summaryrefslogtreecommitdiffstats
path: root/grub-core/lib/libgcrypt/cipher/dsa.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 10:54:16 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 10:54:16 +0000
commit485f6ecd453d8a2fd8b9b9fadea03159d8b50797 (patch)
tree32451fa3cdd9321fb2591fada9891b2cb70a9cd1 /grub-core/lib/libgcrypt/cipher/dsa.c
parentInitial commit. (diff)
downloadgrub2-485f6ecd453d8a2fd8b9b9fadea03159d8b50797.tar.xz
grub2-485f6ecd453d8a2fd8b9b9fadea03159d8b50797.zip
Adding upstream version 2.06.upstream/2.06upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'grub-core/lib/libgcrypt/cipher/dsa.c')
-rw-r--r--grub-core/lib/libgcrypt/cipher/dsa.c1193
1 files changed, 1193 insertions, 0 deletions
diff --git a/grub-core/lib/libgcrypt/cipher/dsa.c b/grub-core/lib/libgcrypt/cipher/dsa.c
new file mode 100644
index 0000000..883a815
--- /dev/null
+++ b/grub-core/lib/libgcrypt/cipher/dsa.c
@@ -0,0 +1,1193 @@
+/* dsa.c - DSA signature algorithm
+ * Copyright (C) 1998, 2000, 2001, 2002, 2003,
+ * 2006, 2008 Free Software Foundation, Inc.
+ *
+ * This file is part of Libgcrypt.
+ *
+ * Libgcrypt is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU Lesser General Public License as
+ * published by the Free Software Foundation; either version 2.1 of
+ * the License, or (at your option) any later version.
+ *
+ * Libgcrypt is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this program; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+#include <config.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+
+#include "g10lib.h"
+#include "mpi.h"
+#include "cipher.h"
+
+typedef struct
+{
+ gcry_mpi_t p; /* prime */
+ gcry_mpi_t q; /* group order */
+ gcry_mpi_t g; /* group generator */
+ gcry_mpi_t y; /* g^x mod p */
+} DSA_public_key;
+
+
+typedef struct
+{
+ gcry_mpi_t p; /* prime */
+ gcry_mpi_t q; /* group order */
+ gcry_mpi_t g; /* group generator */
+ gcry_mpi_t y; /* g^x mod p */
+ gcry_mpi_t x; /* secret exponent */
+} DSA_secret_key;
+
+
+/* A structure used to hold domain parameters. */
+typedef struct
+{
+ gcry_mpi_t p; /* prime */
+ gcry_mpi_t q; /* group order */
+ gcry_mpi_t g; /* group generator */
+} dsa_domain_t;
+
+
+/* A sample 1024 bit DSA key used for the selftests. */
+static const char sample_secret_key[] =
+"(private-key"
+" (dsa"
+" (p #00AD7C0025BA1A15F775F3F2D673718391D00456978D347B33D7B49E7F32EDAB"
+" 96273899DD8B2BB46CD6ECA263FAF04A28903503D59062A8865D2AE8ADFB5191"
+" CF36FFB562D0E2F5809801A1F675DAE59698A9E01EFE8D7DCFCA084F4C6F5A44"
+" 44D499A06FFAEA5E8EF5E01F2FD20A7B7EF3F6968AFBA1FB8D91F1559D52D8777B#)"
+" (q #00EB7B5751D25EBBB7BD59D920315FD840E19AEBF9#)"
+" (g #1574363387FDFD1DDF38F4FBE135BB20C7EE4772FB94C337AF86EA8E49666503"
+" AE04B6BE81A2F8DD095311E0217ACA698A11E6C5D33CCDAE71498ED35D13991E"
+" B02F09AB40BD8F4C5ED8C75DA779D0AE104BC34C960B002377068AB4B5A1F984"
+" 3FBA91F537F1B7CAC4D8DD6D89B0D863AF7025D549F9C765D2FC07EE208F8D15#)"
+" (y #64B11EF8871BE4AB572AA810D5D3CA11A6CDBC637A8014602C72960DB135BF46"
+" A1816A724C34F87330FC9E187C5D66897A04535CC2AC9164A7150ABFA8179827"
+" 6E45831AB811EEE848EBB24D9F5F2883B6E5DDC4C659DEF944DCFD80BF4D0A20"
+" 42CAA7DC289F0C5A9D155F02D3D551DB741A81695B74D4C8F477F9C7838EB0FB#)"
+" (x #11D54E4ADBD3034160F2CED4B7CD292A4EBF3EC0#)))";
+/* A sample 1024 bit DSA key used for the selftests (public only). */
+static const char sample_public_key[] =
+"(public-key"
+" (dsa"
+" (p #00AD7C0025BA1A15F775F3F2D673718391D00456978D347B33D7B49E7F32EDAB"
+" 96273899DD8B2BB46CD6ECA263FAF04A28903503D59062A8865D2AE8ADFB5191"
+" CF36FFB562D0E2F5809801A1F675DAE59698A9E01EFE8D7DCFCA084F4C6F5A44"
+" 44D499A06FFAEA5E8EF5E01F2FD20A7B7EF3F6968AFBA1FB8D91F1559D52D8777B#)"
+" (q #00EB7B5751D25EBBB7BD59D920315FD840E19AEBF9#)"
+" (g #1574363387FDFD1DDF38F4FBE135BB20C7EE4772FB94C337AF86EA8E49666503"
+" AE04B6BE81A2F8DD095311E0217ACA698A11E6C5D33CCDAE71498ED35D13991E"
+" B02F09AB40BD8F4C5ED8C75DA779D0AE104BC34C960B002377068AB4B5A1F984"
+" 3FBA91F537F1B7CAC4D8DD6D89B0D863AF7025D549F9C765D2FC07EE208F8D15#)"
+" (y #64B11EF8871BE4AB572AA810D5D3CA11A6CDBC637A8014602C72960DB135BF46"
+" A1816A724C34F87330FC9E187C5D66897A04535CC2AC9164A7150ABFA8179827"
+" 6E45831AB811EEE848EBB24D9F5F2883B6E5DDC4C659DEF944DCFD80BF4D0A20"
+" 42CAA7DC289F0C5A9D155F02D3D551DB741A81695B74D4C8F477F9C7838EB0FB#)))";
+
+
+
+
+static gcry_mpi_t gen_k (gcry_mpi_t q);
+static int test_keys (DSA_secret_key *sk, unsigned int qbits);
+static int check_secret_key (DSA_secret_key *sk);
+static gpg_err_code_t generate (DSA_secret_key *sk,
+ unsigned int nbits,
+ unsigned int qbits,
+ int transient_key,
+ dsa_domain_t *domain,
+ gcry_mpi_t **ret_factors);
+static void sign (gcry_mpi_t r, gcry_mpi_t s, gcry_mpi_t input,
+ DSA_secret_key *skey);
+static int verify (gcry_mpi_t r, gcry_mpi_t s, gcry_mpi_t input,
+ DSA_public_key *pkey);
+
+static void (*progress_cb) (void *,const char *, int, int, int );
+static void *progress_cb_data;
+
+
+void
+_gcry_register_pk_dsa_progress (void (*cb) (void *, const char *,
+ int, int, int),
+ void *cb_data)
+{
+ progress_cb = cb;
+ progress_cb_data = cb_data;
+}
+
+
+static void
+progress (int c)
+{
+ if (progress_cb)
+ progress_cb (progress_cb_data, "pk_dsa", c, 0, 0);
+}
+
+
+/*
+ * Generate a random secret exponent k less than q.
+ */
+static gcry_mpi_t
+gen_k( gcry_mpi_t q )
+{
+ gcry_mpi_t k = mpi_alloc_secure( mpi_get_nlimbs(q) );
+ unsigned int nbits = mpi_get_nbits(q);
+ unsigned int nbytes = (nbits+7)/8;
+ char *rndbuf = NULL;
+
+ /* To learn why we don't use mpi_mod to get the requested bit size,
+ read the paper: "The Insecurity of the Digital Signature
+ Algorithm with Partially Known Nonces" by Nguyen and Shparlinski.
+ Journal of Cryptology, New York. Vol 15, nr 3 (2003) */
+
+ if ( DBG_CIPHER )
+ log_debug("choosing a random k ");
+ for (;;)
+ {
+ if( DBG_CIPHER )
+ progress('.');
+
+ if ( !rndbuf || nbits < 32 )
+ {
+ gcry_free(rndbuf);
+ rndbuf = gcry_random_bytes_secure( (nbits+7)/8, GCRY_STRONG_RANDOM );
+ }
+ else
+ { /* Change only some of the higher bits. We could improve
+ this by directly requesting more memory at the first call
+ to get_random_bytes() and use these extra bytes here.
+ However the required management code is more complex and
+ thus we better use this simple method. */
+ char *pp = gcry_random_bytes_secure( 4, GCRY_STRONG_RANDOM );
+ memcpy( rndbuf,pp, 4 );
+ gcry_free(pp);
+ }
+ _gcry_mpi_set_buffer( k, rndbuf, nbytes, 0 );
+
+ /* Make sure we have the requested number of bits. This code
+ looks a bit funny but it is easy to understand if you
+ consider that mpi_set_highbit clears all higher bits. We
+ don't have a clear_highbit, thus we first set the high bit
+ and then clear it again. */
+ if ( mpi_test_bit( k, nbits-1 ) )
+ mpi_set_highbit( k, nbits-1 );
+ else
+ {
+ mpi_set_highbit( k, nbits-1 );
+ mpi_clear_bit( k, nbits-1 );
+ }
+
+ if( !(mpi_cmp( k, q ) < 0) ) /* check: k < q */
+ {
+ if( DBG_CIPHER )
+ progress('+');
+ continue; /* no */
+ }
+ if( !(mpi_cmp_ui( k, 0 ) > 0) ) /* check: k > 0 */
+ {
+ if( DBG_CIPHER )
+ progress('-');
+ continue; /* no */
+ }
+ break; /* okay */
+ }
+ gcry_free(rndbuf);
+ if( DBG_CIPHER )
+ progress('\n');
+
+ return k;
+}
+
+
+/* Check that a freshly generated key actually works. Returns 0 on success. */
+static int
+test_keys (DSA_secret_key *sk, unsigned int qbits)
+{
+ int result = -1; /* Default to failure. */
+ DSA_public_key pk;
+ gcry_mpi_t data = gcry_mpi_new (qbits);
+ gcry_mpi_t sig_a = gcry_mpi_new (qbits);
+ gcry_mpi_t sig_b = gcry_mpi_new (qbits);
+
+ /* Put the relevant parameters into a public key structure. */
+ pk.p = sk->p;
+ pk.q = sk->q;
+ pk.g = sk->g;
+ pk.y = sk->y;
+
+ /* Create a random plaintext. */
+ gcry_mpi_randomize (data, qbits, GCRY_WEAK_RANDOM);
+
+ /* Sign DATA using the secret key. */
+ sign (sig_a, sig_b, data, sk);
+
+ /* Verify the signature using the public key. */
+ if ( !verify (sig_a, sig_b, data, &pk) )
+ goto leave; /* Signature does not match. */
+
+ /* Modify the data and check that the signing fails. */
+ gcry_mpi_add_ui (data, data, 1);
+ if ( verify (sig_a, sig_b, data, &pk) )
+ goto leave; /* Signature matches but should not. */
+
+ result = 0; /* The test succeeded. */
+
+ leave:
+ gcry_mpi_release (sig_b);
+ gcry_mpi_release (sig_a);
+ gcry_mpi_release (data);
+ return result;
+}
+
+
+
+/*
+ Generate a DSA key pair with a key of size NBITS. If transient_key
+ is true the key is generated using the standard RNG and not the
+ very secure one.
+
+ Returns: 2 structures filled with all needed values
+ and an array with the n-1 factors of (p-1)
+ */
+static gpg_err_code_t
+generate (DSA_secret_key *sk, unsigned int nbits, unsigned int qbits,
+ int transient_key, dsa_domain_t *domain, gcry_mpi_t **ret_factors )
+{
+ gcry_mpi_t p; /* the prime */
+ gcry_mpi_t q; /* the 160 bit prime factor */
+ gcry_mpi_t g; /* the generator */
+ gcry_mpi_t y; /* g^x mod p */
+ gcry_mpi_t x; /* the secret exponent */
+ gcry_mpi_t h, e; /* helper */
+ unsigned char *rndbuf;
+ gcry_random_level_t random_level;
+
+ if (qbits)
+ ; /* Caller supplied qbits. Use this value. */
+ else if ( nbits >= 512 && nbits <= 1024 )
+ qbits = 160;
+ else if ( nbits == 2048 )
+ qbits = 224;
+ else if ( nbits == 3072 )
+ qbits = 256;
+ else if ( nbits == 7680 )
+ qbits = 384;
+ else if ( nbits == 15360 )
+ qbits = 512;
+ else
+ return GPG_ERR_INV_VALUE;
+
+ if (qbits < 160 || qbits > 512 || (qbits%8) )
+ return GPG_ERR_INV_VALUE;
+ if (nbits < 2*qbits || nbits > 15360)
+ return GPG_ERR_INV_VALUE;
+
+ if (fips_mode ())
+ {
+ if (nbits < 1024)
+ return GPG_ERR_INV_VALUE;
+ if (transient_key)
+ return GPG_ERR_INV_VALUE;
+ }
+
+ if (domain->p && domain->q && domain->g)
+ {
+ /* Domain parameters are given; use them. */
+ p = mpi_copy (domain->p);
+ q = mpi_copy (domain->q);
+ g = mpi_copy (domain->g);
+ gcry_assert (mpi_get_nbits (p) == nbits);
+ gcry_assert (mpi_get_nbits (q) == qbits);
+ h = mpi_alloc (0);
+ e = NULL;
+ }
+ else
+ {
+ /* Generate new domain parameters. */
+ p = _gcry_generate_elg_prime (1, nbits, qbits, NULL, ret_factors);
+ /* Get q out of factors. */
+ q = mpi_copy ((*ret_factors)[0]);
+ gcry_assert (mpi_get_nbits (q) == qbits);
+
+ /* Find a generator g (h and e are helpers).
+ e = (p-1)/q */
+ e = mpi_alloc (mpi_get_nlimbs (p));
+ mpi_sub_ui (e, p, 1);
+ mpi_fdiv_q (e, e, q);
+ g = mpi_alloc (mpi_get_nlimbs (p));
+ h = mpi_alloc_set_ui (1); /* (We start with 2.) */
+ do
+ {
+ mpi_add_ui (h, h, 1);
+ /* g = h^e mod p */
+ gcry_mpi_powm (g, h, e, p);
+ }
+ while (!mpi_cmp_ui (g, 1)); /* Continue until g != 1. */
+ }
+
+ /* Select a random number X with the property:
+ * 0 < x < q-1
+ * This must be a very good random number because this is the secret
+ * part. The random quality depends on the transient_key flag. */
+ random_level = transient_key ? GCRY_STRONG_RANDOM : GCRY_VERY_STRONG_RANDOM;
+ if (DBG_CIPHER)
+ log_debug("choosing a random x%s", transient_key? " (transient-key)":"");
+ gcry_assert( qbits >= 160 );
+ x = mpi_alloc_secure( mpi_get_nlimbs(q) );
+ mpi_sub_ui( h, q, 1 ); /* put q-1 into h */
+ rndbuf = NULL;
+ do
+ {
+ if( DBG_CIPHER )
+ progress('.');
+ if( !rndbuf )
+ rndbuf = gcry_random_bytes_secure ((qbits+7)/8, random_level);
+ else
+ { /* Change only some of the higher bits (= 2 bytes)*/
+ char *r = gcry_random_bytes_secure (2, random_level);
+ memcpy(rndbuf, r, 2 );
+ gcry_free(r);
+ }
+
+ _gcry_mpi_set_buffer( x, rndbuf, (qbits+7)/8, 0 );
+ mpi_clear_highbit( x, qbits+1 );
+ }
+ while ( !( mpi_cmp_ui( x, 0 )>0 && mpi_cmp( x, h )<0 ) );
+ gcry_free(rndbuf);
+ mpi_free( e );
+ mpi_free( h );
+
+ /* y = g^x mod p */
+ y = mpi_alloc( mpi_get_nlimbs(p) );
+ gcry_mpi_powm( y, g, x, p );
+
+ if( DBG_CIPHER )
+ {
+ progress('\n');
+ log_mpidump("dsa p", p );
+ log_mpidump("dsa q", q );
+ log_mpidump("dsa g", g );
+ log_mpidump("dsa y", y );
+ log_mpidump("dsa x", x );
+ }
+
+ /* Copy the stuff to the key structures. */
+ sk->p = p;
+ sk->q = q;
+ sk->g = g;
+ sk->y = y;
+ sk->x = x;
+
+ /* Now we can test our keys (this should never fail!). */
+ if ( test_keys (sk, qbits) )
+ {
+ gcry_mpi_release (sk->p); sk->p = NULL;
+ gcry_mpi_release (sk->q); sk->q = NULL;
+ gcry_mpi_release (sk->g); sk->g = NULL;
+ gcry_mpi_release (sk->y); sk->y = NULL;
+ gcry_mpi_release (sk->x); sk->x = NULL;
+ fips_signal_error ("self-test after key generation failed");
+ return GPG_ERR_SELFTEST_FAILED;
+ }
+ return 0;
+}
+
+
+/* Generate a DSA key pair with a key of size NBITS using the
+ algorithm given in FIPS-186-3. If USE_FIPS186_2 is true,
+ FIPS-186-2 is used and thus the length is restricted to 1024/160.
+ If DERIVEPARMS is not NULL it may contain a seed value. If domain
+ parameters are specified in DOMAIN, DERIVEPARMS may not be given
+ and NBITS and QBITS must match the specified domain parameters. */
+static gpg_err_code_t
+generate_fips186 (DSA_secret_key *sk, unsigned int nbits, unsigned int qbits,
+ gcry_sexp_t deriveparms, int use_fips186_2,
+ dsa_domain_t *domain,
+ int *r_counter, void **r_seed, size_t *r_seedlen,
+ gcry_mpi_t *r_h)
+{
+ gpg_err_code_t ec;
+ struct {
+ gcry_sexp_t sexp;
+ const void *seed;
+ size_t seedlen;
+ } initial_seed = { NULL, NULL, 0 };
+ gcry_mpi_t prime_q = NULL;
+ gcry_mpi_t prime_p = NULL;
+ gcry_mpi_t value_g = NULL; /* The generator. */
+ gcry_mpi_t value_y = NULL; /* g^x mod p */
+ gcry_mpi_t value_x = NULL; /* The secret exponent. */
+ gcry_mpi_t value_h = NULL; /* Helper. */
+ gcry_mpi_t value_e = NULL; /* Helper. */
+
+ /* Preset return values. */
+ *r_counter = 0;
+ *r_seed = NULL;
+ *r_seedlen = 0;
+ *r_h = NULL;
+
+ /* Derive QBITS from NBITS if requested */
+ if (!qbits)
+ {
+ if (nbits == 1024)
+ qbits = 160;
+ else if (nbits == 2048)
+ qbits = 224;
+ else if (nbits == 3072)
+ qbits = 256;
+ }
+
+ /* Check that QBITS and NBITS match the standard. Note that FIPS
+ 186-3 uses N for QBITS and L for NBITS. */
+ if (nbits == 1024 && qbits == 160)
+ ;
+ else if (nbits == 2048 && qbits == 224)
+ ;
+ else if (nbits == 2048 && qbits == 256)
+ ;
+ else if (nbits == 3072 && qbits == 256)
+ ;
+ else
+ return GPG_ERR_INV_VALUE;
+
+ if (domain->p && domain->q && domain->g)
+ {
+ /* Domain parameters are given; use them. */
+ prime_p = mpi_copy (domain->p);
+ prime_q = mpi_copy (domain->q);
+ value_g = mpi_copy (domain->g);
+ gcry_assert (mpi_get_nbits (prime_p) == nbits);
+ gcry_assert (mpi_get_nbits (prime_q) == qbits);
+ gcry_assert (!deriveparms);
+ ec = 0;
+ }
+ else
+ {
+ /* Generate new domain parameters. */
+
+ /* Get an initial seed value. */
+ if (deriveparms)
+ {
+ initial_seed.sexp = gcry_sexp_find_token (deriveparms, "seed", 0);
+ if (initial_seed.sexp)
+ initial_seed.seed = gcry_sexp_nth_data (initial_seed.sexp, 1,
+ &initial_seed.seedlen);
+ }
+
+ /* Fixme: Enable 186-3 after it has been approved and after fixing
+ the generation function. */
+ /* if (use_fips186_2) */
+ (void)use_fips186_2;
+ ec = _gcry_generate_fips186_2_prime (nbits, qbits,
+ initial_seed.seed,
+ initial_seed.seedlen,
+ &prime_q, &prime_p,
+ r_counter,
+ r_seed, r_seedlen);
+ /* else */
+ /* ec = _gcry_generate_fips186_3_prime (nbits, qbits, NULL, 0, */
+ /* &prime_q, &prime_p, */
+ /* r_counter, */
+ /* r_seed, r_seedlen, NULL); */
+ gcry_sexp_release (initial_seed.sexp);
+ if (ec)
+ goto leave;
+
+ /* Find a generator g (h and e are helpers).
+ e = (p-1)/q */
+ value_e = mpi_alloc_like (prime_p);
+ mpi_sub_ui (value_e, prime_p, 1);
+ mpi_fdiv_q (value_e, value_e, prime_q );
+ value_g = mpi_alloc_like (prime_p);
+ value_h = mpi_alloc_set_ui (1);
+ do
+ {
+ mpi_add_ui (value_h, value_h, 1);
+ /* g = h^e mod p */
+ mpi_powm (value_g, value_h, value_e, prime_p);
+ }
+ while (!mpi_cmp_ui (value_g, 1)); /* Continue until g != 1. */
+ }
+
+
+ /* Select a random number x with: 0 < x < q */
+ value_x = gcry_mpi_snew (qbits);
+ do
+ {
+ if( DBG_CIPHER )
+ progress('.');
+ gcry_mpi_randomize (value_x, qbits, GCRY_VERY_STRONG_RANDOM);
+ mpi_clear_highbit (value_x, qbits+1);
+ }
+ while (!(mpi_cmp_ui (value_x, 0) > 0 && mpi_cmp (value_x, prime_q) < 0));
+
+ /* y = g^x mod p */
+ value_y = mpi_alloc_like (prime_p);
+ gcry_mpi_powm (value_y, value_g, value_x, prime_p);
+
+ if (DBG_CIPHER)
+ {
+ progress('\n');
+ log_mpidump("dsa p", prime_p );
+ log_mpidump("dsa q", prime_q );
+ log_mpidump("dsa g", value_g );
+ log_mpidump("dsa y", value_y );
+ log_mpidump("dsa x", value_x );
+ log_mpidump("dsa h", value_h );
+ }
+
+ /* Copy the stuff to the key structures. */
+ sk->p = prime_p; prime_p = NULL;
+ sk->q = prime_q; prime_q = NULL;
+ sk->g = value_g; value_g = NULL;
+ sk->y = value_y; value_y = NULL;
+ sk->x = value_x; value_x = NULL;
+ *r_h = value_h; value_h = NULL;
+
+ leave:
+ gcry_mpi_release (prime_p);
+ gcry_mpi_release (prime_q);
+ gcry_mpi_release (value_g);
+ gcry_mpi_release (value_y);
+ gcry_mpi_release (value_x);
+ gcry_mpi_release (value_h);
+ gcry_mpi_release (value_e);
+
+ /* As a last step test this keys (this should never fail of course). */
+ if (!ec && test_keys (sk, qbits) )
+ {
+ gcry_mpi_release (sk->p); sk->p = NULL;
+ gcry_mpi_release (sk->q); sk->q = NULL;
+ gcry_mpi_release (sk->g); sk->g = NULL;
+ gcry_mpi_release (sk->y); sk->y = NULL;
+ gcry_mpi_release (sk->x); sk->x = NULL;
+ fips_signal_error ("self-test after key generation failed");
+ ec = GPG_ERR_SELFTEST_FAILED;
+ }
+
+ if (ec)
+ {
+ *r_counter = 0;
+ gcry_free (*r_seed); *r_seed = NULL;
+ *r_seedlen = 0;
+ gcry_mpi_release (*r_h); *r_h = NULL;
+ }
+
+ return ec;
+}
+
+
+
+/*
+ Test whether the secret key is valid.
+ Returns: if this is a valid key.
+ */
+static int
+check_secret_key( DSA_secret_key *sk )
+{
+ int rc;
+ gcry_mpi_t y = mpi_alloc( mpi_get_nlimbs(sk->y) );
+
+ gcry_mpi_powm( y, sk->g, sk->x, sk->p );
+ rc = !mpi_cmp( y, sk->y );
+ mpi_free( y );
+ return rc;
+}
+
+
+
+/*
+ Make a DSA signature from HASH and put it into r and s.
+ */
+static void
+sign(gcry_mpi_t r, gcry_mpi_t s, gcry_mpi_t hash, DSA_secret_key *skey )
+{
+ gcry_mpi_t k;
+ gcry_mpi_t kinv;
+ gcry_mpi_t tmp;
+
+ /* Select a random k with 0 < k < q */
+ k = gen_k( skey->q );
+
+ /* r = (a^k mod p) mod q */
+ gcry_mpi_powm( r, skey->g, k, skey->p );
+ mpi_fdiv_r( r, r, skey->q );
+
+ /* kinv = k^(-1) mod q */
+ kinv = mpi_alloc( mpi_get_nlimbs(k) );
+ mpi_invm(kinv, k, skey->q );
+
+ /* s = (kinv * ( hash + x * r)) mod q */
+ tmp = mpi_alloc( mpi_get_nlimbs(skey->p) );
+ mpi_mul( tmp, skey->x, r );
+ mpi_add( tmp, tmp, hash );
+ mpi_mulm( s , kinv, tmp, skey->q );
+
+ mpi_free(k);
+ mpi_free(kinv);
+ mpi_free(tmp);
+}
+
+
+/*
+ Returns true if the signature composed from R and S is valid.
+ */
+static int
+verify (gcry_mpi_t r, gcry_mpi_t s, gcry_mpi_t hash, DSA_public_key *pkey )
+{
+ int rc;
+ gcry_mpi_t w, u1, u2, v;
+ gcry_mpi_t base[3];
+ gcry_mpi_t ex[3];
+
+ if( !(mpi_cmp_ui( r, 0 ) > 0 && mpi_cmp( r, pkey->q ) < 0) )
+ return 0; /* assertion 0 < r < q failed */
+ if( !(mpi_cmp_ui( s, 0 ) > 0 && mpi_cmp( s, pkey->q ) < 0) )
+ return 0; /* assertion 0 < s < q failed */
+
+ w = mpi_alloc( mpi_get_nlimbs(pkey->q) );
+ u1 = mpi_alloc( mpi_get_nlimbs(pkey->q) );
+ u2 = mpi_alloc( mpi_get_nlimbs(pkey->q) );
+ v = mpi_alloc( mpi_get_nlimbs(pkey->p) );
+
+ /* w = s^(-1) mod q */
+ mpi_invm( w, s, pkey->q );
+
+ /* u1 = (hash * w) mod q */
+ mpi_mulm( u1, hash, w, pkey->q );
+
+ /* u2 = r * w mod q */
+ mpi_mulm( u2, r, w, pkey->q );
+
+ /* v = g^u1 * y^u2 mod p mod q */
+ base[0] = pkey->g; ex[0] = u1;
+ base[1] = pkey->y; ex[1] = u2;
+ base[2] = NULL; ex[2] = NULL;
+ mpi_mulpowm( v, base, ex, pkey->p );
+ mpi_fdiv_r( v, v, pkey->q );
+
+ rc = !mpi_cmp( v, r );
+
+ mpi_free(w);
+ mpi_free(u1);
+ mpi_free(u2);
+ mpi_free(v);
+
+ return rc;
+}
+
+
+/*********************************************
+ ************** interface ******************
+ *********************************************/
+
+static gcry_err_code_t
+dsa_generate_ext (int algo, unsigned int nbits, unsigned long evalue,
+ const gcry_sexp_t genparms,
+ gcry_mpi_t *skey, gcry_mpi_t **retfactors,
+ gcry_sexp_t *r_extrainfo)
+{
+ gpg_err_code_t ec;
+ DSA_secret_key sk;
+ gcry_sexp_t l1;
+ unsigned int qbits = 0;
+ gcry_sexp_t deriveparms = NULL;
+ gcry_sexp_t seedinfo = NULL;
+ int transient_key = 0;
+ int use_fips186_2 = 0;
+ int use_fips186 = 0;
+ dsa_domain_t domain;
+
+ (void)algo; /* No need to check it. */
+ (void)evalue; /* Not required for DSA. */
+
+ memset (&domain, 0, sizeof domain);
+
+ if (genparms)
+ {
+ gcry_sexp_t domainsexp;
+
+ /* Parse the optional qbits element. */
+ l1 = gcry_sexp_find_token (genparms, "qbits", 0);
+ if (l1)
+ {
+ char buf[50];
+ const char *s;
+ size_t n;
+
+ s = gcry_sexp_nth_data (l1, 1, &n);
+ if (!s || n >= DIM (buf) - 1 )
+ {
+ gcry_sexp_release (l1);
+ return GPG_ERR_INV_OBJ; /* No value or value too large. */
+ }
+ memcpy (buf, s, n);
+ buf[n] = 0;
+ qbits = (unsigned int)strtoul (buf, NULL, 0);
+ gcry_sexp_release (l1);
+ }
+
+ /* Parse the optional transient-key flag. */
+ l1 = gcry_sexp_find_token (genparms, "transient-key", 0);
+ if (l1)
+ {
+ transient_key = 1;
+ gcry_sexp_release (l1);
+ }
+
+ /* Get the optional derive parameters. */
+ deriveparms = gcry_sexp_find_token (genparms, "derive-parms", 0);
+
+ /* Parse the optional "use-fips186" flags. */
+ l1 = gcry_sexp_find_token (genparms, "use-fips186", 0);
+ if (l1)
+ {
+ use_fips186 = 1;
+ gcry_sexp_release (l1);
+ }
+ l1 = gcry_sexp_find_token (genparms, "use-fips186-2", 0);
+ if (l1)
+ {
+ use_fips186_2 = 1;
+ gcry_sexp_release (l1);
+ }
+
+ /* Check whether domain parameters are given. */
+ domainsexp = gcry_sexp_find_token (genparms, "domain", 0);
+ if (domainsexp)
+ {
+ /* DERIVEPARMS can't be used together with domain
+ parameters. NBITS abnd QBITS may not be specified
+ because there values are derived from the domain
+ parameters. */
+ if (deriveparms || qbits || nbits)
+ {
+ gcry_sexp_release (domainsexp);
+ gcry_sexp_release (deriveparms);
+ return GPG_ERR_INV_VALUE;
+ }
+
+ /* Put all domain parameters into the domain object. */
+ l1 = gcry_sexp_find_token (domainsexp, "p", 0);
+ domain.p = gcry_sexp_nth_mpi (l1, 1, GCRYMPI_FMT_USG);
+ gcry_sexp_release (l1);
+ l1 = gcry_sexp_find_token (domainsexp, "q", 0);
+ domain.q = gcry_sexp_nth_mpi (l1, 1, GCRYMPI_FMT_USG);
+ gcry_sexp_release (l1);
+ l1 = gcry_sexp_find_token (domainsexp, "g", 0);
+ domain.g = gcry_sexp_nth_mpi (l1, 1, GCRYMPI_FMT_USG);
+ gcry_sexp_release (l1);
+ gcry_sexp_release (domainsexp);
+
+ /* Check that all domain parameters are available. */
+ if (!domain.p || !domain.q || !domain.g)
+ {
+ gcry_mpi_release (domain.p);
+ gcry_mpi_release (domain.q);
+ gcry_mpi_release (domain.g);
+ gcry_sexp_release (deriveparms);
+ return GPG_ERR_MISSING_VALUE;
+ }
+
+ /* Get NBITS and QBITS from the domain parameters. */
+ nbits = mpi_get_nbits (domain.p);
+ qbits = mpi_get_nbits (domain.q);
+ }
+ }
+
+ if (deriveparms || use_fips186 || use_fips186_2 || fips_mode ())
+ {
+ int counter;
+ void *seed;
+ size_t seedlen;
+ gcry_mpi_t h_value;
+
+ ec = generate_fips186 (&sk, nbits, qbits, deriveparms, use_fips186_2,
+ &domain,
+ &counter, &seed, &seedlen, &h_value);
+ gcry_sexp_release (deriveparms);
+ if (!ec && h_value)
+ {
+ /* Format the seed-values unless domain parameters are used
+ for which a H_VALUE of NULL is an indication. */
+ ec = gpg_err_code (gcry_sexp_build
+ (&seedinfo, NULL,
+ "(seed-values(counter %d)(seed %b)(h %m))",
+ counter, (int)seedlen, seed, h_value));
+ if (ec)
+ {
+ gcry_mpi_release (sk.p); sk.p = NULL;
+ gcry_mpi_release (sk.q); sk.q = NULL;
+ gcry_mpi_release (sk.g); sk.g = NULL;
+ gcry_mpi_release (sk.y); sk.y = NULL;
+ gcry_mpi_release (sk.x); sk.x = NULL;
+ }
+ gcry_free (seed);
+ gcry_mpi_release (h_value);
+ }
+ }
+ else
+ {
+ ec = generate (&sk, nbits, qbits, transient_key, &domain, retfactors);
+ }
+
+ gcry_mpi_release (domain.p);
+ gcry_mpi_release (domain.q);
+ gcry_mpi_release (domain.g);
+
+ if (!ec)
+ {
+ skey[0] = sk.p;
+ skey[1] = sk.q;
+ skey[2] = sk.g;
+ skey[3] = sk.y;
+ skey[4] = sk.x;
+
+ if (!r_extrainfo)
+ {
+ /* Old style interface - return the factors - if any - at
+ retfactors. */
+ }
+ else if (!*retfactors && !seedinfo)
+ {
+ /* No factors and no seedinfo, thus there is nothing to return. */
+ *r_extrainfo = NULL;
+ }
+ else
+ {
+ /* Put the factors into extrainfo and set retfactors to NULL
+ to make use of the new interface. Note that the factors
+ are not confidential thus we can store them in standard
+ memory. */
+ int nfactors, i, j;
+ char *p;
+ char *format = NULL;
+ void **arg_list = NULL;
+
+ for (nfactors=0; *retfactors && (*retfactors)[nfactors]; nfactors++)
+ ;
+ /* Allocate space for the format string:
+ "(misc-key-info%S(pm1-factors%m))"
+ with one "%m" for each factor and construct it. */
+ format = gcry_malloc (50 + 2*nfactors);
+ if (!format)
+ ec = gpg_err_code_from_syserror ();
+ else
+ {
+ p = stpcpy (format, "(misc-key-info");
+ if (seedinfo)
+ p = stpcpy (p, "%S");
+ if (nfactors)
+ {
+ p = stpcpy (p, "(pm1-factors");
+ for (i=0; i < nfactors; i++)
+ p = stpcpy (p, "%m");
+ p = stpcpy (p, ")");
+ }
+ p = stpcpy (p, ")");
+
+ /* Allocate space for the list of factors plus one for
+ an S-expression plus an extra NULL entry for safety
+ and fill it with the factors. */
+ arg_list = gcry_calloc (nfactors+1+1, sizeof *arg_list);
+ if (!arg_list)
+ ec = gpg_err_code_from_syserror ();
+ else
+ {
+ i = 0;
+ if (seedinfo)
+ arg_list[i++] = &seedinfo;
+ for (j=0; j < nfactors; j++)
+ arg_list[i++] = (*retfactors) + j;
+ arg_list[i] = NULL;
+
+ ec = gpg_err_code (gcry_sexp_build_array
+ (r_extrainfo, NULL, format, arg_list));
+ }
+ }
+
+ gcry_free (arg_list);
+ gcry_free (format);
+ for (i=0; i < nfactors; i++)
+ {
+ gcry_mpi_release ((*retfactors)[i]);
+ (*retfactors)[i] = NULL;
+ }
+ gcry_free (*retfactors);
+ *retfactors = NULL;
+ if (ec)
+ {
+ for (i=0; i < 5; i++)
+ {
+ gcry_mpi_release (skey[i]);
+ skey[i] = NULL;
+ }
+ }
+ }
+ }
+
+ gcry_sexp_release (seedinfo);
+ return ec;
+}
+
+
+static gcry_err_code_t
+dsa_generate (int algo, unsigned int nbits, unsigned long evalue,
+ gcry_mpi_t *skey, gcry_mpi_t **retfactors)
+{
+ (void)evalue;
+ return dsa_generate_ext (algo, nbits, 0, NULL, skey, retfactors, NULL);
+}
+
+
+
+static gcry_err_code_t
+dsa_check_secret_key (int algo, gcry_mpi_t *skey)
+{
+ gcry_err_code_t err = GPG_ERR_NO_ERROR;
+ DSA_secret_key sk;
+
+ (void)algo;
+
+ if ((! skey[0]) || (! skey[1]) || (! skey[2]) || (! skey[3]) || (! skey[4]))
+ err = GPG_ERR_BAD_MPI;
+ else
+ {
+ sk.p = skey[0];
+ sk.q = skey[1];
+ sk.g = skey[2];
+ sk.y = skey[3];
+ sk.x = skey[4];
+ if (! check_secret_key (&sk))
+ err = GPG_ERR_BAD_SECKEY;
+ }
+
+ return err;
+}
+
+
+static gcry_err_code_t
+dsa_sign (int algo, gcry_mpi_t *resarr, gcry_mpi_t data, gcry_mpi_t *skey)
+{
+ gcry_err_code_t err = GPG_ERR_NO_ERROR;
+ DSA_secret_key sk;
+
+ (void)algo;
+
+ if ((! data)
+ || (! skey[0]) || (! skey[1]) || (! skey[2])
+ || (! skey[3]) || (! skey[4]))
+ err = GPG_ERR_BAD_MPI;
+ else
+ {
+ sk.p = skey[0];
+ sk.q = skey[1];
+ sk.g = skey[2];
+ sk.y = skey[3];
+ sk.x = skey[4];
+ resarr[0] = mpi_alloc (mpi_get_nlimbs (sk.p));
+ resarr[1] = mpi_alloc (mpi_get_nlimbs (sk.p));
+ sign (resarr[0], resarr[1], data, &sk);
+ }
+ return err;
+}
+
+static gcry_err_code_t
+dsa_verify (int algo, gcry_mpi_t hash, gcry_mpi_t *data, gcry_mpi_t *pkey,
+ int (*cmp) (void *, gcry_mpi_t), void *opaquev)
+{
+ gcry_err_code_t err = GPG_ERR_NO_ERROR;
+ DSA_public_key pk;
+
+ (void)algo;
+ (void)cmp;
+ (void)opaquev;
+
+ if ((! data[0]) || (! data[1]) || (! hash)
+ || (! pkey[0]) || (! pkey[1]) || (! pkey[2]) || (! pkey[3]))
+ err = GPG_ERR_BAD_MPI;
+ else
+ {
+ pk.p = pkey[0];
+ pk.q = pkey[1];
+ pk.g = pkey[2];
+ pk.y = pkey[3];
+ if (! verify (data[0], data[1], hash, &pk))
+ err = GPG_ERR_BAD_SIGNATURE;
+ }
+ return err;
+}
+
+
+static unsigned int
+dsa_get_nbits (int algo, gcry_mpi_t *pkey)
+{
+ (void)algo;
+
+ return mpi_get_nbits (pkey[0]);
+}
+
+
+
+/*
+ Self-test section.
+ */
+
+static const char *
+selftest_sign_1024 (gcry_sexp_t pkey, gcry_sexp_t skey)
+{
+ static const char sample_data[] =
+ "(data (flags raw)"
+ " (value #a0b1c2d3e4f500102030405060708090a1b2c3d4#))";
+ static const char sample_data_bad[] =
+ "(data (flags raw)"
+ " (value #a0b1c2d3e4f510102030405060708090a1b2c3d4#))";
+
+ const char *errtxt = NULL;
+ gcry_error_t err;
+ gcry_sexp_t data = NULL;
+ gcry_sexp_t data_bad = NULL;
+ gcry_sexp_t sig = NULL;
+
+ err = gcry_sexp_sscan (&data, NULL,
+ sample_data, strlen (sample_data));
+ if (!err)
+ err = gcry_sexp_sscan (&data_bad, NULL,
+ sample_data_bad, strlen (sample_data_bad));
+ if (err)
+ {
+ errtxt = "converting data failed";
+ goto leave;
+ }
+
+ err = gcry_pk_sign (&sig, data, skey);
+ if (err)
+ {
+ errtxt = "signing failed";
+ goto leave;
+ }
+ err = gcry_pk_verify (sig, data, pkey);
+ if (err)
+ {
+ errtxt = "verify failed";
+ goto leave;
+ }
+ err = gcry_pk_verify (sig, data_bad, pkey);
+ if (gcry_err_code (err) != GPG_ERR_BAD_SIGNATURE)
+ {
+ errtxt = "bad signature not detected";
+ goto leave;
+ }
+
+
+ leave:
+ gcry_sexp_release (sig);
+ gcry_sexp_release (data_bad);
+ gcry_sexp_release (data);
+ return errtxt;
+}
+
+
+static gpg_err_code_t
+selftests_dsa (selftest_report_func_t report)
+{
+ const char *what;
+ const char *errtxt;
+ gcry_error_t err;
+ gcry_sexp_t skey = NULL;
+ gcry_sexp_t pkey = NULL;
+
+ /* Convert the S-expressions into the internal representation. */
+ what = "convert";
+ err = gcry_sexp_sscan (&skey, NULL,
+ sample_secret_key, strlen (sample_secret_key));
+ if (!err)
+ err = gcry_sexp_sscan (&pkey, NULL,
+ sample_public_key, strlen (sample_public_key));
+ if (err)
+ {
+ errtxt = gcry_strerror (err);
+ goto failed;
+ }
+
+ what = "key consistency";
+ err = gcry_pk_testkey (skey);
+ if (err)
+ {
+ errtxt = gcry_strerror (err);
+ goto failed;
+ }
+
+ what = "sign";
+ errtxt = selftest_sign_1024 (pkey, skey);
+ if (errtxt)
+ goto failed;
+
+ gcry_sexp_release (pkey);
+ gcry_sexp_release (skey);
+ return 0; /* Succeeded. */
+
+ failed:
+ gcry_sexp_release (pkey);
+ gcry_sexp_release (skey);
+ if (report)
+ report ("pubkey", GCRY_PK_DSA, what, errtxt);
+ return GPG_ERR_SELFTEST_FAILED;
+}
+
+
+/* Run a full self-test for ALGO and return 0 on success. */
+static gpg_err_code_t
+run_selftests (int algo, int extended, selftest_report_func_t report)
+{
+ gpg_err_code_t ec;
+
+ (void)extended;
+
+ switch (algo)
+ {
+ case GCRY_PK_DSA:
+ ec = selftests_dsa (report);
+ break;
+ default:
+ ec = GPG_ERR_PUBKEY_ALGO;
+ break;
+
+ }
+ return ec;
+}
+
+
+
+
+static const char *dsa_names[] =
+ {
+ "dsa",
+ "openpgp-dsa",
+ NULL,
+ };
+
+gcry_pk_spec_t _gcry_pubkey_spec_dsa =
+ {
+ "DSA", dsa_names,
+ "pqgy", "pqgyx", "", "rs", "pqgy",
+ GCRY_PK_USAGE_SIGN,
+ dsa_generate,
+ dsa_check_secret_key,
+ NULL,
+ NULL,
+ dsa_sign,
+ dsa_verify,
+ dsa_get_nbits
+ };
+pk_extra_spec_t _gcry_pubkey_extraspec_dsa =
+ {
+ run_selftests,
+ dsa_generate_ext
+ };