quantobj->actual_number_of_colors; index++)
    {
      global_rmax = MAX(global_rmax, quantobj->clin[index].red);
      global_rmin = MIN(global_rmin, quantobj->clin[index].red);
      global_gmax = MAX(global_gmax, quantobj->clin[index].green);
      global_gmin = MIN(global_gmin, quantobj->clin[index].green);
      global_bmax = MAX(global_bmax, quantobj->clin[index].blue);
      global_bmin = MIN(global_bmin, quantobj->clin[index].blue);
    }

  src_buf  = g_malloc (width * src_bpp);
  dest_buf = g_malloc (width * dest_bpp);

  red_n_row = g_new (gint, width + 2);
  red_p_row = g_new0 (gint, width + 2);
  grn_n_row = g_new (gint, width + 2);
  grn_p_row = g_new0 (gint, width + 2);
  blu_n_row = g_new (gint, width + 2);
  blu_p_row = g_new0 (gint, width + 2);

  fs_err1 = floyd_steinberg_error1 + 511;
  fs_err2 = floyd_steinberg_error2 + 511;
  fs_err3 = floyd_steinberg_error3 + 511;
  fs_err4 = floyd_steinberg_error4 + 511;

  odd_row = 0;

  for (row = 0; row < height; row++)
    {
      const guchar *src;
      guchar       *dest;

      gegl_buffer_get (src_buffer, GEGL_RECTANGLE (0, row, width, 1),
                       1.0, NULL, src_buf,
                       GEGL_AUTO_ROWSTRIDE, GEGL_ABYSS_NONE);

      src  = src_buf;
      dest = dest_buf;

      rnr = red_n_row;
      gnr = grn_n_row;
      bnr = blu_n_row;
      rpr = red_p_row + 1;
      gpr = grn_p_row + 1;
      bpr = blu_p_row + 1;

      if (odd_row)
        {
          step_dest = -dest_bpp;
          step_src  = -src_bpp;

          src += (width * src_bpp) - src_bpp;
          dest += (width * dest_bpp) - dest_bpp;

          rnr += width + 1;
          gnr += width + 1;
          bnr += width + 1;
          rpr += width;
          gpr += width;
          bpr += width;

          *(rnr - 1) = *(gnr - 1) = *(bnr - 1) = 0;
        }
      else
        {
          step_dest = dest_bpp;
          step_src  = src_bpp;

          *(rnr + 1) = *(gnr + 1) = *(bnr + 1) = 0;
        }

      *rnr = *gnr = *bnr = 0;

      for (col = 0; col < width; col++)
        {
          if (has_alpha)
            {
              gboolean transparent = FALSE;

              if (odd_row)
                {
                  if (dither_alpha)
                    {
                      gint dither_x = ((width-col)+offsetx-1) & DM_WIDTHMASK;
                      gint dither_y = (row+offsety) & DM_HEIGHTMASK;

                      if ((src[alpha_pix]) < DM[dither_x][dither_y])
                        transparent = TRUE;
                    }
                  else
                    {
                      if (src[alpha_pix] <= 127)
                        transparent = TRUE;
                    }

                  if (transparent)
                    {
                      dest[ALPHA_I] = 0;
                      rpr--; gpr--; bpr--;
                      rnr--; gnr--; bnr--;
                      *(rnr - 1) = *(gnr - 1) = *(bnr - 1) = 0;
                      goto next_pixel;
                    }
                  else
                    {
                      dest[ALPHA_I] = 255;
                    }
                }
              else
                {
                  if (dither_alpha)
                    {
                      gint dither_x = (col + offsetx) & DM_WIDTHMASK;
                      gint dither_y = (row + offsety) & DM_HEIGHTMASK;

                      if ((src[alpha_pix]) < DM[dither_x][dither_y])
                        transparent = TRUE;
                    }
                  else
                    {
                      if (src[alpha_pix] <= 127)
                        transparent = TRUE;
                    }

                  if (transparent)
                    {
                      dest[ALPHA_I] = 0;
                      rpr++; gpr++; bpr++;
                      rnr++; gnr++; bnr++;
                      *(rnr + 1) = *(gnr + 1) = *(bnr + 1) = 0;
                      goto next_pixel;
                    }
                  else
                    {
                      dest[ALPHA_I] = 255;
                    }
                }
            }

#if 0
          /* hmm. */

          r = range_limiter[src[red_pix] + error_limiter[*rpr]];
          g = range_limiter[src[green_pix] + error_limiter[*gpr]];
          b = range_limiter[src[blue_pix] + error_limiter[*bpr]];

          re = r >> R_SHIFT;
          ge = g >> G_SHIFT;
          be = b >> B_SHIFT;

          rgb_to_lin (r, g, b, &re, &ge, &be);
#endif
          rgb_to_unshifted_lin (src[red_pix], src[green_pix], src[blue_pix],
                                &re, &ge, &be);

          /*
            re = CLAMP(re, global_rmin, global_rmax);
            ge = CLAMP(ge, global_gmin, global_gmax);
            be = CLAMP(be, global_bmin, global_bmax);*/

          re = range_limiter[re + error_limiter[*rpr]];
          ge = range_limiter[ge + error_limiter[*gpr]];
          be = range_limiter[be + error_limiter[*bpr]];

          cachep = HIST_LIN (histogram,
                             RSDF (re),
                             GSDF (ge),
                             BSDF (be));
          /* If we have not seen this color before, find nearest
           * colormap entry and update the cache
           */
          if (*cachep == 0)
            fill_inverse_cmap_rgb (quantobj, histogram,
                                   RSDF (re),
                                   GSDF (ge),
                                   BSDF (be));

          index = *cachep - 1;
          index_used_count[index]++;
          dest[INDEXED] = index;

          /*if (re > global_rmax)
            re = (re + 3*global_rmax) / 4;
          else if (re < global_rmin)
          re = (re + 3*global_rmin) / 4;*/

          /* We constrain chroma error extra-hard so that it
             doesn't run away and steal the thunder from the
             lightness error where all the detail usually is. */
          if (ge > global_gmax)
            ge = (ge + 3*global_gmax) / 4;
          else if (ge < global_gmin)
            ge = (ge + 3*global_gmin) / 4;
          if (be > global_bmax)
            be = (be + 3*global_bmax) / 4;
          else if (be < global_bmin)
            be = (be + 3*global_bmin) / 4;

          color = &quantobj->clin[index];

#if 0
          if ((re > 0 && re < 255) /* HMM &&
              ge >= 0 && ge <= 255 &&
              be >= 0 && be <= 255*/)
            {
              ge = ge - color->green;
              be = be - color->blue;
              re = re - color->red;
            }
          else
            {
              /* color pretty much undefined now; nullify error. */
              re = ge = be = 0;
            }
#endif

          if (re <= 0 || re >= 255)
            re = ge = be = 0;
          else
            {
              re = re - color->red;
              ge = ge - color->green;
              be = be - color->blue;
            }

          if (odd_row)
            {
              *(--rpr) += fs_err1[re];
              *(--gpr) += fs_err1[ge];
              *(--bpr) += fs_err1[be];

              *rnr-- += fs_err2[re];
              *gnr-- += fs_err2[ge];
              *bnr-- += fs_err2[be];

              *rnr += fs_err3[re];
              *gnr += fs_err3[ge];
              *bnr += fs_err3[be];

              *(rnr-1) = fs_err4[re];
              *(gnr-1) = fs_err4[ge];
              *(bnr-1) = fs_err4[be];
            }
          else
            {
              *(++rpr) += fs_err1[re];
              *(++gpr) += fs_err1[ge];
              *(++bpr) += fs_err1[be];

              *rnr++ += fs_err2[re];
              *gnr++ += fs_err2[ge];
              *bnr++ += fs_err2[be];

              *rnr += fs_err3[re];
              *gnr += fs_err3[ge];
              *bnr += fs_err3[be];

              *(rnr+1) = fs_err4[re];
              *(gnr+1) = fs_err4[ge];
              *(bnr+1) = fs_err4[be];
            }

        next_pixel:

          dest += step_dest;
          src += step_src;
        }

      tmp = red_n_row;
      red_n_row = red_p_row;
      red_p_row = tmp;

      tmp = grn_n_row;
      grn_n_row = grn_p_row;
      grn_p_row = tmp;

      tmp = blu_n_row;
      blu_n_row = blu_p_row;
      blu_p_row = tmp;

      odd_row = !odd_row;

      gegl_buffer_set (new_buffer, GEGL_RECTANGLE (0, row, width, 1),
                       0, NULL, dest_buf,
                       GEGL_AUTO_ROWSTRIDE);

      if (quantobj->progress && (row % 16 == 0))
        gimp_progress_set_value (quantobj->progress,
                                 (gdouble) row / (gdouble) height);
    }

  g_free (error_limiter - 255);
  g_free (red_n_row);
  g_free (red_p_row);
  g_free (grn_n_row);
  g_free (grn_p_row);
  g_free (blu_n_row);
  g_free (blu_p_row);
  g_free (src_buf);
  g_free (dest_buf);
}


static void
delete_median_cut (QuantizeObj *quantobj)
{
  g_free (quantobj->histogram);
  g_free (quantobj);
}


void
gimp_image_convert_indexed_set_dither_matrix (const guchar *matrix,
                                              gint          width,
                                              gint          height)
{
  gint x;
  gint y;

  /* if matrix is invalid, restore the default matrix */
  if (matrix == NULL || width == 0 || height == 0)
    {
      matrix = (const guchar *) DM_ORIGINAL;
      width  = DM_WIDTH;
      height = DM_HEIGHT;
    }

  g_return_if_fail ((DM_WIDTH % width) == 0);
  g_return_if_fail ((DM_HEIGHT % height) == 0);

  for (y = 0; y < DM_HEIGHT; y++)
    {
      for (x = 0; x < DM_WIDTH; x++)
        {
          DM[x][y] = matrix[((x % width) * height) + (y % height)];
        }
    }
}


/**************************************************************/
static QuantizeObj *
initialize_median_cut (GimpImageBaseType       type,
                       gint                    num_colors,
                       GimpConvertDitherType   dither_type,
                       GimpConvertPaletteType  palette_type,
                       GimpPalette            *custom_palette,
                       gboolean                want_dither_alpha,
                       GimpProgress           *progress)
{
  QuantizeObj *quantobj;

  /* Initialize the data structures */
  quantobj = g_new (QuantizeObj, 1);

  if (type == GIMP_GRAY && palette_type == GIMP_CONVERT_PALETTE_GENERATE)
    quantobj->histogram = g_new (ColorFreq, 256);
  else
    quantobj->histogram = g_new (ColorFreq,
                                 HIST_R_ELEMS * HIST_G_ELEMS * HIST_B_ELEMS);

  quantobj->custom_palette           = custom_palette;
  quantobj->desired_number_of_colors = num_colors;
  quantobj->want_dither_alpha        = want_dither_alpha;
  quantobj->progress                 = progress;

  switch (type)
    {
    case GIMP_GRAY:
      switch (palette_type)
        {
        case GIMP_CONVERT_PALETTE_GENERATE:
          quantobj->first_pass = median_cut_pass1_gray;
          break;
        case GIMP_CONVERT_PALETTE_WEB:
          quantobj->first_pass = webpal_pass1;
          break;
        case GIMP_CONVERT_PALETTE_CUSTOM:
          quantobj->first_pass = custompal_pass1;
          needs_quantize = TRUE;
          break;
        case GIMP_CONVERT_PALETTE_MONO:
        default:
          quantobj->first_pass = monopal_pass1;
        }

      if (palette_type == GIMP_CONVERT_PALETTE_WEB ||
          palette_type == GIMP_CONVERT_PALETTE_CUSTOM)
        {
          switch (dither_type)
            {
            case GIMP_CONVERT_DITHER_NODESTRUCT:
            default:
              g_warning("Uh-oh, bad dither type, W1");
            case GIMP_CONVERT_DITHER_NONE:
              quantobj->second_pass_init = median_cut_pass2_rgb_init;
              quantobj->second_pass = median_cut_pass2_no_dither_rgb;
              break;
            case GIMP_CONVERT_DITHER_FS:
              quantobj->error_freedom = 0;
              quantobj->second_pass_init = median_cut_pass2_rgb_init;
              quantobj->second_pass = median_cut_pass2_fs_dither_rgb;
              break;
            case GIMP_CONVERT_DITHER_FS_LOWBLEED:
              quantobj->error_freedom = 1;
              quantobj->second_pass_init = median_cut_pass2_rgb_init;
              quantobj->second_pass = median_cut_pass2_fs_dither_rgb;
              break;
            case GIMP_CONVERT_DITHER_FIXED:
              quantobj->second_pass_init = median_cut_pass2_rgb_init;
              quantobj->second_pass = median_cut_pass2_fixed_dither_rgb;
              break;
            }
        }
      else
        {
          switch (dither_type)
            {
            case GIMP_CONVERT_DITHER_NODESTRUCT:
            default:
              g_warning("Uh-oh, bad dither type, W2");
            case GIMP_CONVERT_DITHER_NONE:
              quantobj->second_pass_init = median_cut_pass2_gray_init;
              quantobj->second_pass = median_cut_pass2_no_dither_gray;
              break;
            case GIMP_CONVERT_DITHER_FS:
              quantobj->error_freedom = 0;
              quantobj->second_pass_init = median_cut_pass2_gray_init;
              quantobj->second_pass = median_cut_pass2_fs_dither_gray;
              break;
            case GIMP_CONVERT_DITHER_FS_LOWBLEED:
              quantobj->error_freedom = 1;
              quantobj->second_pass_init = median_cut_pass2_gray_init;
              quantobj->second_pass = median_cut_pass2_fs_dither_gray;
              break;
            case GIMP_CONVERT_DITHER_FIXED:
              quantobj->second_pass_init = median_cut_pass2_gray_init;
              quantobj->second_pass = median_cut_pass2_fixed_dither_gray;
              break;
            }
        }
      break;

    case GIMP_RGB:
      switch (palette_type)
        {
        case GIMP_CONVERT_PALETTE_GENERATE:
          quantobj->first_pass = median_cut_pass1_rgb;
          break;
        case GIMP_CONVERT_PALETTE_WEB:
          quantobj->first_pass = webpal_pass1;
          needs_quantize = TRUE;
          break;
        case GIMP_CONVERT_PALETTE_CUSTOM:
          quantobj->first_pass = custompal_pass1;
          needs_quantize = TRUE;
          break;
        case GIMP_CONVERT_PALETTE_MONO:
        default:
          quantobj->first_pass = monopal_pass1;
        }

      switch (dither_type)
        {
        case GIMP_CONVERT_DITHER_NONE:
          quantobj->second_pass_init = median_cut_pass2_rgb_init;
          quantobj->second_pass = median_cut_pass2_no_dither_rgb;
          break;
        case GIMP_CONVERT_DITHER_FS:
          quantobj->error_freedom = 0;
          quantobj->second_pass_init = median_cut_pass2_rgb_init;
          quantobj->second_pass = median_cut_pass2_fs_dither_rgb;
          break;
        case GIMP_CONVERT_DITHER_FS_LOWBLEED:
          quantobj->error_freedom = 1;
          quantobj->second_pass_init = median_cut_pass2_rgb_init;
          quantobj->second_pass = median_cut_pass2_fs_dither_rgb;
          break;
        case GIMP_CONVERT_DITHER_NODESTRUCT:
          quantobj->second_pass_init = NULL;
          quantobj->second_pass = median_cut_pass2_nodestruct_dither_rgb;
          break;
        case GIMP_CONVERT_DITHER_FIXED:
          quantobj->second_pass_init = median_cut_pass2_rgb_init;
          quantobj->second_pass = median_cut_pass2_fixed_dither_rgb;
          break;
        }
      break;

    default:
      break;
    }

  quantobj->delete_func = delete_median_cut;

  return quantobj;
}